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Over the past decade, CAR-T cells have emerged as one of the most powerful cel-
lular immune therapy approaches in the battle against haematological malignancies. 
Nonetheless, similar to other immunotherapeutic approaches, tumour cells develop 
strategies to evade CAR-T cell therapy, often with the support of a highly immuno-
suppressive and protective tumour microenvironment. To date, antigen loss, immune 
dysfunction, exhaustion and (microenvironment-mediated) upregulation of anti-
apoptotic pathways have been identified as major modes of tumour escape from 
CAR-T cell therapy. This chapter will focus on our current understanding of these 
modes of immune escape from CAR-T cells.
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 Immune Escape and CAR-T Cell Resistance Related 
to Antigen Loss

Antigen loss represents the ultimate adaptation of a cancer cell to the selective pres-
sure of targeted immunotherapy. While antigen downregulation or dim expression is 
a well-known event in lymphoma and myeloma treated with therapeutic IgG anti-
bodies (Plesner et al. 2020; Jilani et al. 2003), complete target loss is a phenomenon 
typically occurring after T-cell-based therapy, such as CAR-T cell or T cell engag-
ing bispecific antibodies (TCE) therapy, and rarely after treatment with antibody- 
drug conjugates (ADCs).

In B cell malignancies, CD19 loss has been noted in up to 40% of patients with 
B cell acute lymphoblastic leukaemia treated with different CAR 19 products 
(Orlando et al. 2018). Point mutations in CD19 have been described to lead to 
nonfunctional anchoring of the CD19 protein to the cell membrane and conse-
quently to a loss of surface antigen (Orlando et al. 2018). Deleterious mutations 
and alternatively spliced CD19 mRNA variants were identified in two other stud-
ies (Asnani et al. 2020; Sotillo et al. 2015). In B-ALL with rearrangement of the 
mixed lineage leukaemia (MLL) gene, some patients relapsed with clonally 
related acute myeloid leukaemia after treatment with CD19 CAR-T cells, adding 
a switch to a CD19- negative myeloid phenotype as another mechanism of resis-
tance (Gardner et al. 2016). In DLBCL, the frequency of CD19 loss after CAR19 
axicabtagene ciloleucel (axi-cel) treatment was 33% (Neelapu et al. 2017; Neelapu 
et al. 2019), and alternatively spliced CD19 mRNA species could be identified. In 
follicular lymphoma and DLBCL treated with CD20 X CD3 bispecific TCE, 
CD20 loss relapses were seen, but the frequency is yet to be reported (Bannerji 
et al. 2018). Furthermore, a single case of CD22 loss was described after ADC 
inotuzumab-ozogamicin treatment in a paediatric patient with B-ALL (Paul et al. 
2019). Taken together, antigen loss is a key mechanism of resistance to novel 
immunotherapies targeting CD19, CD20, and CD22. In myeloma, downregula-
tion of BCMA was recorded in a significant proportion of patients following 
BCMA CAR-T therapy, but intensity increased back towards baseline in almost 
all patients (Cohen et al. 2019). However, three case reports described irreversible 
BCMA loss after anti-BCMA CAR-T cell treatment (Da Via et al. 2021; Samur 
et al. 2020; Leblay et al. 2020). In two of these cases, homozygous BCMA gene 
deletions were identified as the biological underpinning of antigen loss. In the 
third case, the authors found a heterozygous BCMA deletion together with a 
BCMA mutation, leading to antigen loss. In summary, biallelic events impacting 
the BCMA locus represent one molecular mechanism of antigen loss after BCMA 
CAR-T therapy. However, these events seem to be rare. In the KarMMa trial, only 
4% of patients relapsed without an increase in soluble BCMA, which is thought 
to be a biomarker of this type of resistance (Munshi et al. 2021). Heterozygous 
BCMA deletions, present in approximately 7% of anti-BCMA naïve patients, rep-
resent a risk factor for BCMA loss-relapse after T-cell-based therapy (Da Via 
et al. 2021). While a plethora of alternative antigens, such as FCRH5 or GPRC5D, 
are currently being investigated in early clinical trials (Rasche et  al. 2020), 
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antigen loss for these targets has not been reported thus far. However, MM is a 
disease associated with high frequencies of copy number aberrations, including 
deletions impacting genes encoding immunotherapy targets, and we expect bial-
lelic events leading to antigen loss to also be relevant for MM targets other than 
BCMA.  Multispecific CAR-T cells or combinations of monospecific targeted 
immunotherapies may overcome antigen loss in future trials (Fernández de Larrea 
et al. 2020).

 Immune Dysfunction and Exhaustion of CAR-T Cells

In addition to antigen loss, a number of other mechanisms also limit or abrogate the 
effective recognition of cancer cells by CAR-T cells, either directly conveyed by 
tumour cells or through rewiring of the microenvironment. In preclinical models, 
especially in solid tumours, it was shown that tumour-infiltrating CAR-T cells 
undergo rapid loss of functionality, limiting their therapeutic efficacy. This hypore-
sponsiveness appears to be reversible when the T cells are isolated away from the 
tumour and is associated with upregulation of intrinsic T cell inhibitory enzymes 
(diacylglycerol kinase and SHP-1) and with the expression of surface inhibitory 
receptors (PD1, LAG3, TIM3, and 2B4) (Moon et al. 2014).

Additionally, in patients with diffuse large B cell lymphoma (DLBCL) treated 
with axicabtagene ciloleucel (axi-cel), it has been shown that tumour-infiltrating 
CAR-T cells express the inhibitory receptor PD1 and that they represent only a 
minor fraction of the immune cells detectable in the tumour (Chen et al. 2020). 
Of note, immunogenic chemotherapy can enhance the recruitment of CAR-T 
cells to the tumour bed by inducing the release of chemokines from monocytes, 
and this can potently synergize with immune checkpoint blockade (Srivastava 
et  al. 2021). In another recent study in DLCBL, interferon (IFN) signalling 
expression, along with high blood levels of monocytic myeloid-derived suppres-
sor cells (M-MDSCs), IL-6 and ferritin, was associated with a lack of a durable 
response to axi-cel. The authors showed that high IFN signalling is associated 
with the expression of multiple checkpoint ligands, including PD-L1, on lym-
phoma cells and that these levels were higher in patients who lacked a durable 
response to CAR-T therapy (Jain et al. 2021). However, impairment of IFN sig-
nalling, such as through mutations or downmodulation of JAK2 and other path-
way components, can confer tumour cell resistance to killing by CAR-redirected 
T cells (Arenas et al. 2021).

These findings have direct implications for the design of next-generation CAR-T 
cell protocols: a number of strategies are now being explored to combine immune 
checkpoint blockade with CAR-T cell therapy, either by coinfusion of genetically 
modified lymphocytes with monoclonal antibodies or by engineering the cell to 
produce the relevant scFv (Carneiro and El-Deiry 2020), be resistant to inhibitory 
signals (Cullen et  al. 2010), or even transform signals under activating stimuli 
(Sutton et al. 2000). Moreover, novel promising compounds have been shown to 
counteract the activity of T cell inhibitory enzymes (Moon et al. 2014).
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 Microenvironment-Mediated Tumour Resistance to CAR-T Cells

Immune suppression or exhaustion is not the only mechanism by which tumour 
cells can become less susceptible to CAR-T cell-mediated cytotoxicity. In many 
haematological cancers, the bone marrow tumour microenvironment (BMME) is 
known to upregulate antiapoptotic mechanisms in tumour cells through tight cross- 
talk of mesenchymal stromal cells (MSCs) and tumour cells. Remarkably, tumour 
cell lysis by T and NK cells is also largely mediated via activation of extrinsic and 
intrinsic apoptosis pathways (Hanabuchi et  al. 1994; Falschlehner et  al. 2009; 
Carneiro and El-Deiry 2020; Cullen et al. 2010; Sutton et al. 2000). Thus, the idea 
that BMMSCs might also induce resistance to T and MK cell-mediated cytotoxic 
activity through upregulation of antiapoptotic mechanisms has recently been tested, 
and the results showed that MM cell-BMMSC interactions can indeed protect MM 
cells from conventional cytotoxic T cells and from (daratumumab redirected) NK 
cells (McMillin et al. 2012; de Haart et al. 2013; de Haart et al. 2016). These studies 
were recently extended to CAR-T cells by testing a panel of nine different 
MM-reactive CAR-T cells that were reactive to three different MM-associated anti-
gens (CD138, BCMA, and CD38) with different target affinities and with different 
costimulatory domains (CD28, 4-1BB, or CD28 plus 4-1BB) (Holthof et al. 2021a). 
In the absence of BMMSCs, BCMAbb2121 CAR-T cells, high affinity CD38 CAR-T 
cells, and intermediate affinity CD38 CAR-T cells containing CD28 costimulatory 
domains showed high levels of anti-MM cell lysis, whereas other CAR-T cells 
showed moderate cytotoxic activity against MM cells. BMMSCs did not modulate 
the lytic activity of highly lytic CAR-T cells but readily protected MM cells against 
all other CAR-T cells with intermediate killing capacity. Overall, a strong inverse 
correlation was demonstrated between the lytic capacity of the CAR-T cells and the 
extent of BMMSC-mediated protection. Furthermore, the BMMSC-mediated pro-
tection of MM cells from these CAR-T cells was readily abrogated by inhibition of 
survivin, MCL-1, and Xiap using the small molecule FL118. Thus, the results con-
firmed that BMMSC-mediated immune resistance was mediated by negative regula-
tion of apoptotic pathways. In addition, the importance of the tumour stroma in the 
efficacy of CAR-T cells has also been suggested in a solid tumour mouse model, 
where destruction of the tumour stroma contributed to eradication of large tumours 
by HER2-specific CAR-T cells (Textor et al. 2014). Based on these studies, over-
coming BMMSC-mediated immune resistance seems possible by increasing the 
overall avidity and killing activity of CAR-T cells. This may be achieved by design-
ing CARs containing high affinity antigen recognition domains, tandem CARs, or 
dual CAR strategies (van der Schans et  al. 2020). Alternatively, using the CD28 
costimulatory domain (Drent et al. 2019; Drent et al. 2017) or engineering CAR-T 
cells with cytotoxic effector molecules can upregulate CAR-T cell activity. Indeed, 
it has recently been demonstrated that BMSMSC-mediated immune resistance 
towards the NK cell line KHYG-1 can be abrogated by engineering it with a CD38 
CAR and/or with a DR5-specific, optimized TRAIL variant (Holthof et al. 2021b). 
CAR-T cells may also be equipped with caspase-independent apoptotic molecules, 
such as granzyme-A (Borner and Monney 1999).
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In addition, a number of earlier and recent studies indicate the importance of 
apoptotic pathways for the efficacy of other CAR-T cells. For instance, CD19 
CAR-T cells were previously found to benefit from combination with the BCL-2 
inhibitor ABT-737 (Karlsson et al. 2013). Recently, similar results were observed 
when third-generation CD19 CAR-T cells were combined with another BCL-2 
inhibitor, ABT199 (Yang et  al. 2019). Finally, two independent loss-of-function 
screens in ALL cell lines identified impaired death receptor pathways as another 
mechanism of resistance to CD19-targeted CAR therapy. Loss of FADD, BID, and 
tumour necrosis factor-related apoptosis-inducing ligand 2 (TRAIL2) in leukaemia 
cells was shown to render them more resistant to cytotoxicity and to drive T cell 
exhaustion upon prolonged stimulation (Singh et al. 2020; Dufva et al. 2020). The 
combination of CAR-T cells with the SMAC mimetic compound birinapant sig-
nificantly improved the lysis of malignant cells (Dufva et al. 2020). Thus, when 
increasing the lytic capacity of CAR-T cells is not possible or desirable, especially 
if the target antigen is not entirely tumour-specific, tumour cells can be made more 
sensitive by combining CAR-T cells with small molecules targeting regulatory 
proteins in the intrinsic and extrinsic apoptotic pathways, as shown in these studies.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter's Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.
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