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Projectile fragmentation at Fermi energies is an important method to produce radioactive beams
for the study of isospin asymmetric nuclear matter. Fragmentation is usually successfully parametrized
by empirical phase space models. In this contribution we apply a microscopical method, semiclassical
transport theory, to study in detail the reaction mechanism of the fragmentation process. We apply
it to the experimental data of 80 on 8'Ta at E /A = 35 MeV measured at FLNR, JINR (Dubna).
We consistently calculate the excitation energy of the primary fragments and take into account their
decay by a statistical model. It is found that the dissipative part of the fragment spectra is well described
by transport theory. However, there are, in addition, important direct and collective contributions.

@®p IMeHT M H JIeT I0Iero HoH IpH dHeprudx Depmu sgBIgeTCS B KHBIM CIIOCOOOM ITOTyYEHHS
MY4YKOB P JHO KTHBHBIX HOHOB JUIS M3y4€HUS M30CHHHOBOH CHMMETPHH SAepHON M Tepuu. g m p -
METpU3 LUK (Pp TMEHT UM YCIEIIHO HCIOIb3YI0TCS 3MIMPUYECKHE MOAENH ¢ 30BOTO MPOCTP HCTB .
B 1 HHO# p 60TEe MBI IpUMEHsIeM MOJYKJI CCUYECKYI0 TP HCHOPTHYIO TEOPHIO, XOPOIIO OIPOOOB HHYIO
npu Gomee BBICOKMX ®HEPIUAX MIS HCCIEIOB HHS SIEPHOTO yp BHEHUS COCTOSHUS. [ HHBIIE MHKpO-
CKOINMYECKUIN MOAXOA MO3BOJIUT H M M3Yy4UTb B JIET JIAX MeX HU3M pe KUuM ¢p I'MEHT LuHu. MBI 1pu-
MeHsieM €ro Ul ONUC HHA 9KCIEPUMEHT JBHBIX X P KTepMCTHK pe Kumu O u '®'Ta npu snepruu
E/A = 35 MsB, HMEHHO H30TONHBIX U CKOPOCTHBIX P CIIPENE/ICHHil, H3MEPEHHBIX MOX HYJIECBBIMU
yr1 mu B JI 6op Topuu suepusix pe xuuii OUSAU (JyOH ). Mbl BBIUHCIISEM COITT COB HHO DHEPTHIO BO3-
OyXeHns TepPBIHYHBIX ()p 'MEHTOB U YYHUTHIB €M MX P CH J B CT TUCTHYECKOW Monenu. MBIl H XOIuM,
YTO JWCCHUI THBHBIN CIEKTpP (h)p TMEHTOB XOPOILIO ONHUCHIB €Tcs B Tp HCHOPTHOH Teopuu. Tem He MeHee
nMeeTcs JOIOIHUTENbHBIA BKJI [ IPAMBIX M KOJUIEKTUBHBIX IIPOLIECCOB.

PACS: 29.38.-c

Beams of unstable nuclei are of great interest today for the investigation of nuclear matter
with extreme isospin, for the understanding of astrophysical objects like neutron stars and
supernovae, and for fusion reactions leading to production of superheavy elements. One of
the preferred methods to produce such beams is projectile fragmentation both at low and at
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relativistic energies [1]. In the Fermi energy regime, in which we are interested here, the
mechanism can be seen as an abrasion process followed by de-excitation (ablation) of the
fragments, or as deep-inelastic or dissipative collisions with possibly some contribution of
quasi-elastic processes. Correspondingly, different methods have been used to describe these
processes, such as empirical fragmentation models (EPAX [2]), abrasion-ablation models [3],
or phase space parametrization models (HIPSE [4]). While these approaches are largely
empirical, they are very efficient to predict fragments yields. Less frequently semiclassical
transport model approaches have been used [5-8]. They describe a heavy-ion collision
by dissipative mean field dynamics and were very successful at higher energies for the
investigation of various aspects of the nuclear equation of state. The advantage of such an
approach is that it is based on more fundamental nuclear physics input, such as the mean fields
and the effective NN cross sections, and one may study the dependence on these physical
quantities. It also allows one to inspect and control in detail the evolution of the collision
and, thus, to study the mechanism of the fragmentation process. It is of interest to understand
which parts of the process are described by dissipative collisions dynamics and which ones
are due to other mechanisms.

We briefly review the transport approach and apply it to interpret experimental data of
isotope distributions and velocity spectra measured at FLNR (Dubna) with the COMBAS
forward spectrometer [9]. Relative to previous studies of such reactions [6-8], we present
here a more consistent calculation of the excitation energies of the primary fragments, which
are important for their de-excitation and the final fragments yields. For this comparison the
velocity spectra are particularly interesting, since they show other contributions than those
described by the dissipative transport theory.

We first give a brief description of the transport approach used in this work. The
Boltzmann—Nordheim—Vlasov (BNV) transport approach describes the time evolution of the
one-body phase space distribution function f(r,p,¢) under the influence of a Vlasov self-
consistent mean field U ([f(r, p,t)]) and a Boltzmann two-body collision term, which includes
the effect of Pauli blocking (Nordheim or Uehling—Uhlenbeck collision term) [10].
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Here f; = f(r,pi,t), fi = (1 — f;), v; are velocities and oy (Q) are the in-medium NN
cross sections. The potential U(f) used in our calculations is the sum of an isoscalar mean
field potential of the Skyrme type [4], a symmetry potential, and the Coulomb potential. The
solution of these nonlinear integro-differential equations is achieved by simulations using the
test-particle method (more details can be found in [10, 11]).

The time evolution of the reaction is followed until the freeze-out time, which we define
as the minimal time when different fragments are sufficiently isolated from each other so that
nuclear forces between them are negligible. In these peripheral reactions this is in the range
of 100-200 fm/c, depending on the impact parameter. At freeze-out the state of the system
can be characterized as a collection of primary fragments with different A and Z, positions,
momenta, and intrinsic energy FEj,. In the systems investigated here, there is usually one
heavy projectile-like fragment and one or several lighter ones. Consistent with the transport
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calculation, we calculate the intrinsic energy of each fragment Fj, using the same energy
functional that determines the potential U in the transport equation. Thus, we use a consistent
treatment of the reaction evolution and the excitation energy calculation, which is a new
feature of the present approach. Further, one has to apply a cluster recognition algorithm to
identify the fragments. Here we used a simple density cut-off method in coordinate space, so
that all test-particles inside a contour of a cut-off density constitute a fragment.

The projectile fragments produced in the transport calculation at the freeze-out configu-
ration are still considerably excited; i.e., the intrinsic energy of the fragment is higher than
the ground state energy Fground, calculated for an isotope with the same values of A and Z
propagated freely until ¢ = tfeeze-out With-
out a reaction. Then we calculate the ex-
citation energy of the fragment as Fey. =
(Ein — Eground). The mean excitation en-
ergy per nucleon and its statistical variance

are shown for the projectile fragment for the
i reaction '¥0 on ®1Ta at E/A = 35 MeV in
Fig. 1 as a function of the impact parameter b.
LL One can see that the excitation energy calcu-
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b, Fm similar as in [5] and in contrast to empirical
models, as, e.g., [12]. The excited fragments
at freeze-out will de-excite by evaporating fur-
ther particles and by gamma emission before
detection. This secondary evaporation consid-
erably changes the final isotope distributions and velocity spectra and has to be taken into
account when compared to experimental data. We use the Statistical Multifragmentation
Model (SMM) by Bondorf, Mishustin, and Botvina [13] to treat this de-excitation. Besides
the mass and charge of the primary fragment, this model critically uses its excitation energy.

Fig. 1. Mean excitation energy per nucleon (and
statistical variance) for the reactions %0 on *'Ta
as a function of the impact parameter b

Results of the calculation for isotope distributions of elements at and below the projectile
are shown in Fig.2, and for velocity distributions for one of the more abundant isotopes of
these elements in Fig.3 in comparison with experimental data from [9]. The experimental
data are shown as open squares, while the “dissipative part” of the data, which is explained
below, is shown as full squares. The results of the BNV transport calculations are shown as
open triangles, while the results after de-excitation (SMM) are given by full triangles. Since
the experiment did not determine absolute cross sections, the calculations are normalized by
a common factor by normalizing the SMM results to the dissipative part of the data for °N.

One can see that O-isotopes heavier than 0 or '®N are observed experimentally, which
correspond to the pickup of nucleons from the target. Also, in the velocity distributions,
velocities larger than the beam velocity are observed. It shows that the mechanism of the
reaction is not purely dissipative, which would always lead to the loss of mass and energy.
Thus, there are important direct contributions such as pickup of nucleons, which is poorly
described by transport calculations. In order to compare the calculations with the data, one
has to separate, in some way, the direct and dissipative components of the data. We do it
in the following empirical way [6]: we fit the velocity spectra above the beam velocity by
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Fig. 2. Isotope distribution for elements at and below the projectile for the reaction *0 on '8!Ta
at E/A = 35 MeV. Experiment [9]: full (open squares), dissipative part (full squares); calculations:
primary fragments (BNV, open triangles), after de-excitation (SMM, full triangles)

a Gaussian with the center at the maximum velocity and adjusted width. We then subtract
the complete Gaussian from the experimental velocity spectra. We call the remaining part
the “dissipative part” of the data, which is shown in Fig.3 by full squares. The integrated
dissipative velocity spectra then give the dissipative part of the isotope yields shown in Fig. 2.

As discussed above, the fragments produced in the calculations are still excited and decay
by particle and gamma emission. We calculate the excitation energy as discussed above within
a consistent description and use the SMM code to de-excite the primary fragments. For the N
and C isotopes and the '°N and '*C velocity spectrum the primary (i.e., BNV) distributions
are also shown. One can see that the secondary decay essentially changes the distributions and
is thus important to make a meaningful comparison to the data. The de-excited distributions
(solid triangles in Figs.2 and 3) are then to be compared to the dissipative parts of the data.

One can see that the isotope distributions agree in shape with the data rather well, while
the magnitudes are not quite in agreement, which can be improved by a more consistent
normalization. The calculated SMM velocity distributions agree fairly well with the dissipative
part of the data for velocities around the beam velocity. From this the agreement of the shape
of the isotope distributions is natural since these receive their largest contributions from around
the beam velocities. However, the calculated spectra for lower velocities, i.e., higher energy
loss, decay like a Gaussian, while the experimental data decay exponentially. It seems to point
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Fig. 3. Velocity distributions for one of the more abundant isotopes for the same reaction as in Fig. 2.
The symbols are also the same. For the projectile 80 the velocity distribution for the full experiment
(full circles) and the SMM calculation (open circle) are also given

to another mechanism or experimental feature. This is shown particularly clearly for the #0
spectra (see Fig. 3, top left panel). While the calculated spectrum consists essentially of one
point close to beam velocity, the experimental spectrum has a long quasi-exponential tail for
lower velocities. Such exponential tails were also shown in the work of Borel et al. [14] for
similar energies and projectiles. On the other hand, they are not seen in Ar+ Ta collisions at
the higher energy of 57 MeV/A in the work of Zhang et al. [12]. In [14] they were explained
by multiple phonon excitation in the initial phase of the collision leading to energy loss. It is
expected that such a process would decrease in importance at higher energies. In any case, it
is clear that the transport calculation will not be able to describe such a collective excitation.

Besides this contribution, it would also be desirable to have a more theoretical under-
standing of the “direct part” of the experimental distribution. It has been interpreted in the
Goldhaber picture as a fast breakup of the projectile [15]. In such a picture the width of this
component reasonably follows the systematics of the Goldhaber model [8]. However, it has
to be clarified how much of such a mechanism is already contained in the transport approach.

To sum it up, we have undertaken a detailed study of projectile fragmentation in a transport
approach. A particular feature of this work is the calculation of the excitation energy of the
primary fragment consistently with the reaction calculation. It allows us to investigate which
parts of the fragmentation reaction are due to dissipative dynamics and where there are other
contributions. For this study the velocity spectra are particularly illuminating. One can
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see that the transport calculations agree well with the estimated dissipative part of the data.
However, there are additional contributions both at higher velocities, most likely as direct
breakup or multinucleon transfer processes, and at lower velocities, perhaps due to multiple
collective excitations in the initial state. It is desirable to study both these contributions
microscopically as well.
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