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3 Dipartimento di Fisica, Università degli Studi, and INFN, via Celoria 16, 20133 Milano, Italy

Received: date / Revised version: date

Abstract. Accurate assessment of the value of the incompressibility coefficient, K, of symmetric nuclear

matter, which is directly related to the curvature of the equation of state (EOS), is needed to extend

our knowledge of the EOS in the vicinity of the saturation point. We review the current status of K as

determined from experimental data on isoscalar giant monopole and dipole resonances (compression modes)

in nuclei, by employing the microscopic theory based on the Random Phase Approximation (RPA).

PACS. 21.65.+f Nuclear matter – 24.30.Cz Giant resonances – 21.60.Jz Hartree-Fock and Random Phase

Approximation

1 Introduction

It is well known that the equation of state (EOS), E/A =

E(ρ), of symmetric nuclear matter (SNM) is a very impor-

tant ingredient in the study of nuclear properties, heavy

ion collisions, neutron stars and supernovae. Experimen-

tally, we have accurate data on the saturation point of the

EOS, namely (ρ0, E(ρ0)). From electron and hadron scat-

tering experiments on nuclei, one finds a constant central

density of ρ0 = 0.16 fm−3, and from the extrapolation of

empirical mass formula, we have E(ρ0) = −16 MeV for

SNM. Since at saturation dE
dρ |ρ0

= 0, one has

E(ρ) = E(ρ0) +
1

18
K

(

ρ − ρ0

ρ0

)2

+ . . . (1)

where

K = 9ρ2
0

d2(E/A)

dρ2

∣

∣

∣

ρ0

(2)

is the SNM incompressibility coefficient. Therefore, a very

accurate value of K is needed to extend our knowledge of

the EOS in the vicinity of the saturation point.
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There have been many attempts over the years to de-

termine the value of K by considering properties of nuclei

which are sensitive to a certain extent to K (see Ref. [1]).

In a macroscopic approach analysis of experimental data

of a certain physical quantity, K appears in the expression

for the physical quantity and the value of K is determined

by a direct fit to the data. In a microscopic approach, one

considers various effective two-body interactions which are

associated with different values of K but reproduce with

comparable accuracies the experimental data of various

properties of nuclei, such as binding energies and radii.

One then determines the effective interaction which best

fits the experimental data for a physical quantity which

is sensitive to K. We mention, in particular, the attempts

[1–5] of considering as physical quantities: nuclear masses,

nuclear radii, nuclear scattering cross sections, supernova

collapses, masses of neutron stars, observables in heavy

ion collisions and the interaction parameters F0 and F1 in

Landau’s Fermi liquid theory for nuclear matter. Here we

examine the most sensitive method [6,7] which is based

on experimental data on the strength function distribu-

tions of the isoscalar giant monopole resonance (ISGMR),

T = 0, L = 0, and the isoscalar giant dipole resonance

(ISGDR), T = 0, L = 1, which are compression modes

of nuclei, analyzed within the microscopic Random Phase

Approximation (RPA) [8].

Over the last three decades, a significant amount of

experimental work was carried out to identify strength

distributions of the ISGMR and ISGDR in a wide range

of nuclei [9–12]. The main experimental tool for studying

isoscalar giant resonances is inelastic α-particle scattering.

This is mainly because (i) α-particles are selective as to

exciting isoscalar modes, and (ii) angular distributions of

inelastically scattered α-particles at small angles are char-

acteristic for some of the multipolar modes. Recent devel-

opment in the area of experimental investigation of the

isoscalar giant resonances made it possible to measure the

centroid energy (that is, the ratio of the energy-weighted

and non-energy-weighted sum rules, m1/m0) E0 of the IS-

GMR with an error δE0 ∼ 0.1 − 0.3 MeV [11,12]. Using

the relation (δK)/K = 2(δE0)/E0 and, for example, the

recent experimental value of E0 = 13.96 ± 0.20 MeV for

the ISGMR in 208Pb, one has an error of δK = 6−9 MeV

for K = 200−300 MeV. This enhanced experimental pre-

cision calls for a critical accuracy check of the theoretical

calculations. In fact, many available theoretical calcula-

tions, in which the monopole centroid is also determined

only within about 0.2 MeV, due to various approxima-

tions, introduce a further contribution to δK which must

be added quadratically to the experimental one, yielding

a total error of 8 − 13 MeV (see [13]).

The extraction of K from experimental data on IS-

GMR is not straightforward. There have been several at-

tempts [9] in the past to determine K simply by a least

square fit to the ISGMR data of various sets of nuclei us-

ing a semi-empirical expansion in power of A−1/3 of the

nucleus incompressibility coefficient, KA, obtained from

E0 using, for example, the scaling model assumption (we

remind here that in the scaling model a simple shape of

the ground-state density ρ0 is assumed and its changes are
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associated to a single parameter λ, i.e., they are of the type

ρ0 → ρλ(r) = 1
λ3 ρ0(

r

λ)). It was found [9] that the value

deduced for K varied significantly, depending on the set of

data of the ISGMR energies used in the fit. This is mainly

due to the limited number of nuclei in which E0 is known.

We also point out that the scaling model assumption is

not very reliable for medium and light nuclei.

If we have to resort to theory in order to extract K,

we should start by discussing some principle remarks. The

static incompressibility coefficient K of Eq. (2) describes

the propagation of the first sound excitations in nuclear

matter having the sound velocity

c = c1 =
√

K/9m. (3)

However the propagation of the first sound implies the

regime of frequent inter-particle collisions [14] which is

not realized in cold (and moderately heated) nuclei, where

the compression modes are related to the zero sound (rare

inter-particle collisions) regime. It is necessary to note that

the sound velocity c and the eigenfrequency ω of the com-

pression mode are, in principle, directly related to K for

the first sound mode only. In general, the sound velocity

c is a complicated function of both the incompressibility

coefficient K and the dimensionless collisional parameter

ωτ , where ω is the frequency of the mode and τ is its relax-

ation time. This complicated dependence is caused by the

dynamic distortion of the Fermi surface (FSD) which ac-

companies the collective motion in a Fermi liquid. In cold

nuclear matter, for the rare collision regime ωτ → ∞, one

has, instead of Eq. (3), the relation

c = c0 =
√

K ′/9m, (4)

where K ′ is a strongly renormalized incompressibility co-

efficient which can be shown to obey [15]

K ′ ≈ 3 K. (5)

Thus, within the theory of Fermi liquids, there is a signif-

icant difference between the static nuclear incompressibil-

ity coefficient, K, which is defined as the stiffness coeffi-

cient with respect to a change in the bulk density, and the

dynamic one, K ′, associated with the zero sound veloc-

ity and the energy of the ISGMR or ISGDR. Nonetheless,

the approximate relation (5) is consistent with the idea

that the interaction which best fits the experimental data

for ISGMR and ISGDR energies should also provide the

correct value of K.

It can also be shown [15] that the consistent pres-

ence of the same FSD effects in the boundary condition

strongly suppresses any increase of E0 (the energy of low-

est isoscalar giant monopole resonance) compared to the

usual liquid drop model where the FSD effects are not

taken into account. We point out that the FSD effects are

completely washed out from the dynamic incompressibil-

ity coefficient K ′ in the case of the scaling assumption.

Note also that the effect of the FSD in the boundary con-

dition is rather small for the overtone excitations. The

dynamic and relaxation effects on the ISGMR and on the

ISGDR are therefore significantly different. In contrast to

the ISGMR, which is the lowest breathing mode, the IS-

GDR appears as the overtone to the lowest isoscalar dipole
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excitation, which corresponds to a spurious center of mass

motion. Due to this fact, the energy of the ISGDR, E1,

varies with τ much more than the energy E0 of the IS-

GMR.

If one wishes to make a link with microscopic effective

interactions, the basic theory for the description of differ-

ent giant resonance modes is self-consistent Hartree-Fock

(HF) plus RPA [6,8]. The HF calculations using Skyrme-

type interactions [16], which are density and momentum

dependent zero-range interactions, have been very suc-

cessful in reproducing experimental data on ground state

properties of nuclei. The parameters of the Skyrme inter-

action are varied so as to reproduce a selected set of exper-

imental data of a wide range of nuclei on nuclear masses,

charge and mass density distributions, etc. The nuclear re-

sponse function is evaluated within RPA, which is a linear

response theory suited for the description of small oscilla-

tions which can eventually accomodate a proper treatment

of the particle continuum [8,17].

We emphasize that the values of E0 and E1 are cor-

related with the value of K which is associated with the

effective nucleon-nucleon interaction adopted in the HF-

RPA calculations, and thus can be used to extract an ac-

curate value for K. This correlation has been explicitly

shown, e.g., in Refs. [18,19].

It is important to point out that the HF-RPA method

solves the nuclear effective Hamiltonian in the space of

one-particle-one-hole (1ph) excitations. Correlations, as-

sociated with excitations of 2ph and higher structures, are

not accounted for explicitly. The effects of these correla-

tions have been discussed in the literature, see for example

the reviews in Refs. [20–22]. The main effect is a colli-

sional broadening of the strength distributions which can

be accompanied by a certain shift of the resonance peak

position. This shift grows with excitation energy and can

be of the order of 1 MeV for the rather high lying isovector

modes (in the range above 20 MeV). However, in the case

of the ISGMR the shift is quite small (of the order of few

hundreds of keV [23], that is, comparable with the exper-

imental uncertainity). This is not a numerical accident,

rather a consequence of cancellations which arise when all

diagrams corresponding to the coupling between 1ph and

2ph states are included (cf. [20] and references therein).

The first experimental identification of the ISGMR in

208Pb at excitation energy of E0 = 13.7 MeV [24] al-

ready triggered Random Phase Approximation (RPA) cal-

culations using existing or modified effective interactions:

those having K = 210±30 MeV gave results in agreement

with experiment [25]. We point out, however, that (i) in

the early investigations, the experimental uncertainities

for E0 were relatively large, and only a limited class of ef-

fective interactions were explored; (ii) many more recent

calculations were not fully self-consistent [13,26]. Conse-

quently, as we will see, we accept nowadays larger values

for K.

The study of the isoscalar giant dipole resonance is

very important since this compression mode provides an

independent source of information on K. Early experi-

mental investigation of the ISGDR in 208Pb resulted in a

value of E1 ∼ 21 MeV for the centroid energy [27,28]. It
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was first pointed out in Ref. [29] that corresponding HF-

RPA results for E1, obtained with interactions adjusted

to reproduce experimental values of E0, are higher than

the experimental value by more than 3 MeV and thus this

discrepancy between theory and experiment raises some

doubts concerning the unambiguous extraction of K from

energies of compression modes. A similar result for E1 in

208Pb was obtained in more recent experiments [10,30].

Therefore, the value of K deduced from these early exper-

imental data on ISGDR is significantly smaller than that

deduced from ISGMR data.

Recent relativistic RPA (RRPA) calculations [31,32],

with the inclusion of negative-energy states of the Dirac

sea in the response function, yield a value of K=250-270

MeV. This result has been obtained using different types

of effective Lagrangians, including those having density-

dependent coupling constants. Note that since an uncer-

tainty of about 20% in the values of K is tantamount to

an uncertainty of 10% in the value of E0, the discrep-

ancy in the value of K obtained from relativistic and non-

relativistic models is quite significant in view of the ac-

curacy of about 2% in the experimental data currently

available on the ISGMR centroid energies. In Refs. [19,

33] it has been claimed that these significant differences

are due to the model dependence of K. However, in the

most recent works of Refs. [13,34,35] this model depen-

dence has been explained, as we shall discuss.

We should finally point out that it is quite common

in theoretical work on giant resonances to calculate the

strength function S(E) for a certain simple scattering op-

erator F , whereas in the analysis of experimental data of

the excitation cross section σ(E) one carries out Distorted-

wave Born Approximation (DWBA) calculations with a

transition potential δU obtained from a collective model

transition density ρcoll using the folding model (FM) ap-

proximation. This may be a source of uncertainities, espe-

cially if most of the strength is not collective. Accordingly,

it is important to examine the relation between S(E) and

the excitation cross section σ(E) of the ISGMR and the IS-

GDR, obtained by α− scattering, using the folding model

DWBA method with ρt obtained from self-consistent HF-

RPA.

In Section 2 we review the basic elements of micro-

scopic HF-RPA theory for the strength function and the

FM-DWBA method for the calculation of the excitation

cross sections of giant resonances by inelastic α− scatter-

ing. In section 3, we provide some results of the conse-

quences of violations of self-consistency on the calculated

strength function S(E), the excitation cross section σ(E)

and recent results of fully self-consistent HF-RPA calcula-

tions of the centroid energies (E0 and E1) for the ISGMR

and ISGDR. We also present simple explanations for the

discrepancies in the values deduced for K. Our conclusions

are given in section 4.

2 Formalism

2.1 Self-consistent HF-RPA approach

In the microscopic and self-consistent HF-RPA approach,

one starts by adopting a specific effective nucleon-nucleon
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interaction, V12, and deriving the ground-state mean field.

Then, the RPA equations are solved by using the particle-

hole (p-h) interaction Vph which is derived from the same

mean field determined by V12 (in this sense, the calcu-

lation is self-consistent). Various numerical methods have

been adopted in the literature to solve the RPA equations,

see for example Refs. [8,17,25,36,37]. In particular, in the

Green’s function approach [8,17] one evaluates the RPA

Green’s function G, given by G = G0(1+VphG0)
−1 , where

G0 is the free p-h Green’s function. Then, the strength

function S(E) and the transition density ρt, associated

with the scattering operator F =
A
∑

i=1

f(ri), are obtained

from

S(E)=
∑

n

|〈0|F |n〉|
2
δ(E − En) =

1

π
Im [Tr(fGf)] , (6)

ρt(r, E) =
∆E

√

S(E)∆E

∫

f(r ′)

[

1

π
ImG(r ′, r, E)

]

dr ′ .

(7)

Note that ρt(r, E), as defined in (7), is associated with the

strength in the region of E±∆E/2. The Green’s function

approach allows treating the continuum in a proper way.

However, the RPA equations can also be solved on a dis-

crete basis. Although the exact solution of RPA in the con-

tinuum may be crucial if one treats weakly bound nuclei

or if one is interested in the particle decay of states which

lie above the threshold, discrete RPA can nonetheless re-

produce the main integral properties of giant resonances

in stable nuclei.

There are also alternative methods to obtain these

integral properties. For instance, the constrained energy

E−1 defined as
√

m1/m−1, where m1 is the energy-weighted

sum rule and m−1 is the inverse energy-weighted sum rule,

can be calculated once m1 is extracted from the double

commutator [F, [H, F ]] while m−1 is obtained from con-

strained HF (CHF) calculations [38].

In fully self-consistent HF-RPA calculations, the spu-

rious state (associated with the center of mass motion)

T = 0, L = 1 must appear at zero excitation energy

(E = 0), aside from small numerical inaccuracies, and

no significant spurious state mixing (SSM) in the ISGDR

must be expected. However, although not always stated

in the literature, many actual implementations of HF-

RPA (and relativistic RPA) are not fully self-consistent

[26] (see, however, Refs. [18,36,37,39–42]). Each approxi-

mation introduced in RPA may shift the centroid energies

of giant resonances with respect to the exact value, and

introduce a SSM in the ISGDR.

In Refs. [26,43,44], in order to correct for the effects of

the SSM on S(E) and the transition density, the scattering

operator F =
A
∑

i=1

f(ri) has been replaced by the projection

operator

Fη =
A

∑

i=1

fη(ri) =
A

∑

i=1

f(ri) − ηf1(ri), (8)

where f(r) = f(r)Y1M (Ω) and f1(r) = rY1M (Ω). The

value of η is obtained from the coherent spurious state

transition density [45], ρss(r) = αa
∂ρ0

∂r Y1M (Ω) , where ρ0

is the ground state density of the nucleus. The result for

f(r) = r3 is η = 5
3 〈r

2〉 [46]. We point out that the ISGDR

transition density ρt is obtained [26] from Eqs. (7) and

(8) after subtracting the spurious state component ρss. In

Ref. [47] it has been shown that the above procedure is

equivalent to project out explicitly the spurious compo-
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nent from each excited state. Further discussions about

the SSM can be found in Refs. [48,49].

2.2 DWBA calculations of excitation cross sections

The DWBA has been quite instrumental in providing a

theoretical description of low-energy scattering reactions

and is widely use in analyzing measured cross sections of

scattered probes. The folding model approach [50] to the

evaluation of optical potentials appears to be quite suc-

cessful and, at present, is extensively used in theoretical

descriptions of α−particle scattering [51]. The main ad-

vantage of this approach is that it provides a direct link

to the description of α−particle scattering reactions based

on microscopic HF-RPA results.

The DWBA differential cross section for the excitation

of a giant resonance by inelastic α−scattering is

dσDWBA

dΩ
=

(

µ

2πh̄2

)2
kf

ki
|Tfi|

2
, (9)

where µ is the reduced mass and ki and kf are the initial

and final linear momenta of the α-nucleus relative motion,

respectively. The transition matrix element Tfi is given by

Tfi = 〈χ
(−)
f Ψf |V |χ

(+)
i Ψi〉, (10)

where V is the α− nucleon interaction, Ψi and Ψf are the

initial and final states of the nucleus, and χ
(+)
i and χ

(−)
f

are the corresponding distorted wave functions of the rela-

tive α−nucleus relative motion, respectively. To calculate

Tfi, Eq. (10), one can adopt the following approach which

is usually employed by experimentalists. First, assuming

that Ψi and Ψf are known, the integrals in (10) over the

coordinates of the nucleons are carried out to obtain the

transition potential δU ∼
∫

Ψ∗

f V Ψi. Second, the cross sec-

tion (9) is calculated using a certain DWBA code with δU

and the optical potential U(r) as input.

Within the FM approach, the optical potential U(r) is

given by

U(r) =

∫

dr
′

V (| r − r
′

|, ρ0(r
′

))ρ0(r
′

) (11)

where V (| r − r
′

|, ρ0(r
′

)) is the α−nucleon interaction,

which is generally complex and density dependent, and

ρ0(r
′

) is the ground state HF density of a spherical tar-

get nucleus. To obtain the results given in the following,

both the real and imaginary parts of the α− nucleon inter-

action were chosen to have Gaussian forms with density

dependence [51], and parameters determined by a fit to

the elastic scattering data. The radial form δUL(r, E) of

the transition potential, for a state with the multipolarity

L and excitation energy E, is obtained from:

δU(r, E) =

∫

dr
′

δρL(r
′

, E)
[

V (| r − r
′

|, ρ0(r
′

))

+ρ0(r
′

)
∂V (| r − r

′

|, ρ0(r
′

))

∂ρ0(r
′)

]

, (12)

where δρL(r
′

, E) is the transition density for the consid-

ered state.

We point out that within the ”microscopic” folding

model approach to the α−nucleus scattering, both ρ0 and

ρL, which enter Eqs. (11) and (12), are obtained from

the self-consistent HF-RPA calculations (i.e., ρL = ρt, cf.

Eq. (7)). Within the ”macroscopic” approach, one adopts

collective transition densities, ρcoll, which are assumed to

have energy-independent radial shapes and are obtained

from the ground state density using a collective model.
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We stress that for a proper comparison between experi-

mental and theoretical results for S(E), one should adopt

the ”microscopic” folding model approach in the DWBA

calculations of σ(E).

3 Results and discussion

3.1 Consequences of the violation of self-consistency

Recently, the effects of common violations [26] of self-

consistency in HF-RPA calculations of S(E) and ρt of

various giant resonances were investigated in detail, see

for example Refs. [39–41,52–54]. To demonstrate the im-

portance of carrying out fully self-consistent calculations,

we present in Figure 1 recent results for S(E) of isoscalar

giant resonances in 208Pb with multipolarities L = 0 − 3

using the fully self-consistent method described in Ref.

[36,55]. The interaction SGII [56] was used. It is seen (see

also Ref. [54]) from Figure 1 that the effects of violation of

self-consistency due to the neglect of the particle-hole (p-

h) spin-orbit or Coulomb interactions in the RPA calcula-

tions are most significant for the ISGMR. For the ISGMR

in 208Pb the shift in the centroid energy E0 is about 0.8

MeV, which is 3 times larger than the experimental un-

certainty. This is in agreement with Fig. 1 of Ref. [13],

where a similar shift for E−1 has been obtained by means

of CHF calculations.

We note that a shift of 0.8 MeV in E0 correspond to a

shift of about 25 MeV in K. In fact, this shift completely

solves the issue of the previously advocated disagreement

between values of K extracted from Skyrme and Gogny

calculations. Fully self-consistent Skyrme calculations em-

ploying existing parametrizations do not point any more

to the value of about 210 MeV quoted in the Introduction,

but to about 235 MeV in clear agreement with the Gogny

based extraction of K.

3.2 Nuclear compressibility from ISGMR and ISGDR

In contrast with the ISGMR, which presents a single peak,

as a rule, in heavy nuclei, the dipole response displays a

low-lying, fragmented part which lies below the giant res-

onance. This is a systematic feature of experimental and

theoretical results in a number of isotopes. Different the-

oretical calculations [47,57] agree in indicating that the

low-lying strength is not collective. In fact, while the cen-

troids of the high-energy region, if calculated with interac-

tions associated with different values of K, scale with these

values, the centroids of the low-energy region do not. As

far as the giant resonance centroid is concerned, discrete

and continuum [58] RPA results are in good agreement

with each other in 208Pb. Coupling with 2ph-type config-

urations is in this case relevant, as it shifts the centroid

downwards by 1 MeV (leading to good agreement with

experimental data) and produces a conspicous spreading

width of about 6 MeV [59].

In Refs. [26,60], numerical calculations were carried

out for the S(E), ρt(r) within the HF-RPA theory and

for σ(E) as well, using the FM-DWBA method. The SL1

Skyrme interaction [61], which is associated with K =

230 MeV, was employed. The density dependent Gaus-

sian α−nucleon interaction discussed in Sec. 2.2 was used
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with parameters adjusted to reproduce the elastic cross

section, with ρ0 taken from the HF calculations. In Fig.

2, we present the results of this microscopic calculation

of the fraction of the energy-weighted sum rule, and the

excitation cross section σ(E) of the ISGDR in 116Sn by

240 MeV α-particle scattering. It is seen from the upper

panel that the use of the collective model transition den-

sities ρcoll in the whole energy range increases the EWSR

by about 15%. However, the shift in the centroid energy is

small (a few percents), similar in magnitude to the current

experimental uncertainties. It was first pointed out in [26]

that an important result of the calculation is that the max-

imum cross section for the ISGDR decreases strongly at

high energy and may drop below the experimental sensi-

tivity for excitation energies above 30 MeV. This high ex-

citation energy region contains about 20% of the EWSR.

This missing strength leads to a reduction of about 3.0

MeV in the ISGDR energy which can significantly affect

the comparison between theory and experiment.

In Table 1, we give the results of fully self-consistent

HF-RPA calculations for the ISGDR centroid energy (E1)

obtained (see Ref. [54]) using the SGII [56] and SK255 [34]

interactions and compare them with the RMF based RPA

results of Ref. [57] for the NL3 interaction [62] and with

the experimental data. The SGII result in 208Pb compares

well with 23.9 MeV obtained using discrete RPA in Ref.

[47] and with 23.4 MeV obtained using continuum RPA in

Ref. [48]. Note that the HF-RPA values for E1 are larger

than the corresponding experimental values of the early

measurements of Refs. [10,27,28,30] by more than 3 MeV.

The more recent results of Refs. [11,12,63,64], seem to

better agree.

3.3 Nuclear compressibility in relativistic and

nonrelativistic models

To properly compare between the predictions of the rela-

tivistic and the non-relativistic models, parameter sets for

Skyrme interactions were generated in Ref. [34] by a least

square fitting procedure using exactly the same experi-

mental data for the bulk properties of nuclei considered

in Ref. [62] for determining the NL3 parameterization of

the effective Lagrangian used in the relativistic mean field

(RMF) models. The center of mass correction to the to-

tal binding energy, finite size effects of the protons and

Coulomb energy were calculated in a way similar to that

employed in determining the NL3 parameter set in Ref.

[62]. Further, the values of the symmetry energy at satu-

ration (J) and the charge rms radius of the 208Pb nucleus

were constrained to be very close to 37.4 MeV and 5.50

fm, respectively, as obtained with the NL3 interaction, and

K was fixed in the vicinity of NL3 value of K = 271.76

MeV. In particular, the Skyrme interactions SK272 and

SK255, having K = 272 and 255 MeV, respectively, were

generated in Ref. [34]. It is seen from Table 2 that the new

Skyrme interaction SK255 yields for the ISGMR centroid

energies (E0) values which are close to the RRPA results

obtained for the NL3 interaction, in good agreement with

experimental data.

To better understand this result, a more systematic

analysis has been made in Ref. [35], in which a larger set
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of new Skyrme forces has been generated, built with the

same protocol used for the Lyon forces [65] and spanning

a wide range of values for K, for the symmetry energy at

saturation and its density dependence. The main conclu-

sions reached in that work are the following. The ISGMR

energies, calculated by means of CHF, and consequently

the extracted value of K, depend on a well-defined pa-

rameter (Ksym) which controls the slope of the symmetry

energy curve as a function of density. The Skyrme forces

having a density dependence characterized by an expo-

nent α=1/6, like SLy4, predict K around 230-240 MeV.

If this exponent is increased to values of the order of 1/3,

and consequently the slope of the symmetry energy curve

is made stiffer, one can produce forces which are compat-

ible with K around 250-260 MeV. This result, obtained

within the framework of a different protocol for fitting the

Skyrme parameters, is nonetheless in full agreement with

the result of [34]. The main results of Ref. [35] are shown

in Fig. 3. It has to be noted that a further increase of α,

and accordingly of K, would become difficult to obtain

since the effective mass m∗ would become too small.

One thus can make the clear and strong conclusion

that the difference in the values of K obtained in the rel-

ativistic and non-relativistic models is not due to model

dependence. It is mainly due to the different behavior of

the symmetry energy within these models (cf. also [66]).

4 Conclusions

Considering the status of determining the value of the

nuclear matter incompressibility coefficient, K, from data

on the compression modes ISGMR and ISGDR of nuclei,

we conclude that:

(i) Recent improvement in the experimental techniques

led to the identification of the ISGMR in light and medium

nuclei and the observation of the ISGDR in nuclei. Cur-

rently the centroid energy E0 of the ISGMR can be de-

duced with very small experimental uncertainty of about

0.2 MeV, which corresponds to an uncertainty of about 7

MeV in the extracted value of K.

(ii) Violations of self-consistency in HF-RPA calcula-

tions of the strength functions of giant resonances result

in shifts in the calculated values of the centroid energies

which may be larger in magnitude than the current ex-

perimental uncertainties. Thus, it is important to carry

out fully self-consistent HF-RPA calculations in order to

extract an accurate value of K from experimental data on

the ISGMR and ISGDR. In fact, the prediction of K lying

in the range 210-220 MeV were coming from not fully self-

consistent Skyrme calculations. Correcting for this draw-

back, Skyrme parametrizations of the SLy4 type predict

values of K in the range 230-240 MeV.

(iii) It is possible to build bona fide Skyrme forces so

that the incompressibility is close to the relativistic value,

namely 250-270 MeV.

(iv) Therefore, from the ISGMR experimental data the

conclusion can be drawn that K = 240 ± 20 MeV. The

uncertainty of about 20 MeV in the value of K is mainly

due to the uncertainty in the value of the overall shape of

the nuclear matter symmetry energy curve, as a function

of density.
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(v) The ISGDR data tend to point to lower values for

K. However, there is consensus that the extraction of K

is in this case more problematic for different reasons. In

particular, the maximum cross section for the ISGDR de-

creases very strongly at high excitation energy and may

drop below the current experimental sensitivity for exci-

tation energies above 30 and 26 MeV for 116Sn and 208Pb,

respectively. More accurate experimental data, and anal-

ysis, on the ISGDR are very much needed.
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