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Abstract—This paper investigates the problem of asymp-
totic state reconstruction for a class of continuous-time systems
characterized by linear input-state dynamics and polynomial
state-output function. It is shown that the dynamics of systems
in this class can be embedded into the dynamics of systems
of higher dimension, with time-varying linear state dynamics
and linear state-output map. An asymptotic state observer for
the original system is presented, whose design is based on
the equations of the extended system. The observer gain is
computed on-line by solving a Riccati differential equation.
The interest in this observer is in its capability of state
reconstruction also in cases in which the original system is
not drift-observable (observable for zero input) nor uniformly
observable (observable for any input).
Index Terms—nonlinear systems, state observers, Riccati

equation, Kronecker algebra.

I. INTRODUCTION

Linear time-invariant (LTI) descriptions of dynamical
systems are widely used in control and identification theory
[8], even though no real-life system can be considered
exactly LTI. Nevertheless, LTI models are of enormous value
in all of engineering fields, since LTI models may be good
approximations of real systems and have proved to be very
useful in control and/or identification algorithms design.
One step toward reality is to consider dynamic systems
described by linear input-state equations and nonlinear state-
output functions. This paper deals with the state observation
problem for such systems, in the particular case of output
functions that are polynomials of the state vector. This class
of systems is of particular interest in applications. Consider,
as an example, an electrical network in which the powers at
some terminals are measured. Such outputs are quadratic
functions of the state of the network, typically made of
currents and voltages. In electromechanical systems the
torque is the product of magnetic fluxes and currents, and
the counterelectromotive force is proportional to the product
of the magnetic flux and rotor velocity. Note also that
any smooth nonlinear output function can be approximated
through polynomials.
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The observability analysis of nonlinear systems can be
made through the so called drift-observability map (see
[4]): theoretical invertibility of such map guarantees the
possibility of state reconstruction for systems with full rel-
ative degree or with zero input. However, drift-obsevability
does not provide a complete observabilty analysis of a
nonlinear system in the case of general relative degree,
when the input is not identically zero. Differently from
what happens for linear systems, it is well known that in
nonlinear systems the forcing input plays an important role
in the state observability. The observability for any input
(uniform observability in [3]) is a strong property that in
most applications is not satisfied.
The asymptotic state observer presented in this paper does

not assume the drift-observability of the system, nor the
uniform observability. This observer can be constructed in
all cases in which the system, together with the applied
input, satisfies an observability condition based on the ob-
servability Gramian of a suitably defined extended system.
The paper is organized as follows: section II introduces

the class of systems considered and the concept of drift-
obsevability. Also the formalism of Kronecker products and
powers is introduced for the system description. In section
III an extended state space and an extended system are
defined. In section IV the observation algorithm is presented,
whose construction is based on the extended system. Simu-
lations results are reported in section V. Conclusions follow.
Some results concerning the Kronecker algebra are reported
in Appendix.

II. SYSTEMS WITH LINEAR INPUT-STATE
DYNAMICS AND POLYNOMIAL OUTPUT

The class of systems considered in this paper is described
by the following state-space representation:

_x(t) = f
¡
x(t)

¢
+Bu(t);

y(t) = h
¡
x(t)

¢
;

t ¸ 0; x(0) = x0; (1)

where x(t) 2 IRn is the system state, y(t) 2 IRq is the
measured output, u(t) 2 IRp is a known input, f(x) = Ax,
with A 2 IRn£n, is the (linear) drift term of the system
dynamics, B 2 IRn£p is the state-input link, and h(x) is the
state-output function, whose components are polynomials of
the state.
In [4] it is shown that if the drift-observability property

is satisfied (i.e. observability for u(t) ´ 0), then the system
turns out to be observable for a class of suitably bounded
inputs (the bound depends on some Lipschitz constants of
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the system equations). If the observation relative degree of
the system is full, then the drift-observability property allows
asymptotic state reconstruction for any bounded input.
The observer described in [4] is based on the construction

of a drift-observability map, a square function that, in the
case of zero input, provides the vector output and a number
of its derivatives as a function of the systems-state. In
the simple case of scalar output the drift-obervability map
provides the output and its derivatives up to the n¡1 order,
and is given by

©(x) =

0BBB@
h(x)
Lfh(x)
...

Ln¡1f h(x)

1CCCA ; (2)

where Lkfh(x) is the k-th repeated Lie derivative of the
function h(x) along the field f(x). Global/local drift-
observability coincides with the global/local invertibility of
the drift-observability map. The observer in [4] can be
implemented only if the Jacobian d©=dx is nonsingular and
the convergence is ensured inside the region of invertibility
of ©(x).
It is important to stress that, differently from what hap-

pens to linear systems, the observability property for nonlin-
ear systems may depend on the input applied: a favorable
input may allow the state reconstruction for systems that
are not drift-observable, while a bad input may forbid state
reconstruction for systems that are drift-observable.
The approach described in this paper allows the construc-

tion of an observer for the class of systems of the type (1)
that works well when the input is favorable.
Before discussing the observer construction, it is useful

to describe how polynomial functions of vectors can be
conveniently written using linear combinations of Kronecker
powers. Recall that the Kronecker product of two matrices
M and N of dimensions r£s and p£ q respectively, is the
(r ¢ p)£ (s ¢ q) matrix

M N =

264m11N : : : m1sN
...

. . .
...

mr1N : : : mrsN

375 ; (3)

where the mij are the entries of M . The Kronecker power
of a matrix M is recursively defined as

M [0] = 1; M [i] =M M [i¡1]; i ¸ 1: (4)

Note that if M 2 IRa£b, then M [i] 2 IRai£bi . See the Ap-
pendix in [5] for a quick survey on the Kronecker algebra.
The properties of the Kronecker product used throughout
the paper are the following:

(A+B) (C +D) =A C +A D +

B C +B D (5)
A (B C) =(A B) C (6)

(A ¢ C) (B ¢D) =(A B) ¢ (C D) (7)

In particular, from property (7) it follows

(Ax)[i] = A[i]x[i]; (8)

intensively used throughout the paper. See [9] for more
properties.
A q components polynomial of degree not greater than m

of a vector x 2 IRn can be written as
mX
i=0

Div
i; (9)

where Di 2 IRq£ni are the coefficients of the polynomial.
Systems of the class (1) can be written in the following

form:
_x(t) = Ax(t) +Bu(t);

y(t) =
mX
i=1

Cix
[i](t);

t ¸ 0; x(0) = x0: (10)

where Ci 2 IRq£ni ; i = 1; : : : ;m are the coefficients of
the output polynomial. Note that, without loss of generality,
the constant term of the output polynomial is not considered.

III. THE EXTENDED SYSTEM

In this section it is shown that the state-output dynamics
of the nonlinear stationary system (10) obeys linear time-
varying equations in the state-space form if an extended
state Xm(t) is suitably defined as follows

Xm(t) =

0BBB@
x(t)
x[2](t)
...

x[m](t)

1CCCA 2 IRd(n;m); (11)

where d(n;m) =
Pm
i=1 n

i. With this definition the output
y(t) can be written as a linear function of the extended state
Xm(t)

y(t) = CXm(t);
where C = £C1 C2 ¢ ¢ ¢ Cm

¤ (12)

It is interesting to show that the dynamics of the extended
state obeys the equation described by the following lemma:

Lemma III.1. The dynamics of the extended state Xm(t)
defined by (11) is given by:

_Xm(t) = A
¡
u(t)

¢
Xm(t) + Bu(t); (13)

with matrix A(u) is defined as26666664
A1;1 O ¢ ¢ ¢ 0 0
A2;1(u) A2;2 ¢ ¢ ¢ 0 0

O A3;2(u) . . . 0 0
...

...
. . . . . .

...
0 0 ¢ ¢ ¢ Am;m¡1(u) Am;m

37777775 ; (14)
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where matrices Ai;i; i = 1; : : : ;m and Ai;i¡1(u); 2 ·
i · m are recursively defined by

Ai;i = A Ini¡1 + In Ai¡1;i¡1;
A1;1 = A;

Ai;i¡1(u) =
¡
Bu
¢

Ini¡1 + In Ai¡1;i¡2(u);
A2;1(u) = Bu;

(15)

Ink is the identity matrix of dimension nk and

B =

26664
B

O
...
O

37775 : (16)

Proof: The state dynamics (13) is equivalent to the
following equations

_x(t) = A1;1x(t) +Bu(t);
d

dt
x[i](t) = Ai;ix[i](t) +Ai;i¡1

¡
u(t)

¢
x[i¡1](t);

i = 2; : : : ;m:

(17)

The first of (17) is readily proved by observing that, by
definition, A1;1 = A. The second equation, for i = 2, is
proved with the following passages, by using the Kronecker
product properties:

d

dt
x[2](t) = x _x+ _x x

= x
¡
Ax+Bu

¢
+
¡
Ax+Bu

¢
x

=
¡
A In + In A

¢
x[2]

+
¡¡
Bu
¢

In + In
¡
Bu
¢¢
x (18)

By definitions (15)
A2;2 = A In + In A

A2;1(u) =
¡
Bu
¢

In + In
¡
Bu
¢

(19)

so that the second of (17) is proved for i = 2.
Now, proceed by induction: assume that (17) is true for

a given i ¸ 2 and prove that it is also true for i+1. Indeed
d

dt
x[i+1](t) = x

d

dt
x[i] + _x x[i]

= x
¡Ai;ix[i] +Ai;i¡1(u)x[i¡1]¢+ ¡Ax+Bu¢ x[i]

=
¡
A Ini + In Ai;i

¢
x[i+1] +¡

(Bu) Ini + In Ai;i¡1(u)
¢
x[i]: (20)

From definitions (15) it follows
Ai+1;i+1 = A Ini + In Ai;i
Ai+1;i(u) = (Bu) Ini + In Ai;i¡1(u) (21)

so that
d

dt
x[i+1](t) = Ai+1;i+1x[i+1](t) +Ai+1;i

¡
u(t)

¢
x[i](t);

(22)

and the induction is proved.

Remark III.2. Note that the extended state matrix (14) is
time-varying, due to its dependence on the known input u(t).

Since redundant terms are present in the Kronecker pow-
ers, redundant state components are present in the extended
state vector Xm, so that the extended state space results to
be output-indistinguishable. Such redundancy can be elim-
inated by considering suitably defined reduction matrices.
First of all note that x[i], the i-th Kronecker power of
x 2 IRn, has ni components, but only ¡n+i¡1

i

¢
are distinct

terms (the number of ways to choose i elements from a
set of n, with repetitions allowed). Defining the following
functions of pairs of integers

d(n;m) = n
1¡ nm
1¡ n =

mX
i=1

ni; (23)

c(n;m) =

µ
n+m

m

¶
¡ 1 =

mX
i=1

µ
n+ i¡ 1

i

¶
; (24)

it is easy to see that the vector Xm has d(n;m) compo-
nents, but only c(n;m) are distinct (obviously c(n;m) <
d(n;m)).
A block-diagonal reduction matrix Tn;m 2

IRc(n;m)£d(n;m) can be suitably defined, as described
in detail in [6], for the selection of a nonredundant
subvector Xm 2 IRc(n;m) from Xm 2 IRd(n;m). A
block-diagonal matrix Tn;m 2 IRd(n;m)£c(n;m) allows to
reconstruct the redundant vector Xm from Xm. In formulas

Xm(k) = Tn;mXm; Xm = Tn;mXm(k): (25)

Using Lemma III.1 and the reduction matrices (25),
system (10) can be embedded in the following system of
larger dimension

_X (t) = ¹A(u)¡u(t)¢X (t) + Bu(t)
y(t) = CX (t); (26)

where X (t) 2 IRc(n;m) and
¹A(u) = Tn;mA(u)Tn;m; B = Tn;mB;
C = CTn;m:

(27)

The embedding of the original system (10) into the extended
system (26) should be intended as follows: if the initial state
value of the extended state of (26) is set to

X (0) = Tn;m

0BBB@
x(0)
x[2](0)
...

x[m](0)

1CCCA = Tn;mXm(0); (28)

then the outputs of the two systems is the same for any input,
and the state x(t) of the original system (10) is recovered
by selecting the first n components of the extended state
X (t):

x(t) = §X (t);
where § =

£
In 0n£(n2+¢¢¢nm)

¤
:

(29)
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IV. THE ASYMPTOTIC STATE OBSERVER

In this section an asymptotic observer for nonlinear
systems of the type (10) is presented and a sufficient
condition for the asymtotic convergence to zero of the state
observation error is given. The observer is constructed on
the basis of the extended system (26), that has the simpler
structure of a time-varying linear system.

Theorem IV.1. Consider the system (10) and the extended
system (26). Assume that the pair ( ¹A(u); C) and the input
function u(t) are such that there exist positive scalars
®; ¯; ±, with ® < ¯, such that for all t ¸ 0

®Ic(n;m) ·
Z t+±

t

e
¹AT
u (¿)CTCe ¹Au(¿)d¿ · ¯Ic(n;m); (30)

where ¹Au(t) denotes the matrix ¹A
¡
u(¿)

¢
.

Then, for any bX (0), the system
_bX (t) = ¹Au(t) bX (t) + Bu(t) + P (t)CT ¡y(t)¡ ŷ(t)¢ ;

(31)
_P (t) =

³
¹Au(t)¡ P (t)CTC

´
P (t)

+ P (t)
³
¹Au(t)¡ P (t)CTC

´T
+Q(t); (32)

x̂(t) = § bX (t) (33)

with Q(t) and P (0) symmetric positive definite, Q(t) ¸
qmIc(n;m) for some positive qm, is an asymptotic observer
for the system (10), i.e.

lim
t!1 kx(t)¡ x̂(t)k = 0: (34)

Proof: It is sufficient to show that equations (31)–(33)
are an asymptotic observer for the extended system (26), i.e.

lim
t!1 kX (t)¡ bX (t)k = 0: (35)

First, note that the assumption (30) coincides with the
uniform observability of a linear time-varying system, and
implies that P (t) admits upper and lower bounds (see [1],
[2]), i.e. there exist positive scalars pm and pM such that

pmIc(n;m) · P (t) · pMIc(n;m): (36)

Let "(t) = X (t) ¡ bX (t) be the observation error of the
extended system. Subtracting equation (26) from (31), the
error dynamics is obtained

_"(t) =
¡
¹Au(t)¡K(t)C

¢
"(t); t ¸ 0: (37)

Consider the following function of the observation error

V ("; t) = "TP¡1(t)"; (38)

positive definite for all t ¸ 0 because (36) implies
1

pM
Ic(n;m) · P¡1(t) · 1

pm
Ic(n;m): (39)

Let v(t) = V ("(t); t). The time derivative of v(t) along the
error trajectories is

_v(t) = _"T (t)P¡1(t)"(t) + "T (t) _P¡1(t)"(t)

+ "T (t)P¡1(t) _"(t)

= "T (t)
h¡
¹Au(t)¡ P (t)CTC

¢T
P¡1(t) + _P¡1(t)

+ P¡1(t)
¡
¹Au(t)¡ P (t)CTC

¢i
"(t): (40)

Recalling that _P¡1(t) = ¡P¡1(t) _P (t)P¡1(t), it follows

_v(t) = "T (t)P¡1(t)
h
P (t)

¡
¹Au(t)¡ P (t)CTC

¢T ¡ _P (t)

+
¡
¹Au(t)¡ P (t)CTC

¢
P (t)

i
:P¡1(t)"(t): (41)

From this, recalling (32),

_v(t) = ¡"T (t)P¡1(t)Q(t)P¡1(t)"(t): (42)

Since, by (39), it is

_v(t) · ¡ 1

p2M
qmk"(t)k2; (43)

v(t) ¸ 1

pM
k"(t)k2: (44)

It follows

_v(t) · ¡ qm
pM

v(t); (45)

from which

v(t) · e¡
qm
pM
t
v(0) =

1

pm
e
¡ qm
pM
tk"(0)k2; (46)

and finally

k"(t)k2 · pM

pm
e
¡ qm
pM
tk"(0)k2: (47)

This proves the convergence (34), and therefore (35).

Remark IV.2. Note that it may be difficult to test condition
(30) before the construction of the observer. Moreover, in the
cases in which the input applied to the system is measured,
the condition (30) can only be checked on-line. In practice,
the observer (31)–(33) can be applied without a preliminary
check of the condition (30). A positive definite initial value
of P (t) for t = 0 ensures that for small t the matrix P (t)
remains nonsingular and bounded. However, it is convenient
to monitor the minimum and maximum eigenvalues of P (t)
during its evolution. The divergence of ¸Max

¡
P (t)

¢
or the

approach to zero of ¸min
¡
P (t)

¢
are caused by a loss of

observability of the extended system (26), due to a bad input.
In these cases it may be necessary to reset P (t) to some well
conditioned P0, waiting for the input to become favorable
again.
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Fig. 1. True and estimated state: the first component.

Remark IV.3. Equation (47) provides a suggestion for the
choice of matrix Q(t) in equation (32): a faster convergence
of the observer can be obtained by increasing qm, the lower
bound of Q(t).

V. SIMULATION RESULTS

Simulations results are here reported in order to show
the effectiveness of the proposed observer. Consider the
following linear system with cubic output w.r.t. the state:

_x(t) = Ax(t) +Bu(t); x 2 IR3 (48)

y(t) =
3X
i=1

Cix
[i](t); y 2 IR2: (49)

The values chosen for the simulation are:

A =

24¡1 0 ¡1
0 ¡1 1
¡1 1 ¡2

35 B =

24 1
¡1
2

35
C1 =

·
1 ¡1 2
0 1 ¡1

¸
C2 =

·
1 0 1 2 ¡1 0 1 ¡2 1
0 1 1 3 0 1 4 0 ¡2

¸
C3 = C1 C2:

(50)

The linear approximation of this system around the origin
(the pair (A;C1)) is not observable, not even detectable:
A has an eigenvalue in 0 whose eigenvector u0 lies in the
nullspace of C1:

u0 =

24 1
¡1
¡1

35 : ·
A

C1

¸
u0 = 0 (51)

Fig. 2. True and estimated state: the second component.

Fig. 3. True and estimated state: the third component.

This implies that in this example the drift observability map
©(x), computed as defined in (2), loses rank at the origin,
and therefore the considered system is not drift-observable
in a neighborhood of the origin. Nevertheless, the presence
of an input can allow the state reconstruction.
In the simulations performed the matrix Q(t) and the

initial value for the matrix P (t) in the Riccati equation (32)
have been chosen of the type

P (0) = ®Ic(n;m); Q(t) = ¯Ic(n;m) (52)

(remember that in our example m = n = 3, so that
c(3; 3) = 29)). The numerical simulations have shown that
the convergence speed can be improved by increasing the
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value of the parameter ¯, thus confirming what is claimed
in Remark (IV.3) (note that in our example ¯ = qm).
The simulations reported in this section are performed

with a sinusoidal input

u(t) = sin(
2¼

T
t); T = 20: (53)

Figs. 1-3 show the true and the observed state components.

VI. CONCLUSIONS
The problem of the state observation for the class of

systems with linear input-state dynamics and polynomial
state-output function is investigated in this paper, and an
asymptotic observer is presented. It is shown how the
original system can be embedded into an extended system,
whose state is made of the original state and of some of
its Kronecker powers. Next, an observation algorithm is
presented, whose structure is derived from the extended
system. The observer gain is time varying and is obtained as
the solution of a differential Riccati equation. An interesting
property of the proposed observer is that it can be imple-
mented and works well also in cases in which the system is
not drift-observable nor uniformly-observable, provided that
the input applied to the system is favorable in a sense that
is formalized in theorem IV.1.

The observer behavior has been numerically tested on
some examples and has always given good results. The
simulations here reported refer to a system whose linear
approximation around the origin is not observable, not even
detectable.
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