
Improving the Channeler Ant Model for lung CT analysis

Piergiorgio Cerelloa, Ernesto Lopez Torresb, Elisa Fiorinac,a, Chiara Oppedisanoa, Cristiana
Peronic,a, Raul Arteche Diazb, Roberto Bellottid,e, Paolo Boscof,g, Niccolò Camarlinghih,i,
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ABSTRACT

The Channeler Ant Model (CAM) is an algorithm based on virtual ant colonies, conceived for the segmentation
of complex structures with different shapes and intensity in a 3D environment. It exploits the natural capabilities
of virtual ant colonies to modify the environment and communicate with each other by pheromone deposition.
When applied to lung CTs, the CAM can be turned into a Computer Aided Detection (CAD) method for the
identification of pulmonary nodules and the support to radiologists in the identification of early-stage pathological
objects. The CAM has been validated with the segmentation of 3D artificial objects and it has already been
successfully applied to the lung nodules detection in Computed Tomography images within the ANODE09
challenge. The model improvements for the segmentation of nodules attached to the pleura and to the vessel
tree are discussed, as well as a method to enhance the detection of low-intensity nodules. The results on five
datasets annotated with different criteria show that the analytical modules (i.e. up to the filtering stage) provide
a sensitivity in the 80 − 90% range with a number of FP/scan of the order of 20. The classification module,
although not yet optimised, keeps the sensitivity in the 70 − 85% range at about 10 FP/scan, in spite of the
fact that the annotation criteria for the training and the validation samples are different.
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1. INTRODUCTION

Lung cancer, the most common cause of cancer-related deaths (about 28% and 19% of all cancer-related deaths in
the United States and in the European Union, respectively), commonly manifests itself as non-calcified pulmonary
nodules. Computed Tomography (CT), the most sensitive imaging modality for the detection of pulmonary
nodules, is a promising approach for the detection of early-stage lung cancers in screening programs based on
low-dose CT and for the reduction of the number of lung cancer deaths, as recently confirmed by the U.S.
National Cancer Institute in its release of early results from the National Lung Screening Trial (NLST).1 Since
a large number of nodules (20 35%) can be missed in screening diagnoses2 and the annotation time for a high
resolution CT is quite long, Computer Aided Detection (CAD) methods could be very useful in supporting
radiologists in the identification of early-stage pathological objects.
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The Channeler Ant Model (CAM)3 is developed by the MAGIC-5 Collaboration4 as part of a multi-thread
Computer Aided Detection (CAD) system for radiologist support in the lung cancer diagnosis, that also includes
algorithms based on region growing5 and Voxel-Based Neural Analysis.6,7 Swarm Intelligence is the feature of
a system whose collective behaviour produces the rising of patterns characteristic of the system. Each agent
has limited knowledge and capabilities, doesn’t know the global state of the system and interacts with other
agents by modifying the environment through the deposition of pheromones. The CAM is an algorithm based on
virtual ant colonies,8,9 conceived for the segmentation of complex structures with different shapes and intensity
in a 3D environment. It exploits the natural capabilities of virtual ant colonies to modify the environment and
communicate with each other by pheromone deposition. The CAM has been validated with the segmentation
of 3D artificial objects and it has already been successfully applied to the lung nodules detection in Computed
Tomography images within the ANODE09 challenge,10 showing that it can significantly contribute to the global
performance of a multi-thread lung CAD system. The present work addresses its performance as a standalone
module, with the evaluation of its performance on heterogeneous datasets with different annotation criteria.

2. THE CHANNELER ANT MODEL

The CAM extends to a 3D environment the basic concepts already applied to ant colonies and defines a set of
rules that self-regulate the colony evolution, based on the implementation of the ant movement, the pheromone
deposition and the life cycle: thanks to the introduction of a life parameter called energy, death and reproduction
take place. The correlation between the pheromone deposition and the image intensity can be defined according
to the goal of a specific deployment: therefore, the CAM can be used to analyse different images and to look
for different structures, such as gray matter in brain MR images.11 The analysis of artificial objects defines the
CAM performance as a function of the object shape, the image dynamic range and noise and with respect to
other segmentation models like region growing.3 Any ant colony starts its evolution from an anthill set in a
voxel that belongs to the object to be segmented and evolves according to the model rules until its extinction,
leaving a pheromone map which is then analysed to study the properties of the segmented object. In order to
segment relevant nodules in lung Computed Tomographies the CAM is deployed as the most important part
of a sequence of four functional modules: lung segmentation, nodule hunter, filtering stage and neural network
classification. The CAM provides the nodule hunting functionality as well as the basic information used for the
filtering of CAD findings and the evaluation of the input features for the classification stage.

3. DATASETS

The present analysis was carried out on 5 different datasets, as shown in Table 1 : two sets of 69 CTs each from
the LIDC database,12 two sets of 40 and 20 CTs from the ITALUNG CT screening project13 and one set of 5
CTs from the ANODE09 study.14 The number of relevant nodules for each subset is shown in Table 1: out of a
total of 415, 138 were used for the cross-validation training and testing, 277 for the validation.

Table 1. Number of scans and of relevant nodules for the analysed datasets.

Dataset Name Number of CTs Number of relevant nodules

LIDC (train) 69 138

LIDC (validation) 69 113

ANODE09 5 39

ITALUNG CT (1) 20 39

ITALUNG CT (2) 41 86

Since the annotation criteria for the different datasets are not homogeneous, it must be taken into account
that the comparison of the performances is subject to that intrinsic uncertainty. However, that is a real-life
condition for any algorithm to be used by different radiolgists in different conditions. It is likely, anyway, that if
the CAM use were restricted to a study with a common protocol for the nodule annotation (e.g., only nodules



with a radius larger than X mm), the performance could be further improved with a dedicated optimisation of
the filtering criteria.

The gold standard for the comaprison of the CAM findings with the radiological findings was defined as
follows:

• for the LIDC database, nodules annotated by at least 2 (out of 4) radiologists;

• for the ANODE09 and ITALUNG CT databases, nodules declared as relevant.

Nodules identified by one radiologist in the LIDC dataset and declared as not relevant in the ANODE09 and
ITALUNG CT annotations were not considered, neither as true nor as false findings.

The matching condition between the radiological and the CAM findings was defined by the logical AND of
the following conditions:

• the distance between the CAM and the radiological finding center is smaller then 1.5 times the radiological
finding radius (the same condition used in10);

• at least 1 voxel in the CAM finding list is also part of the radiological finding, provided as a sphere in the
ANODE09 and ITALUNG CT and as a list of voxels in the LIDC datasets, respectively.

4. LUNG SEGMENTATION

The lung parenchyma in the CT is identified by means of a 3D region growing method and a wavefront algorithm
for the definition of the lung surface on the inner side, followed by a morphological closing with a cylinder from
the outside.15 The a posteriori check on the training/testing and validation datasets confirmed that none of the
radiological findings is rejected at this stage.

5. NODULE HUNTING

The CAM is iteratively deployed as a segmentation method for the vessel tree and the nodule candidates of the
right and left lungs, separately.

The first ant colony segments the vessel tree, starting from an anthill in the vicinity of its root.

Ants live in the 3D environment identified by the lung volume provided by the segmentation stage and
described in terms of positions and intensities of voxels.

The ant life cycle is a sequence of atomic time steps, during which they behave according to a predefined
set of rules: they release pheromone while moving in the 3D environment; they change their energy, so as to
reproduce or die depending on its value; they wander according to the moving rules.3

The voxel image intensities can be thought of as the amount of available food for the colony: therefore, voxel
intensities should be progressively consumed when the number of visits increases. This mechanism, required to
make the colony evolve and explore the environment, is implemented in a complementary way: whenever the
limit to the maximum number of visits in a voxel is reached, the voxel is no more available as a destination.
When all the ants in the colony have died, the process stops, the segmented object is removed from the original
image and the coordinates of all the voxels that are part of the object are stored in a list.

In the remaining image, iteratively, any voxel with intensity above a predefined threshold (−700 H.U.) is a
new anthill and a new ant colony is deployed from there and generates a pheromone image.

The procedure is repeated by trying as anthill each voxel in the lung volume with an intensity larger than
the −700 H.U. threshold: when no more voxels meet the conditions to become anthills, the information provided
by the global pheromone map is analyzed.

Fig. 1 and 2 show an example of a slice of a nodule identified by the radiologist(s) as seen in the original
image and in the pheromone map in the central and the peripheral part, respectively. The central part is pretty
similar, but on the peripheral image it is clear that the pheromone map is much cleaner than the original image.
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Figure 1. View of a central slice of a relevant nodule on the original image (left) and on the pheromone map (right).
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Figure 2. View of a peripheral slice of a relevant nodule on the original image (left) and on the pheromone map (right).

The pheromone map analysis is iterative: each voxel with a pheromone content above the minimum accepted
value (8,000 units) is used as a seed for a region growing with an adaptive threshold. The threshold value is
lowered iteratively for each seed and the selected value is the one corresponding to the minimum growth of the
region when the hypothetical threshold is lowered by a quantum of 400 units.

Whenever a region is larger than a preset value (50 voxels, representing the minimum likely size of a structure
that can contain a nodule as a sub-element), it is further analyzed in search of nodule candidates connected to
it. In order to do so, a rolling sphere scans the finding and disentangles spherical-like structures. The procedure
is repeated three times, with spheres of increasing initial radius (1.5, 2.5, 3.5 mm).

In short, a full sequence of ant colony deployments generates a pheromone release map that is analyzed by a
dedicated module, which turns it into a list of candidate findings, each defined by a list of voxels and the values
of a set of features related to their geometrical properties, their intensity pattern, their location in the lung.
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Figure 3. Correlation between the sphericity and the radius of the CAM findings for the ITALUNG CT (2) dataset. The
figure refers to the isolated findings, connected to the cage or not. The red dots represent the nodule candidates that
match a radiological relevant findings. The black curve is the applied filtering function.

6. FILTERING

The number of candidates per CT, although depending on the number of slices, ranges between several hundreds
to a few thousands per scan, a number far too large to be used as input for a neural network classifier. However,
the vast majority of findings is easily rejected with some selections that make use of the correlation between
some of the evaluated features: the radius, the sphericity, the fraction of voxels connected to the cage, the so
called attach flag (AF), which identifies whether the finding is isolated (AF = 0) or not (AF > 0). If the finding
is attached to a larger structure (i.e., the vessel tree), AF is related to the size of the rolling sphere and can
range from 1 to 3.

The filtering is performed with a cut function on the histogram that correlates the sphericity to the radius
(fig. 3): findings with a sphericity below the cut value at any given radius are rejected. Since the correlation
between the radius and the sphericity depends on the AF value, for each AF value the function parameters are
different. The filtering level is defined as a compromise between the requirement of maintaining a high sensitivity
and the goal of forwarding as less as possible findings to the classification stage. An additional condition requires
the fraction of voxels connected to the cage to be smaller than 0.65, in order to get rid of elongated artifacts
attached to the cage.

7. MODEL IMPROVEMENTS

Among the limitations observed in the early deployments of the CAM on lung CTs,10 two were particularly
relevant to the global performance: the poor capability to identify nodules attached to large structures (the
vessel tree or the pleura) and the difficult identification of small and low-intensity nodules.

The first problem was already discussed and it essentially involved a more sophisticated post-processing of
the pheromone map, without changes to the CAM itself.

The second problem is related to the fact that for small low-intensity nodules the ant colony would extinguish
too quickly to produce a pheromone image that could be identified by the region growing based pheromone map
analysis. Since the pheromone deposition as a function of the image intensity is defined once and for all, the ant
capability to explore low intensity voxels depends on the rate of its energy variation, i.e. on how many steps
in low intensity voxels they can take before their energy decreases down to the death level. Furthermore, when
objects are very small, the initial random movement can play an important role in causing the premature colony
extinction.



The issue was addressed with a change in the ant colony evolution dynamic. However, the implementation
had to take into account that a shift in the equilibrium between ant births and deaths could cause an exponential
growth of the population and therefore a memory saturation. The ant energy parameters (the initial ant energy
and the energy variation rate) are now set at the colony generation so as to cause a quicker ant reproduction.
Only when the colony population grows above 1, 000 units, the parameters are reset to the model default values,
so as to avoid that the colony population diverge: in such a way, a better pheromone image for small and
low-intensity nodules is obtained without affecting the segmentation of large structures.

8. NEURAL NETWORK CLASSIFICATION

Until the end of the filtering stage, very few of the nodule candidate features are used. In particular, no direct
information about the image intensities in the candidate voxels is taken into account.

The neural network classification, although not yet optimised, makes use of a selected set of features that
are related to the finding size, shape, location, intensity (inside and on the border), as well as the above-defined
AF value, which corresponds to different parameters of the nodule hunting algorithm and therefore to different
ranges in the intensity and shape-related features.

The classification was carried on with a four layer feed-forward neural-network: 12 neurons in the input layer,
25 and 7 in the intermediate layers and - obviously - one in the output layer.

The full list of features for the input layer was the following: sphericity, radius, Shannon entropy of the
inner and the border voxels, skewness, kurtosis, average and standard deviation of the inner and the border
voxel intensities, fraction of voxels connected to the cage, AF value. The classification was optimized on the
training/testing sample of 69 CTs and 138 true findings, with a cross validation procedure: 30 sub-list of true
findings and false findings were classified as testing sample against all the other true and false findings used as
training sample.

The parametrization of the neural network through the weights associated to the neuron connections was
then used to classify the findings from the LIDC validation dataset and from the ANODE09 and ITALUNG CT
datasets.

9. RESULTS

Table 2 shows the relevant nodule statistics for the different datasets as well as the sensitivity and the average
number of FP/scan after the filtering stage (i.e., at the beginning of the neural-network classification).

Table 2. Sensitivity and number of FP/scan before the classification stage for the analysed datasets.

Dataset Name Sensitivity FP/scan Missed by CAM Filtered

LIDC (train) 87.7% (121/138) 20.3 7 10

LIDC (validation) 79.6% (90/113) 19.9 10 13

ANODE09 76.9% (30/39) 10.4 4 5

ITALUNG CT (1) 89.7% (35/39) 13.1 0 4

ITALUNG CT (2) 80.2% (69/86) 21.6 3 14

The fraction of missed nodules ranges from 10 to 20%; about 2/3 of them (46) are lost in the filtering stage,
the remaining 24 are not detected by the pheromone map analysis.

The performance, however, is similar for the different datasets, certainly within the uncertainty introduced
by the differences in the annotation procedures. Some possible ways of improving the nodule segmentation
have already been identified and will be investigated soon. In particular, it looks like the nodules identified
without requiring the search for sub-structures are sometimes badly segmented, a feature that may be related
to the nodule itself (isolated nodules are generally smaller than attached nodules) or to the algorithm. It is also
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Figure 4. FROC curves for the validation datasets.

worth mentioning that the fraction of false findings attached to the lung cage as identified by the lung volume
segmentation module is not far from 50%, as shown in Table 3. In other words, improving the lung segmentation
module could provide as much benefit in terms of false findings reduction as a better nodule hunting and filtering.

Table 3. Fraction of false positive findings that are connected to the cage.

Dataset Name FP connected to the lung cage (%)

LIDC (train) 57%

LIDC (validation) 49%

ANODE09 58%

ITALUNG CT (1) 47%

ITALUNG CT (2) 44%

The neural network was trained and tested on the 69 CTs of the LIDC database labeled as LIDC (train),
that include 138 relevant nodules. It has then been applied to the other datasets, with the results shown in
fig. 4. Although there are significant differences in the performance, at about 10 − 12 FP/scan, the sensitivity
ranges between 70% and 85%. Taking into account the statistical uncertainty and the systematic error related
to the different annotation procedure, the results are compatible and quite satisfactory. It must be remarked
that the best result of the classification module is obtained for the LIDC validation sample, the one with the
same annotation procedure used for the training sample.

10. CONCLUSIONS

The CAM presents some interesting features that make it worth exploring its performance in the analysis of lung
CTs and medical images in general: it is a non-linear probabilistic approach that could in principle overcome some
of the limitations of other methods (e.g., region growing). Early results showed that, even with a relatively poor
performance, it was decisive in contributing to the improvement of results by other methods10 . After addressing
some of its limitations, the CAM is now performing much better and has become the leading contributor to the
results of the MAGIC-5 multi-thread CAD, as recently shown in an analysis focused on the LIDC database.16

The present work addresses the problem of implementing a global standalone algorithm general enough to provide
an equivalent performance of lung CTs coming from different sources. The results show that it is possible to



obtain a satisfactory performance, with a sensitivity in the 70% − 85% range at about 10 FP/scan even when
the annotation criteria for the training and the validation samples are not the same. The analysis of missing
nodules and false findings shows that there is still room to improve the standalone CAM performance: the key
step will be related to the inclusion of a calibration module that will evaluate and apply a global equalization to
all the findings coming from a given CT.
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