
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3028498, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Tunnelling Trust into the Blockchain: a
Merkle Based Proof System for
Structured Documents
FRANCESCO BRUSCHI1, VINCENZO RANA1, ALESSIO PAGANI2, and DONATELLA
SCIUTO.1
1Politecnico di Milano, Milano, 20133, Italy.
1The Alan Turing Institute, London, NW1 2DB, UK.

Corresponding author: Francesco Bruschi (e-mail: francesco.bruschi@polimi.it).

ABSTRACT The idea of Smart contracts foresees the possibility of automating contractual clauses using
hardware and software tools and devices. One of the main perspectives of their implementation is the
automation of interactions such as bets, collaterals, prediction markets, insurances. As blockchain platforms,
such as Ethereum, offer very strong guarantees of untampered, deterministic execution, that can be exploited
as smart contracts substrate, the problem of how to provide reliable information from the "outside world"
into the contracts becomes central. In this paper, we propose a system based on a Merkle tree representation
of structured documents (such as all XML), with which it is possible to generate compact proofs on the
content of web documents. The proofs can then be efficiently checked on-chain by a smart contract, to
trigger contract action. We provide an end-to-end proof of concept, applying it to real use case scenarios,
which allows us to give an estimate of the costs.

INDEX TERMS Blockchain, Smart Contracts, Oracles, Merkle Trees, Ethereum

I. INTRODUCTION

SMART CONTRACTS were conceptually defined in
1997 by Nick Szabo [1]: "The basic idea of smart

contracts is that many kinds of contractual clauses (such
as liens, bonding, delineation of property rights, etc.) can
be embedded in the hardware and software we deal with,
in such a way as to make breach of contract expensive
(if desired, sometimes prohibitively so) for the breacher".
Szabo then went on using automatic vending machines as
an actual example of smart contracts. The concept is of
particular economical and social relevance, since it envisages
the possibility of making agreements that do not rely on
trusted third parties as monitoring and enforcing institutions,
opening a huge realm of possibilities. In the vending machine
example, fulfillment of the contractual clauses is guaranteed
by the mechanics of the system, which can be described as a
deterministic state machine (if a coin is inserted, wait for the
code of the requested drink, etc).

Szabo’s inception remained a theoretical idea until the
advent of Bitcoin [2]. Bitcoin is a decentralized system that
implements a digital form of cash: an open, permissionless
platform for the exchange of digital assets. In Bitcoin, a

ledger (blockchain) tracking the ownership of the digital
assets (tokens) at any time is maintained and validated by
an arbitrary number of potentially unidentified and egoistic
actors. This distributed character makes the ledger, among
other things, resistant to many forms of censorship. Bitcoin,
in addition to this, introduces tools that makes its assets
"programmable" through a scripting language. Examples
of programmability include multisignature wallets, escrows,
some kind of lotteries.

Even though Bitcoin introduces money programmability,
its scripting language is purposefully limited below Turing
completeness. For example, there are no loops, data struc-
tures are extremely limited, and the scripts are stateless. In re-
sponse to the limitations of Bitcoin script, in 2013 Ethereum
[3], an alternative system, inheriting much of Bitcoin techni-
cal characteristics, was defined, implemented, and deployed.
The biggest difference of Ethereum is that it features a
Turing-complete scripting language, with which it is possible
to describe software processes of arbitrary complexity. These
processes, remarkably, can handle the digital assets tracked
by the Ethereum blockchain, and can send and receive tokens
(that is, arrange change of token ownership), according to

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3028498, IEEE Access

their programmed logic, and to the occurrence of certain
conditions. These pieces of code are called smart contracts,
since they can be a medium to implement Szabo’s idea, with
even stronger and more peculiar features. In fact, going back
to the vending machine example, a question remains open:
how can an observer be sure, just by watching or examining
a vending machine, that it is properly programmed, and that
it will not steal the coins? In the physical world of the
vending machine, the observer should be able to assess, just
by inspecting the machine, that 1) the software running on
the microcontroller implements a fair behavior, 2) that the
sensors will properly represent the world events (i.e., they
will trigger the software with the correct signal when the user
will insert the coins), and 3) that the actuators will properly
execute the commands coming from the software (i.e., the
robot arm will pick and deliver the drink when commanded
by the software). In this context, Ethereum can guarantee
that the agents will execute according to their code, which
is publicly open for inspection. In this sense, they can be
thought as a means for implementing Szabo smart contracts.
What remains problematic are points 2) and 3). In particular,
problem 2) can be generalised this way: how can information
from the "outside world" be reliably conveyed to a smart
contract? This issue is referred to as the "oracle problem".

A. THE ORACLE PROBLEM
The oracle problem, that is the need of representing external
information to a smart contract, arises in different contexts,
and with different requirements and constraints. This natu-
rally induces different solutions to address it. Some examples
are:

• A smart contract offers a bounty to anyone who will
provide a solution to a mathematical problem (e.g., the
solution to a given sudoku). How will the contract be
able to check whether a given solution is correct?

• A smart contract defines and implements a kind of
financial derivative, such as: A will pay B a premium if
the value of an euro coin raises above 1.5 dollars within
a month. How can the contract check the actual euro
value?

• A smart contract implements a bet among users: will it
rain, in Houston, within a week?

• A smart contract defines a car damage insurance: if the
policy holder gets involved in an incident, the contract
pays him the cost of repair. How can the contract check
if the accident has actually happened? And how does it
check repair costs?

• A smart contract will pay some subscribers if the there
will be a Vulcanic eruption in Hawaii within one year,
or..

• ..if Donald Trump will be impeached before the end of
his term, or...

• ... if there will be be a diffusion of completely au-
tonomous vehicles within year 2025.

The questions determining a smart contract behavior have

different features and implications in terms of what it means
to answer them. In a sense, they represent problems with
different epistemological natures. For some it is easy to
define an algorithmic checking procedure (e.g., ~the sudoku
problem). For others, a procedure can be conceived if it
is possible to rely on sources that are trusted and with a
precise semantic structure. For instance, to check the price
of the euro, it would be possible to access the Statistical
Data and Metadata eXchange (SDMX) API endpoint offered
by the European Central Bank at the URL [https://sdw-
wsrest.ecb.europa.eu/service/data/EXR/M.USD.EUR.SP00.A]
With respect to this example, the oracle problem takes the
form of the question: how can a contract access external
world APIs? Smart contracts execution must be deterministic
and auditable in that it must be possible to verify, time after
it happened, that a particular outcome is indeed correct and
adhering to the behavior specified by the contract code. This
implies that all the input to the contract must be recorded
on-chain before its execution.

In the weather case, the algorithmic check defini-
tion can be more complex, since there can be no de-
fined, ad-hoc API endpoint, even though the informa-
tion is present from a trustworthy web source, such as
https://www.accuweather.com/en/us/houston-tx/77002/weather-
forecast/351197. In the damage insurance, the contract could
rely on what some authorities affirm: an accident report
signed by the police, a repair invoice by some accred-
ited mechanic. These documents should be produced in
a semantically parsable form to be automatically checked
by a contract on chain. Another way could be to involve
a trustworthy professional, such as a notary, to perform
some sort of generalized "analog to digital" conversion,
and produce machine readable representation of the "real
world" information relevant for a contract. As for the volcano
eruption, or for the impeachment, filtering news headlines
with NLP techniques for keywords such as "eruption" could
be envisioned. For the question on autonomous vehicles, on
the other hand, even though its meaning could be sufficiently
precise for a classic bet, an automatic check is more difficult
to define. If autonomous vehicles will take hold, some precise
market statistics will be available for everyone to see, but at
the moment of the definition of the bet it is most probably
unknown where such proof will be published and in which
precise form.

Different approaches to the oracle problem are better
suited for some of these situations than others. In the fol-
lowing, we review the current approaches, and discuss their
fitness with respect to the situations described. Then, we will
propose a novel solution to represent external information
to on-chain smart contracts, and we will show some exper-
iments to assess the method scope, expressivity, and costs.

In particular, we show how existing approaches in most
cases introduce intermediaries, either centralized, or decen-
tralized, with associated risks, costs, and complexities. To
advance the state of the art, we propose a system that:

• is general, since it can be applied to most web contents,

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3028498, IEEE Access

in the form of structured documents (any XML, thus
including HTML);

• is flexible, since it can feed a smart contract with very
specific information contained in a document or source
of arbitrary size;

• requires no intermediary between the source and the
smart contract;

• has a very low or no cost for data providers (since it can
be transparently adopted as a server plugin);

• has a low cost for on chain verification.
To verify these properties, we check the process, and esti-
mate its cost, with a full end-to-end proof of concept that
spans from data proof generation to on-chain smart contract
verification.

II. STATE OF THE ART
In this section, we describe and analyze the existing ap-
proaches to interface and connect smart contract execution
with environments outside the blockchain to access external
information.

A. PREVIOUS APPROACHES
1) Ad-hoc feeds
Ad-hoc feeds are implemented through smart contracts that
are controlled by an entity that transfers information from
the outside world, through transactions. For example, an
oracle on the weather of Houston could be a smart contract
that accepts updating transactions only by its owner, and
forwards the information to the interested contracts on the
chain. The oracle can implement a publish-subscribe pattern,
and accepts subscriptions from the smart contracts that want
to use its information. The controlling entity could be a single
person, or a public or private institution. If a smart contract
trusts the oracle, it can subscribe to its feed. Whenever the
entity will enter new information, the oracle contract can
transmit it, through a transaction, to the subscriber contracts.
Or, the oracle could be passive, and just inform other con-
tracts of its status when polled. This is the simplest way to
inject information in the chain. Its main advantage is the low
architectural cost. Its main drawbacks are:

• an oracle of this kind is very specific, and can provide
only the information it was designed for (e.g., an oracle
that feeds information on Houston weather will only
do that). If new information is needed by a new smart
contract, a new oracle has to be designed/instantiated.

• it requires trust in two distinct points of the chain: one
is the source of the information (e.g., ~the weather web
site), the other is the process/person that forwards the
information into the blockchain.

As an example, consider MakerDAO’s price feed. Maker-
DAO [4] is a platform that allows to generate DAI, tokens
whose value is pegged to that of the US dollar, through some
mechanisms encoded as smart contracts, and a decentralized
governance defined by the possession of another kind of
token, the MKR. In MakerDAO, users can ask for loans

in DAI, and are required to secure providing a collateral
denominated in another token such as ether, Ethereum’s
native token. For instance, a user can ask for 100$ worth
of DAIs, providing 150$ worth of ethers. Whenever the user
will pay his debt back (plus an interest rate), he will get the
collateral back. Since ether value can vary (at the moment
is quite volatile indeed), the system constantly checks if
the collateral has enough value to guarantee the loan and,
if it drops below a certain threshold, the system liquidates
it, to prevent losses. It is clear how this requires the smart
contract to know the price of ethers in USD at all times. In
MakerDAO, the price is obtained through an ad-hoc oracle,
composed by a set of authorised sources, that provide price
feeds. The different feeds are then aggregated with certain
policies (e.g., median computation). The system governance
can update the authorized sources list.

2) TownCrier

TownCrier [5] proposes a system/architecture that allows on-
chain smart contracts to require external web data, already
accessible through TLS and HTTPS. TownCrier architecture
is composed by:

• a smart contract that acts as front-end for the other on-
chain client contracts;

• an enclave: a process running in a SGX (Software Guard
Extensions) Intel environment;

• a relay: a process that handles communication of the
enclave with the blockchain, the external resources, and
provides attestations on the guarded execution of the
enclave.

When a smart contract wants to obtain some information
from a web resource, it contacts the TownCrier smart con-
tract, using the APIs provided. The TownCrier smart con-
tract encodes the request and emits it via some Ethereum
events, that are monitored by the relay component, which
in turn informs the enclave process, that generates HTTPS
requests accordingly. In this way, the relay acts as a proxy
between the enclave and the network. Upon reception of
the response, the enclave checks the origin of the data, and
provides a signed datagram in which it certifies the source of
the requested information. The datagram is then forwarded
from the relay to the TownCrier on-chain front-end, and
from here to the original requesting smart contract. Some
limits/problems of the approach are that there is a significant
amount of centralization upon the TownCrier gateway (what
if the relay or enclave are attacked, or shut down?). Moreover,
even if it is possible to check the correct execution of the
enclave off-chain, the attestation cannot be directly verified
by the originating smart contract. An incorrect behavior of
the enclave, due to an attack or other reasons, couldn’t be
noticed directly by the originating smart contract. If a smart
contract wants to aggregate multiple sources, signature size
and verification could significantly increase. Approaches like
[6] allow to efficiently aggregate signatures coming from a
variety of data sources.

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3028498, IEEE Access

3) Oraclize
Oraclize employs an architecture similar to that of Town-
Crier, in which an external process is triggered by some
smart contract events, accesses to some external data source,
and communicates the result back to the requesting smart
contract. In the case of Oraclize, the authenticity of the data
source is proved by means of TLS-notary [7], a system with
which, given a trusted auditor, it is possible to generate a
proof that some data was indeed sent by a given source during
a TSL session. In this case, Oraclize data retrieval process
acts as auditee, and the auditor is an Amazon AWS instance,
that guarantees and signs a proof that some traffic was
indeed from the given source. This proof can be used by an
external actor to verify the validity of the data forwarded by
Oraclize to an on-chain smart contract. This Oraclize process
offers interesting guarantees, but has some drawbacks: The
TSL-notary proof cannot be checked directly by the smart
contract, due to its complexity. If the data is tampered with,
the fact will be evident to an external observer, but the smart
contract will use the data as if it was valid. Moreover, the
auditing process relies on the correct behavior of the AWS
instance. Should the machine be compromised, it would
be possible to forge correctness proofs. Moreover, Oraclize
suffers the disadvantages of a centralized system: if it gets
attacked, or controlled, it can hinder the functioning of the
smart contracts that rely on it for external data access.

TownCrier and Oraclize can be categorized as request-
response methods, since they allow smart contracts to specify
which resources they want, and respond with the data re-
quested.

4) Augur
Augur [8] is a decentralized platform for the creation and
resolution of prediction markets. Prediction markets are en-
vironments in which participants can trade shares on the
outcome of some prediction (e.g., will it rain tomorrow in
New York?). They are qualified with "prediction" because the
price of a share bound to an outcome is connected in a re-
markable way to the probability of the outcome as estimated
that the market actors. In particular, according to the Effi-
cient Market Hypothesis [9], [10], the share price aggregates
all the available information about the event outcome, and
thus represents a crowdsourced estimation of its probability.
Someone interested in evaluating the likelihood of an event
could then create a prediction market selling shares of that
event, let the actors trade them, and observe their price.
Working prediction markets predate blockchains and smart
contracts, and the implementation of the software platform
has of course been an essential tool to set up and effectively
run a prediction market ever since. Traditional platforms
are centralized, and suffer various limitations: they require
a trusted entity that handles a ledger of users shares, and
that determines the actual outcome of the event. Prediction
markets are a particularly well fitting application for smart
contracts, and in fact different proposals, such as Augur,
Gnosis and Stox seek to decentralize and automate their

creation, share negotiation, and resolution. The trading part
is a natural fit for smart contracts: keeping track of assets
trading is what blockchains were born for. On the other hand,
how do these systems deal with the problem of automatically
establish the truth of a given outcome? Augur uses a system
of incentives: after a market is due, that is when the time of
the event it is predicting on is passed, it enters a so called
"reporting" phase, in which a "designated reporter" can claim
that a certain outcome is the true one, staking some value on
it, in the form of reputation tokens (REP). After the initial
claim, for a given period of time other users can "dispute"
the initial claim, staking some value on alternative outcomes.
If the disputing stake reaches a certain threshold, the outcome
is considered disputed, the tentative outcome updated and
another possibility for disputing opens for some time. This
goes on until the tentative isn’t successfully disputed within
a time frame. If the disputed stake is greater than a given
share of the existing REPs, a fork is triggered. A fork is an
extreme procedure in which the whole platform in split into
two so called universes, one in which the reported outcome
is valid, and the other in which it is not. All the users are
requested to choose in which universe to bring their tokens.
After the fork is over, the two universes will be completely
disjoint. Every new market will be either in one or in the
other universe. The fundamental logic is that no one will
want to open markets and trade in the universe in which the
false report is considered valid, and thus the tokens there will
have no value. These mechanisms strongly align reporters
incentives towards claiming the truth.

This ingenuous clockwork has remarkable benefits, the
most notable being that it can be applied to very general
situations, wherever actors can agree on the truth of one
sentence. This means that the question that defines the market
can be simply formulated in human understandable language
(in such a way that people can uniquely and easily answer).
On the other hand, truth settlement can be very slow, from
one to several weeks, to months in the case of a fork.
Moreover, the incentives underlying the truth establishing
mechanism are tightly coupled to the market structure, and is
questionable whether they could be transposed as-is outside
that application.

5) Kleros
Kleros is, like Augur, a decentralized oracle, structured as a
decentralized autonomous organization. The system provides
economic incentives to users that want to act as jurors in
order to gain fees. Jurors are structured in courts, that have
competence over different topics. The epistemic mechanism
exploited is that of focal points, also known as Schelling
points [11]: these are elements in a choice set that actors tend
to choose when they have to coordinate in absence of reliable
communication, because for some reason they perceive them
as special, and think their relevance is common knowledge
(i.e., they think that also the other actors will find the same
element special, and all other actors will find it special etc.).
The idea of Kleros is to construct a mechanism in which

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3028498, IEEE Access

jurors have to coordinate to provide a coherent answer to a
question about the state of the world, and in which the actual
state is the focal point. When a question is posed, candidate
jurors have to stake some value through pinakions, tokens
defined within the system. The higher the value staked,
the higher will be the probability of being selected for the
court. If they are selected, jurors inquire about the question
considered, and then commit to their solution, publishing a
hash of their answer, of a secret salt, and of their address
(hash(salt+answer+address)). After having committed, they
cannot change vote. If a juror A wants to convince B that
he voted for the option x, he could show him the answer,
the salt, and his address, and B could verify that A indeed
voted x. This could enable coordination among actors, and
then disturb convergence on the Schelling point. To prevent
jurors from convincingly communicate their vote, the system
allows this mechanism: if a juror B gets to know the salt
and vote of the voter A, he can get hold of A’s stake.
After the committing phase, jurors reveal their votes. The
tokens put at stake are redistributed to reward the jurors that
voted the winning options, which is the one that received
most votes. Kleros system could allow to make questions
general and human understandable as is possible in Augur,
but without the necessity to create a prediction market. It
shares, with Augur, the high latency and low throughput due
to the coordination of human actors.

6) Other approaches
Location based services could be conveniently implemented
with smart contracts. In this case, the smart contract needs
to gather information about position of users (for instance, in
a ride sharing distributed application) or devices (e.g., in a
supply chain control system). In [12], to prevent users from
forging their positions, authors imagine to use an external
provider, such as a mobile network operator, to transmit
a position estimation based on network information to a
smart contract. Authors then analyse different methods to
conveniently encode information such as geofences for smart
contracts. In [13], the authors propose a decentralized oracle
system similar to that of Kleros, that additionally addresses
the verifiers’s dilemma [14], according to which, in some
circumstances, actors of a distributed system could implicitly
agree on a common value, such as constant 0, despite the
actual answer to the question asked. The mechanism pro-
vides, with respect to Kleros, the introduction of certifiers,
another class of actors. Certifiers stake high amounts of value
to certify that propositions of their choosing are either true or
false. In Astraea the authors claim that degenerate equilibria
in which voters agree on a constant value disregarding the
actual answer can be prevented tying the voting rewards to
behaviors of the certifiers.

In [15], authors explore the possibility to use Merkle
structures to guarantee integrity of Universal Description,
Discovery and Integration (UDDI) web service registries.
The approach introduces the possibility to prove the integrity
of parts of an XML document with respect to hierarchical

signature. Since the signature schemes are thought for off-
chain applications, the the range of possible proofs consid-
ered is focused on proof of membership of single nodes. In
[16] a system for the deploy of verifiable data feeds on a
smart contract platform is presented. The approach is based
on an architecture that requires data providers to deploy a
special contract to which they cryptographically commit data
updates. Actual data content is stored offline, at a given URL.
The contract only allows for data appends, and offers an
interface through witch other contracts can check the latest
state of the feed. When a user wants to provide a client
contract some information to trigger some clause execution,
it obtains the data, computes the membership Merkle proof,
and submits it to the relying contract, that can then check the
proof against the updated signature value of the authoritative
contract. The client contract will have to parse the informa-
tion, and behave accordingly. Note that the system requires
the data provider to actively interact with the blockchain, and
that the relying contract must be able to parse a complete item
of the feed. Approach presented in [16] is based on updatable
structures that are also resistant to tampering. Precursors of
such structures were conceived in the definition of digital
notaries [17]–[19]. The solution proposed in [16] is based on
Merkle trees and was presented in [20].

Analysis of the literature shows that there is no approach
that allows, with the minimum possible effort, to make
web information accessible to a smart contract, without the
introduction of some kind of third party. There are either
approaches such as [21], that are general and don’t require
specific effort on the side of data providers, or systems like
[16], that require data providers to continuously interact with
the chain, and do not fit well with web information, which
is mostly provided in a format too heavy to be parsed by on-
chain logic. This void raises a research question: is it possible
to make web information available to smart contracts

• with minimal perturbation of the current content pub-
lishing processes,

• reliably (tamper proof),
• in a decentralized way (censorship proof),
• cheaply (with affordable on chain computation cost).
In the remainder of the paper, we will propose an archi-

tecture that aims at satisfying the requirements posed by the
above question. The paper is structured as follows: in section
III we introduce our solution step-wise, starting from simple
assumptions, and then refining it as we find new problems
and introduce elements of complexity. In section IV, we
present the architectural form of our solution. In section V
we present an experimental setup to functionally validate the
solution and to estimate the cost involved. In section VI we
present the results of the tests and of the cost evaluation. In
section VII we draw some conclusions, and provide some
perspective for future work.

III. PROPOSED SOLUTION
We propose an oracle data pattern that seeks the generality of
request-response methods, without the complexity and trust

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3028498, IEEE Access

requirements of an intermediary like Oraclize. The method
is based on a signature scheme that allows data providers to
offer their information in a form suitable for the generation
of proofs that can be fed to smart contracts. In what follows,
we introduce the method, starting from a naive solution and
refining it, step-wise, to address issues as they arise. We will
assume that the data is provided in the form of a structured
document, be it a XML document or a HTML page. To
start, imagine that we want a smart contract to be able to
check if the temperature in Milan was 30 degrees on a given
day. This translates in checking if, in a page of a given
trusted source (e.g., the Wall Street Journal weather page)
there is a table with id reported-temperatures in which a row
contains two adjacent cells, "Milan" and "30". To start, we
could ask data providers that want to be used as reference
by smart contracts to digitally sign their pages. Since most
http endpoints already secure data through the SSL protocol,
they could use the same private key to sign the data. This
request is also the subject of an RFC document from the
W3C Digital Verification Community Group (https://w3c-
dvcg.github.io/http-signatures/). A smart contract could then
be coded to accept a digitally signed page, verify the signa-
ture, and check the conditions embedded in the content.

The problem with this solution is that the operations of
parsing and checking the page are computationally too ex-
pensive to be carried out on-chain. With Ethereum (but the
circumstance applies to most smart contract platforms), on-
chain code execution must be paid to reward the validators.
In the execution cost model, every instruction has a cost
expressed in a unit called gas. The amount of gas to execute a
given piece of code, given a certain initial state, is determinis-
tic. The cost of a gas unit in ether (the currency of Ethereum),
instead, is subject to a market, in which users compete for
the on-chain execution time, offering higher gas prices to
validators, that choose the most convenient transactions first.
Moreover, to prevent programs from spinning in infinite
loops, limits are enforced on the gas that can be consumed for
a single transaction. As a reference, simply loading a 10 kilo-
bytes long document on Ethereum would cost, at the time of
writing, the equivalent of 35$ in ether. After being loaded, the
document signature should be verified, and the page should
be parsed, operation that would likely exceed gas limits.
The high cost of execution implies that code to be run on-
chain should be minimized and restricted to those parts that
require the auditability, censorship resistance, and guaranteed
execution properties guaranteed by the blockchain platform,
while everything else should be done off chain.

A possible way for making on-chain verification cheaper
would imply using a signature that preserves some input
structure: instead of signing the whole page, the data provider
could sign the root of a Merkle tree of the page text, using
words as elements. A Merkle tree is an hashing schema in
which elements of a sequence are hashed and combined in a
hierarchical way, obtaining a single hash called Merkle root.
Merkle roots exhibit all the properties of “normal” hashes,
and in addition allows to generate cryptographic proofs of the

fact that a given element was present in the input sequence.
Using a Merkle tree, the contract could be coded to check

a proof of some condition (say, in the text is written "In Milan
it was above 30 degrees"). The issue that arises next is that
representing the page with a flat structure limits expressive-
ness of the proofs that can be generated. For instance, how is
it possible to express the condition that a table contains a row
that contains two adjacent cells with data "Milan" and "30"?

The solution we propose is a procedure for generating
Merkle roots of HTML documents that take structure into
consideration, and allow the generation of proofs of the
presence and relationship of text elements and their metadata,
that can be efficiently checked by smart contracts on-chain.
Using the scheme proposed, data providers can generate a
compact signature that allows to generate proofs about the
content of document, taking into account its structure.

The proposed signature can be exploited in smart contracts
to trigger some behavior when a proof that a given document,
coming from a given source (identified by its public key, for
example), contains certain elements in a given relationship
(e.g., "there is a row in the table with id temperatures in
which the first cell contains the text "Milan" and the second
the text "30"). Contractors can then check the condition and
decide if they trust the source and how it is encoded. If
and when the data provider produces a document that makes
the condition true, the interested party can generate, using
the signature, a proof of the condition occurrence, and then
feed it to the smart contract, that in turn will trigger the
predefined behavior. In this way most of the computational
effort, that is spent parsing and generating the proof, is
carried out off-chain, leaving on-chain only the critical parts
in terms of trust, that is the checking of the condition proof.
Moreover, no intermediary is needed. The party interested in
proving the condition carries out the proof computation, and
communicates it to the smart contract. If the proofs that can
be generated are sufficiently expressive, data providers don’t
need to change the structure of their content, and only need
to add a signing plug-in to their http server, in a way that is
completely transparent to the publishing process/flow.

In the following sections we detail the signing procedure,
we show how proofs can be generated and checked, and we
propose the experiments to evaluate off and on-chain costs
for some examples.

IV. ARCHITECTURE
Although our approach initially targets HTML structured
information, in order to propose an approach as general as
possible, we represent HTML pages as XML trees and we
propose a process to build an XML-Merkle tree. The idea, as
presented in Section III, is to create a compact representation
to generate proofs of the presence of some information in
a signed document. To do that, we define a structure that
integrates the information contained in the XML trees into a
Merkle tree, enhancing the expressiveness of Merkle proofs
while preserving a lightweight structure.

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3028498, IEEE Access

An XML tree has its own set of nodes [22], [23], each with
three main components:

1) a set of attributes (e.g., id, href), all optional except the
field tag (e.g., <div>, <figure>);

2) an optional text field (e.g., <div> optional text </div>);
3) an optional list of child nodes (e.g., <div> <div> child

div <div> </div>).
Hashing all the information in a node would introduce

a computationally complex search operation on-chain and
would also move part of the proof computation on-chain. On
the other hand, directly generating a Merkle tree with each
node by hashing child information in a bottom-up fashion
would lose two components of their information. In order to
avoid these drawbacks, in our approach we use Merkle trees
to individually represent the three components of each XML
node.

A. REPRESENTING THE TEXT IN A NODE
We propose to represent the text in a node as a Merkle tree.
The granularity to use when mapping words into the Merkle
tree is the first problem to be addressed. Naive solutions,
like removing stop words or consider groups of words, could
weaken expressive power. For this reason we propose to
encode each word as a single leaf of the tree. In this work
we use binary Merkle trees but, nevertheless, n-ary trees may
also be used to build the text sub-tree of each node.

B. REPRESENTING THE ATTRIBUTES OF A NODE
Node attributes are a set of key-value pairs (e.g., id =
element1, color = red). The only exception is the HTML
tag (e.g., div, figure, ...), which is used to define the name
of the field. The HTML tag is always the first word in the
node. A common solution for representing node attributes
are hash tables, but they are not a prime choice for storage
in blockchain applications because of overhead costs [24].

We thus represent the attributes as a Merkle binary-tree:
instead of storing each key-value pair as a single leaf, we
alphabetically order the keys, and place each key-value pair
in a leaf. Alphabetical ordering removes ambiguities from a
node and allows to represent it in an deterministic way, while
containing the computational cost of generating the tree and
the evaluation proofs.

C. REPRESENTING THE CHILD NODES OF A NODE
Each child node can be represented as another XML-Merkle
tree and consequently hashed. The child nodes of a node are
thus represented as a list of root hashes (the root of each
child node XML-Merkle tree). Nodes without child nodes
are the first to be generated, while other nodes are afterward
generated bottom-up.

D. THE ACTUAL NODE REPRESENTATION
As we just discussed, the three components of a node are:

1) the node attribute Merkle root;
2) the node text Merkle root;

3) the child nodes Merkle roots.
To simplify the representation of the node, we condense

the first two components into a single hash, by hashing the
concatenation of the two Merkle roots into a single element,
which we can refer to as the Attribute Text (AT) hash. In
the final representation each child node is represented as a
hash of its content. The final structure of each node is the
following:

1) the AT hash;
2) the child nodes hashes.
In this representation, each node is a list of n + 1 hashes,

where the first hash is the AT hash, followed by the ordered
child nodes hashes. The Merkle tree root of this representa-
tion is thus the hash of these n+ 1 hashes concatenated.

E. EXAMPLE
Given the following HTML snippet of code:

<div id=’main’ class=’text box’>
<p>Hello world!<\p>

<\div>

The external node, the div, is converted into a Markle tree
with three elements: the two attributes (id and class) and the
tag (see Figure 1). Each attribute is hashed, the hashes are
concatenated using a binary tree structure until the tree root
is reached. The tree root is the "AT hash".

As previously discussed, the final node hash is generated
concatenating the AT hash with the node hash of each child.
In the proposed example, the only child of the node div is the
node p (the one containing the text "Hello world!"). p does
not have any child, thus its representation is the AT hash gen-
erated using the attribute pair ("tag", "p") and the text "Hello
world!". The node div is finally generated concatenating the
AT hash (with its tag and attributes) and the node hash of the
child p. An example of the final representation for a generic
node is shown in figure 2.

F. PROOF TYPES
For each node in the proposed solution, four different types of
proofs can be performed: audit proofs, text proofs, attribute
proofs and parental proofs. The first three proofs are also
properties of the basic Merkle trees, while the parental proof
is an additional property of the proposed XML-Merkle tree.

1) Audit Proofs
Audit proofs are used to verify if a record is in a tree. They
consist in reconstructing the root hash from a subset of hashes
in the tree. Their implementation in XML-Merkle tree is
slightly more complex than the one used for binary trees. This
is due to the different technique used to build the tree.

Audit proofs can be used to verify (I) the presence of a
Merkle root of a sub-tree (text or attribute) in a node or (II)
the presence of a node in the XML-Merkle tree.

The procedure used to demonstrate the first case (I) re-
quires the verifier to check whether the AT hash can be

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3028498, IEEE Access

FIGURE 1. Example of HTML attribute tree.

FIGURE 2. Example of HTML node.

obtained by hashing the first two elements, or to check that
the concatenation of the computed AT hash with the other
child nodes gives the node hash.

The inputs required are:

1) the computed Merkle root of the sub-tree - we are
proving this element is in the tree;

2) the Merkle root of the other sub-trees;
3a) either node AT hash;
3b) or other child nodes hashes.

To validate the second scenario (II), the verifier has to
check whether or not the root of the XML-Merkle tree pre-
viously signed matches the root of a reconstructed validation
tree. To construct a validation tree the following information
is needed:

1) node’s hash - we are proving this element is in the tree;
2) an array of arrays of Merkle proof elements. Each sub-

array is relative to the next parent node’s child nodes.

It contains the AT hash and n − 1 child nodes hashes,
where n is the number of child nodes;

3) an index array, listing at which index i each child is in
relation to its parent;

4) the root of the XML-Merkle tree.
For each sub-array, the verifier computes the parent node

hash by concatenating and hashing the first i nodes hashes,
followed by the hash of the checked node, followed by
the remaining n − i child nodes’ hashes. This procedure is
recursively applied until the root of the tree is reached. The
root is compared with the root of the original XML-Merkle
tree and the proof is generated.

2) Text Proofs
In text proofs we want to prove that a text is in a given tree.
The raw text is hashed to obtain a leaf value and the audit
proof is calculated. The audit proof is the list of missing node
hashes required to compute all of the nodes between the leaf

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3028498, IEEE Access

and the tree root. When the proof is required, it is enough to
check if the root hash computed from the audit path matches
the established Merkle root. If true, the leaf, and thus the
given text, exists in the tree.

3) Attribute Proofs
A procedure similar to the one described for text proofs is
performed for attribute proofs. Instead of hashing the raw
text, the hashes of the attribute name and attribute value
are computed separately and concatenated in a single value.
The hash of this value is used as leaf value. Like for text
proofs, a proof of the existence if an attribute can be produced
by checking if the root hash computed from the audit path
matches the established Merkle root.

4) Parental Proofs
Parental proofs can be used to verify parent-child relation-
ships within the XML-Merkle tree. These proofs are very
convenient for verifying specific properties of a node. In
particular, they are especially useful to demonstrate key
relationships between siblings which are necessary for some
use-cases, for example to prove that two adjacent elements
contain relevant information. As an example, in a scenario
where we want to prove the outcome of a soccer match
associated to a bet, the information is structured so that two
adjacent elements contain respectively the team’s name and
its score. The easiest way to match a team’s name and score
is to demonstrate that a team’s name is in a certain field and
that there is a score in the adjacent field.

To perform this proof we need the following inputs:
1) the child node hash - the element we are demonstrating

is the child of some node;
2) the child node index in the sibling set;
3) the parent node hash - the element we are demonstrating

is the parent of some node;
4) the child node siblings;
To compute this proof, the siblings are concatenated ac-

cording to their index: the ones with an index lower than the
child index, followed by the child node hash, followed by the
remaining siblings. The verifier checks whether or not the
generated hash corresponds to the parent hash and generates
the proof.

It is worth noting that proving that a node A is child of
a node B, and then performing an audit proof of node B
implicitly performs an audit proof of node A. However, the
opposite is not true. Therefore, we cannot assert whether the
parent node B is in the tree via an audit proof of node A.

In a similar way, to prove a sibling relationship between
two nodes, it is sufficient to prove that both nodes are children
of the same parent node. This can be extended with the use
of indexes to prove ordinal relationships between siblings.

V. EXPERIMENTAL SETUP
In this section we propose two test scenarios to verify an end-
to-end implementation of the proposed technique. Both cases

are based on structured HTML web pages, with standard
HTML tags, as a source of information. The tests were
performed within a blockchain proof-of-concept prototype
that is composed of:

• a document parser and Merkle signature generator, em-
bedded in a plugin for an http server;

• a proof generator that accepts a document, the type of
proofs, and computes the proof;

• a set of smart contracts that check a given proof. The
contracts have been deployed on a test chain, to check
the correct behavior and precisely assess cost figures.

The parser and signature generator, and the proof generator
were coded in Python.

In our experiments, two actors participate in each contract:
1) the Maker: who gets the winnings in case of no valid

proof presented, also known as the lose-by-default case;
2) the Taker: who gets the winnings after successfully

constructing and executing the on-chain proofs.
To address the lose-by-default case, we use the following

payout logic: the taker has to give a complete proof of the
claim within a reasonable time frame. As a result, every
contract has a maximum time frame by which the taker
is expected to give a full proof. The contract specifies a
timestamp by which the last proof must occur.

A. DESCRIPTION OF THE EXPERIMENTS
1) Scenario 1: News Headlines
This scenario revolves around guessing the headlines for a
given day in the future. In our tests, we bet on the fact
that a given word will appear in the news headlines of a
predetermined newspaper on the following day.

In order to instantiate this contract, we need the following
specific information:

1) a public key associated with the newspaper or publisher;
2) the date at which the word has to appear in the headlines;
3) the word that has to appear in the headlines.
Furthermore, we need to identify what qualifies as a title

within the document, for example identifying the HTML tags
and/or the classes that uniquely identify the title.

In this scenario there is no additional contract logic re-
quired, because the proof of a word being in a headline can
be described by verification of attribute and text proofs.

2) Scenario 2: Temperature Prediction
In this scenario we want to determine whether or not a certain
temperature will be reached on a given day in the future.
To determine the temperature, we use a popular weather
aggregator which reports the temperature for all major cities.
In order to instantiate this contract, we need the following
specific information:

1) a public key associated with the publisher;
2) the date by which the temperature has to be reached;
3) the name of the city where the temperature is being

monitored;
4) the temperature threshold to be reached.

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3028498, IEEE Access

Furthermore, we need an easy way to find the temperature
for a given city in the page. Once identified the HTML
elements and classes that contain the whether forecast, a
proof for this scenario can be designed by:

1) initializing the contract with the name of the city and the
target temperature;

2) proving that there is an HTML element with a text that
contains the name of the selected city (attribute proofs,
followed by an audit proof);

3) proving that there is an HTML element with a text that
contains the temperature (attribute and text proofs fol-
lowed by an audit proof). The smart contract compares
the value of the temperature with the threshold defined
during the contract initialization;

4) proving the sibling relationship between these two fields
by providing that exists a parent field with these two
nodes as children. This can be achieved by using
parental proofs with fixed indices for the position of
each child;

5) a final audit proof for the parent field, proving this sub-
tree is in the page.

It is worth noting that, in this case, additional contract logic
is required for comparing values to thresholds.

B. EXAMPLE
In this example, relative to scenario 2, we want to determine
whether or not a certain temperature is reached in a city in
Italy. To determine the temperature, we use a popular weather
aggregator which reports the temperature for all major cities.
The listing of the HTML page retrieved from the web is the
following (listing 1):

1 <div class="odd2 row">
2 <div class="col-xs-5 col-sm-8">
3 <a href="http://meteo.corriere.it/

italia/lazio/roma/" title="meteo
Roma">Roma

4 </div>
5 <div class="col-xs-3 col-sm-2">
6 <div class="localita18

l18-pioggia_30"/>
7 </div>
8 <div class="col-xs-4 col-sm-2">5</div>
9 </div>

10
11 <div class="odd1 row">
12 <div class="col-xs-5 col-sm-8">
13 <a href="http://meteo.corriere.it/

italia/piemonte/torino/" title="
meteo Torino" >Torino

14 </div>
15 <div class="col-xs-3 col-sm-2">
16 <div class="localita18

l18-nuvoloso_70"/>
17 </div>
18 <div class="col-xs-4 col-sm-2">1</div>
19 </div>
20
21 <div class="odd2 row">
22 <div class="col-xs-5 col-sm-8">

23 <a href="http://meteo.corriere.it/
italia/trentino-alto-adige/trento
/" title="meteo Trento">Trento

24 </div>
25 <div class="col-xs-3 col-sm-2">
26 <div class="localita18

l18-molto_nuvoloso"/>
27 </div>
28 <div class="col-xs-4 col-sm-2">3</div>
29 </div>

Listing 1. HTML snippet of a weather aggregator.

This snippet shows the weather for the cities of Rome,
Turin and Trento. The temperature of each city has the
following structure: a "div" element contains a list of "div"
children elements, the first "div" in the list has an "a" element
with a tag "title=meteo city name" where city name is the
name of a city. Identified the city, the last sibling of this field’s
parent node contains the temperature in its text section. Given
this structure, it is possible to build the relative Merkle-tree
and write the smart contract that verifies where the searched
city is located in the HTML structure (using attribute proof
on the tag "title") and which is the temperature associated to
that city (using parental proofs). Additional logic to verify if
the collected temperature is above or below the threshold is
written in the smart contract.

VI. RESULTS AND DISCUSSION
In this section, we first explain the evaluation methods used
to generate the proofs. Next, we discuss the results of each
scenario and some possible improvements.

A. EVALUATION METHOD
One of the main objectives of any smart contract component
or technique is to minimize the amount of gas required for
the computation, since it has a direct and relevant impact on
the execution costs.

The experiments are carried out on a local test-net. Since
code execution on Ethereum is strictly deterministic, running
the code on a local chain or remote chain requires the same
quantity of gas. Of course, gas price on the main network will
depend on the actual, current gas price market.

B. SCENARIO 1: NEWS HEADLINES
Five contracts are generated, compiled, and deployed on the
test blockchain, each one collecting the headline of a newspa-
per on a specific day. Proofs are generated to demonstrate the
existence of specific words on the headlines. For each case,
the following information is collected and analysed:

1) size of the document (expressed as number of lines);
2) contract initialization cost;
3) cost of each proving step;
4) intrinsic gas costs of each operation (represented along-

side each operation).
Each contract requires a total of six proving steps (from

initialization to verification) and an additional step to obtain
payout. The steps are:

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3028498, IEEE Access

1) both parties join the contract;
2) compute a signed valid Merkle root;
3) compute node hashes for the title node and its parent

node;
4) verify child node properties;
5) verify parent node properties and audit proof for the

parent node;
6) parental proof for the parent and child node;
7) obtain payouts.

The parental proof and the audit proof can be completed
out-of-order, due to the independence of the two proofs. If
both are resolved our claims are verified.

The results show that the contract initialization cost for
the five test cases is similar, possibly due to the nature of
the words being checked in the contract. It is worth noting
that the difference between the contract initialization costs
is the same as the difference in the intrinsic costs of the
other steps. This is due to the fact that the contracts have the
same implementation, the only differences (and so the only
parameters that change the cost) being the word searched for
and the timestamp used to define time windows.

Analysing the single steps costs in detail (Table 1), we
observe that Steps 1 to 3 have identical costs in all the
test cases. This is due to the nature of these actions, which
are identical except for the run-time parameters. Moreover,
these steps run in constant time and thus their resource
consumption is independent from the input. It is interesting to
note that also in Step 4, used for proving properties of a child
node through binary Merkle proofs, the costs are similar, with
a maximum cost difference below 10%. Moreover, there is a
correlation between the growth of the intrinsic cost and total
cost: the computational cost (total cost) increases along with
the size of the input (intrinsic cost), A different behaviour is
observed in Steps 5 and 6. In these steps, we observe that
binary proofs are inexpensive, in contrast to audit proofs
that are the most expensive part of the proving process.
We still observe a strict correlation between input size and
computational cost. This is consistent with the observed high
variance in intrinsic and total cost across test cases, which can
be derived from the different structure of the documents used
and the position of the element within the document, which
significantly influences the cost of the audit proofs. This can
be explained by considering the type of proof: parental proofs
are the concatenation and hashing of a node with its siblings.
Therefore, nodes with a small number of siblings will incur in
lower parental proof costs than those with a high number of
siblings, independently of the rest of the document structure.
Finally, as for the first three steps, Step 7 has identical costs
across all the scenarios.

A summary of the costs is reported in Table 2, the overall
cost of each operation ranges from 2.1M to 2.5M gas. Values
for initialization and proof costs are inclusive of intrinsic
costs. The intrinsic cost column shows what portion of the
overall gas expense is due to data storage costs.

C. SCENARIO 2: TEMPERATURE PREDICTION
We built three test contracts taking temperature readings on
multiple days, and building proofs for different cities on those
pages. For each case, we report:

1) Size of document (expressed as number of lines);
2) Contract initialization cost;
3) Cost of each proving step;
There are a total of seven steps, implemented as contract

methods, between initialization and verification and another
one to obtain payouts.

1) both parties joining the contract (overhead);
2) set a signed valid Merkle root;
3) set node hashes for temperature and city nodes and their

parent node;
4) verify node properties for the city name;
5) verify node properties for the temperature field and

check if the threshold is met;
6) parental proof for the parent and child nodes;
7) audit proof for the parent node.
8) obtain payouts.
Our results suggest that the contract initialization costs,

like in the previous scenario, are similar for all the test
cases. Also in this scenario, differences between contract
initialization costs are identical to those between intrinsic
costs of the other steps (the contracts are identical except the
word being checked and the timestamps used to define time
windows).

By analysing the steps costs in details (Table 3), we ob-
serve that the first steps have near-identical costs for each op-
eration. The variation in intrinsic cost does not seem to affect
the computational cost in these scenarios, where total costs
and intrinsic costs increment exactly by the same amount.
This can be due to the size of proofs being constant. This
is particularly clear in Step 7, where the audit proof occurs.
In the other scenario, audit proofs gave very different results
across several cases. In this scenario, however, the cost is
quite similar in all the tests.

A summary of the costs is reported in Table 4, the overall
cost of each operation is around 2.8M gas. Values for initial-
ization and proving costs are inclusive of intrinsic costs. The
intrinsic cost column shows what portion of the overall gas
expense is due to data storage costs.

D. COST ANALYSIS
At the time of writing, the gas price ranges from 1 Gwei
(estimated execution time <30 min) to 5 Gwei (estimated
execution time <2 min), with a standard price of 2 Gwei
(estimated execution time <5 min). The price in fiat currency
for a Gwei is around 0.00000014$ (1 Ether = 140$). Con-
sidering these values, the current cost for the execution of
the proposed scenarios ranges from 0.29$ (slow execution,
2.1M gas) to 1.75$ (fast execution, 2.5M gas) for scenario 1
and from 0.392$ (slow execution, 2.8M gas) to 1.96$ (fast
execution, 2.8M gas) for scenario 2. However, while the
prices of gas and Ether are dictated by the market, and as

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3028498, IEEE Access

Case 1 Case 2 Case 3 Case 4 Case 5
Total cost Intr. cost Total cost Intr. cost Total cost Intr. cost Total cost Intr. cost Total cost Intr. cost

Init. cost 1 314 843 308 964 1 314 843 308 964 1 314 715 308 836 1 314 971 309 092 1 314 907 309 028
Step 1 42 534 21 272 42 534 21 272 42 534 21 272 42 534 21 272 42 534 21 272
Step 2 74 765 28 312 74 765 28 312 74 769 28 316 74 765 28 312 74 765 28 312
Step 3 71 940 256 243 71 940 256 243 71 940 256 243 71 940 256 243 71 940 25 624
Step 4 86 279 30 232 86 279 30 232 89 077 32 728 91 462 34 840 91 654 35 032
Step 5 800 221 232 536 849 334 245 528 456 359 139 736 623 476 184 728 759 906 221 528
Step 6 119 635 39 192 79 403 282 248 87 561 30 552 95 592 32 728 79 403 28 248
Step 7 21 023 21 272 21 023 21 272 21 023 21 272 21 023 21 272 21 023 21 272

TABLE 1. Scenario 1: total and intrinsic cost of each step.

Doc. size Init. cost Proving cost Intrinsic cost
Case 1 12 006 1 314 843 1 226 391 707 404
Case 2 12 006 1 314 843 1 235 278 709 452
Case 3 6 128 1 314 715 853 323 608 396
Case 4 18 536 1 314 971 1 030 792 657 868
Case 5 12 006 1 314 907 1 151 225 690 316

TABLE 2. Scenario 1: document size, initialization, proving and intrinsic cost
of each case study.

a result outside of our control, the cost of the computation
can be modified. Some solutions, hereafter presented, could
be adopted to limit the computation cost of the proofs.

a: Reducing the proof size
In the proposed solution the number of proof elements grows
exponentially with respect to the amount of sibling nodes,
rather than linearly. Condensing the sequence of nodes into a
single binary Merkle tree would result in faster and lighter
proofs for parental and audit proofs. This process greatly
increases the number of hashing operations to be done, but
hashing operations are less expensive than the storage costs
given by the intrinsic gas costs. In terms of actual costs, using
a binary Merkle tree for node children could reduce the size
of proofs up to 60% of the cost of audit proof transactions.

b: Reducing document size
Web pages contain much more information than strictly
relevant to a user’s query, examples of relevant although
useless information include fields containing images and
fields containing ads. While they may contribute to the web
experience, they are useless for the proving purposes of our
work. Two solutions could be adopted to reduce the size
of the document and, consequently, the storage cost: one
solution is to streamline the operations by filtering out all
elements which may clutter the proving process. The second
is to directly sign more interesting nodes in the tree in place
of the Merkle root. This approach could cut around 10% of
the audit proof costs for the former method, and remove the
need for audit proofs completely with the latter one.

c: Reducing contract size
There are some high level optimizations that can be applied
on our contract code to further reduce the amount of gas
used. Examples include using assembly code in place of array

access, as well as other micro optimization routines such as
merging multiple proving steps into the same function to
reduce the amount of variables saved between steps. This
may lead to a contract initialization cost reduction between
5% and 15%.

d: Reusable contracts
Initializing a contract on the blockchain has very high costs
even if the code is very optimized. Building a single reusable
contract for many similar scenarios may have notable over-
head costs when initialized for the first time and may add
development complexity. However, after being initialized
once, further instantiations of similar scenarios may require
approximately half of the costs.

e: Adopting Ethereum scaling solutions
Scaling solution for the Ethereum network, like Plasma [25],
sharding [26] and staking can be used to reduce the proof
cost. Scaling solutions aim at increasing the throughput of the
network, by allowing anywhere from 10 times to 1000 times
more transactions per second. If we assume the same amount
of transactions occurring as they are currently, a higher
throughput causes less competition for inclusion in a block.
This would lead in turn to lower gas prices. However, the
network and block validators may react and introduce new
measures to influence gas price. However, we can assume
that, at least in their initial phases, scaling solutions should
allow even lower priced transactions to be included.

E. SOLUTION IMPROVEMENTS AND MODIFICATIONS
This work is based on Merkle trees and Merkle proofs, as is
standard in the Ethereum ecosystem. However, many other
options exist when it comes to proving something. Verifiable
computation approaches like zk-snarks [27] and proof-of-
computation may be employed to even further reduce the
computation cost.

Another improvement revolves around a generalization
process. Currently, ad-hoc contracts are built for each sce-
nario, manually defining proving steps and proof generation
each time. A problem analogous to this one exists in the field
of financial derivative contracts, where an ad-hoc contract is
required for each case. To circumvent this issue, Biryukov
et al. proposed FinDel [28], a system leveraging the Domain
Specific Language (DSL) [29] to define any and all derivative

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3028498, IEEE Access

Case 1 Case 2 Case 3
Total cost Intr. cost Total cost Intr. cost Total cost Intr. cost

Init. cost 1 536 912 358 960 1 537 040 359 088 1 537 040 359 088
Step 1 42 578 21 272 42 578 21 272 42 578 21 272
Step 2 74 870 28 376 74 870 28 376 74 870 28 376
Step 3 94 125 27 800 94 125 27 800 94 061 27 736
Step 4 52 556 32 408 52 620 32 472 52 620 32 472
Step 5 54 731 25 752 54 731 25 752 54 731 25 752
Step 6 107 565 28 504 107 565 28 504 107 565 28 504
Step 7 821 752 162 776 821 732 162 776 821 820 162 840
Step 8 31 067 21 272 31 067 21 272 31 067 21 272

TABLE 3. Scenario 2: total and intrinsic cost of each step.

Doc. size Init. cost Proving cost Intrinsic cost
Case 1 705 1 536 912 707 120 1 279 244
Case 2 705 1 537 040 707 312 1 279 288
Case 3 705 1 537 040 707 312 1 279 312

TABLE 4. Scenario 2: document size, initialization, proving and intrinsic cost
of each case study.

contracts using a single language developed specifically for
this purpose. Analogously, one could work toward devel-
oping a DSL to define proofs using XML-merkle trees,
by formalizing different predicates to be used to represent
different properties of nodes in a tree, and using this new DSL
in place of ad-hoc contract to make proofs on chain. Pairing
this with one or a few executor contracts, as those proposed
earlier, may remove the need for contract initialization costs
completely.

VII. CONCLUSIONS AND FUTURE WORK
The current state of the Ethereum ecosystem is at a point
where it can scale to support the development of applications
that may handle sensitive and complex operations with strong
execution guarantees.

In this work, borrowing the Merkle tree design pattern
which is present in many blockchain applications and by us-
ing digital signature, we aimed to supplement the Ethereum
platform with a proposal to authenticate and verify properties
of web information relayed by external agents (e.g., oracles)
to a smart contract without requiring trust in other intermedi-
aries.

This allows the design of smart contracts in which prede-
fined reactions to a certain external world event are guaran-
teed to be executed (e.g., the payment of one of the actors of
a bet when the result is known).

In general, the solution provides the possibility to maintain
the same level of guarantee that decentralized execution
strives for.

By requiring publishers to sign the information, there
are no further trusted actors to be included in the pipeline
contrary to current state of the art solutions, and any client
can relay information to smart contracts from public sources.

As application examples we can imagine flight insurances,
where verifying arrival times of a flight on a web page is

necessary, as well as financial derivative settlements, where
public web pages detailing price indexes of a stock ticker
need to be accessed.

Furthermore, the presented flow can be easily integrated
in existing websites with minimal effort for a publisher,
requiring at most a simple plugin, which may be streamlined
and customized to the publisher needs.

One direction for further work could be to explore alterna-
tive proving methods. Verifiable computation approaches like
zk-snarks [22] and proof-of-computation may be employed
to reduce the cost of computation. One could work also
toward developing a DSL (Domain Specific Language) to
define proofs and use it in place of ad-hoc contract to make
proofs on chain. Moreover, one can imagine the emergence
of specialized third parties that systematically provide signa-
tures of pages (imagine a search engine or a version of the
service archive.org [30] that allows to query the signature
of a certain version of a page). Even if this would add
another trusted actor to the system, signing the digest of
a page, as opposed to relaying some specific information
directly, would allow for a smaller tolerance for tampering
and dishonest behavior, where making false claims becomes
more difficult than simply relaying wrong information.

REFERENCES
[1] N. Szabo, “Formalizing and securing relationships on public networks,”

First Monday, vol. 2, 01 1997.
[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Cryptog-

raphy Mailing list at https://metzdowd.com, 03 2009.
[3] V. Buterin, “A next-generation smart contract and decentralized

application platform,” white paper, 2014, https://github.com/ethereum/
wiki/wiki/White-Paper#decentralized-autonomous-organizations. [On-
line]. Available: https://github.com/ethereum/wiki/wiki/White-Paper#
decentralized-autonomous-organizations

[4] M. Team, “The dai stablecoin system,” URl: https://makerdao.
com/whitepaper/DaiDec17WP. pdf, 2017.

[5] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An
authenticated data feed for smart contracts,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’16. New York, NY, USA: ACM, 2016, pp. 270–282. [Online].
Available: http://doi.acm.org/10.1145/2976749.2978326

[6] B. van der Laan, O. Ersoy, and Z. Erkin, “Muscle: Authenticated external
data retrieval from multiple sources for smart contracts,” in Proceedings
of the 34th ACM/SIGAPP Symposium on Applied Computing, ser.
SAC ’19. New York, NY, USA: ACM, 2019, pp. 382–391. [Online].
Available: http://doi.acm.org/10.1145/3297280.3297320

[7] “Tlsnotary - a mechanism for independently audited https sessions,” https:
//tlsnotary.org/TLSNotary.pdf, 2014.

VOLUME 4, 2016 13

https://github.com/ethereum/wiki/wiki/White-Paper#decentralized-autonomous-organizations
https://github.com/ethereum/wiki/wiki/White-Paper#decentralized-autonomous-organizations
https://github.com/ethereum/wiki/wiki/White-Paper#decentralized-autonomous-organizations
https://github.com/ethereum/wiki/wiki/White-Paper#decentralized-autonomous-organizations
http://doi.acm.org/10.1145/2976749.2978326
http://doi.acm.org/10.1145/3297280.3297320
https://tlsnotary.org/TLSNotary.pdf
https://tlsnotary.org/TLSNotary.pdf

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3028498, IEEE Access

[8] J. Peterson, J. Krug, M. Zoltu, A. K. Williams, and S. Alexander,
“Augur: a decentralized oracle and prediction market platform,” url:
https://www.augur.net/whitepaper.pdf, 2018.

[9] P. A. Samuelson, “Rational theory of warrant pricing,” Industrial Manage-
ment Review, vol. 6, p. 13-39, 1965.

[10] E. Fama, “The behavior of stock-market prices,” Journal of Business,
vol. 38, p. 34-105, 1965.

[11] T. C. Schelling, The strategy of conflict (First ed.). Cambridge: Harvard
University Press, 1960.

[12] F. Victor and S. Zickau, “Geofences on the blockchain: Enabling decen-
tralized location-based services,” in 2018 IEEE International Conference
on Data Mining Workshops (ICDMW), Nov 2018, pp. 97–104.

[13] J. Adler, R. Berryhill, A. G. Veneris, Z. Poulos, N. Veira, and A. Kastania,
“Astraea: A decentralized blockchain oracle,” CoRR, vol. abs/1808.00528,
2018. [Online]. Available: http://arxiv.org/abs/1808.00528

[14] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena, “Demystifying incentives
in the consensus computer,” in Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’15.
New York, NY, USA: ACM, 2015, pp. 706–719. [Online]. Available:
http://doi.acm.org/10.1145/2810103.2813659

[15] E. Bertino, L. Martino, F. Paci, and A. C. Squicciarini, Security for Web
Services and Service-Oriented Architectures. Springer, 2010. [Online].
Available: https://doi.org/10.1007/978-3-540-87742-4

[16] J. Guarnizo and P. Szalachowski, “PDFS: practical data feed service
for smart contracts,” in Computer Security - ESORICS 2019 - 24th
European Symposium on Research in Computer Security, Luxembourg,
September 23-27, 2019, Proceedings, Part I, ser. Lecture Notes in
Computer Science, K. Sako, S. Schneider, and P. Y. A. Ryan,
Eds., vol. 11735. Springer, 2019, pp. 767–789. [Online]. Available:
https://doi.org/10.1007/978-3-030-29959-0_37

[17] D. Bayer, S. Haber, and W. S. Stornetta, “Improving the efficiency
and reliability of digital time-stamping,” in Sequences II, R. Capocelli,
A. De Santis, and U. Vaccaro, Eds. New York, NY: Springer New York,
1993, pp. 329–334.

[18] M. T. Goodrich, D. Nguyen, O. Ohrimenko, C. Papamanthou, R. Tamassia,
N. Triandopoulos, and C. V. Lopes, “Efficient verification of web-
content searching through authenticated web crawlers,” Proc. VLDB
Endow., vol. 5, no. 10, pp. 920–931, 2012. [Online]. Available:
http://vldb.org/pvldb/vol5/p920_michaeltgoodrich_vldb2012.pdf

[19] S. Haber and W. S. Stornetta, “How to time-stamp a digital document,” in
Advances in Cryptology-CRYPTO’ 90, A. J. Menezes and S. A. Vanstone,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 437–455.

[20] S. A. Crosby and D. S. Wallach, “Efficient data structures for tamper-
evident logging,” in Proceedings of the 18th Conference on USENIX
Security Symposium, ser. SSYM’09. USA: USENIX Association, 2009,
p. 317–334.

[21] T. Bertani, “A scalable architecture for on-demand, untrusted delivery
of entropy.” [Online]. Available: http://www.oraclize.it/papers/random_
datasource-rev1.pdf

[22] W3C2019. (2019) Extensible markup language (xml) 1.0
(fifth edition). [Online]. Available: https://www.w3.org/TR/xml/
REC-xml-20081126-review.html#sec-terminology

[23] W3C2014. (2014) Xml information set (second edition). [Online].
Available: http://www.w3.org/TR/xml-infoset/

[24] S. Asharaf and S. Adarsh, Decentralized Computing using Blockchain
Technologies and Smart Contracts. IGI Global, 2017.

[25] J. S. Y. Poon, “Plasma: Scalable autonomous smart contracts,” 2017.
[26] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,

“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. ACM, 2016, pp. 17–30. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978389

[27] V. Dhillon, D. Metcalf, and M. Hooper, Recent Developments in
Blockchain. Blockchain Enabled Applications, 2017, pp. 151–181.

[28] A. Biryukov, D. Khovratovich, and S. Tikhomirov, “Findel: Secure deriva-
tive contracts for ethereum,” in Financial Cryptography and Data Security,
M. Brenner, K. Rohloff, J. Bonneau, A. Miller, P. Y. Ryan, V. Teague,
A. Bracciali, M. Sala, F. Pintore, and M. Jakobsson, Eds. Springer
International Publishing, 2017, pp. 453–467.

[29] S. Peyton Jones, J.-M. Eber, and J. Seward, “Composing contracts: An
adventure in financial engineering (functional pearl),” in Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional
Programming, ser. ICFP ’00. New York, NY, USA: ACM, 2000, pp.
280–292. [Online]. Available: http://doi.acm.org/10.1145/351240.351267

[30] “The internet archive,” https://archive.org, 2014.

14 VOLUME 4, 2016

http://arxiv.org/abs/1808.00528
http://doi.acm.org/10.1145/2810103.2813659
https://doi.org/10.1007/978-3-540-87742-4
https://doi.org/10.1007/978-3-030-29959-0_37
http://vldb.org/pvldb/vol5/p920_michaeltgoodrich_vldb2012.pdf
http://www.oraclize.it/papers/random_datasource-rev1.pdf
http://www.oraclize.it/papers/random_datasource-rev1.pdf
https://www.w3.org/TR/xml/REC-xml-20081126-review.html#sec-terminology
https://www.w3.org/TR/xml/REC-xml-20081126-review.html#sec-terminology
http://www.w3.org/TR/xml-infoset/
http://doi.acm.org/10.1145/2976749.2978389
http://doi.acm.org/10.1145/351240.351267
https://archive.org

