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and Instytut Fizyki Teoretycznej, Uniwersytet w Białymstoku, ul. Lipowa 41, 15-424 Białystok, Poland
e-mail: maciejun@fuw.edu.pl

and P. M. SANTINI
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Abstract. We present some basic properties of two distinguished discretizations
of elliptic operators: the self-adjoint 5-point and 7-point schemes on a two dimensional
lattice. We first show that they allow us to solve Dirichlet boundary value problems;
then we present their Moutard transformations (distinguished examples of trans-
formation of Darboux type in two dimensions). Finally we construct their Lelieuvre
formulae and we show that, at the level of the normal vector and in full analogy
with their continuous counterparts, the self-adjoint 5-point scheme characterizes a
two dimensional quadrilateral lattice (a lattice whose elementary quadrilaterals are
planar), while the self-adjoint 7-point scheme characterizes a generic 2D lattice.

2000 Mathematics Subject Classification. 35J55.

1. Introduction. In the last two decades of the 19th century and in the beginning
of the 20th century many great mathematicians (Bianchi, Darboux and others)
developed a differential geometry studying transformations of certain geometric
structures and proved theorems of permutability of such transformations, obtaining
in turn nonlinear superposition principles for the nonlinear differential equations
characterizing the above geometries. These results can be viewed as the pre-history [1, 2]
of the modern theory of integrable nonlinear systems, which is based on the existence
of linear differential operators possessing symmetry transformations of Darboux
type (the Darboux Transformations (DTs)) and nonlinear isospectral symmetries (the
integrable nonlinear systems).

After more than one century, in studying discrete integrable systems (which
are, in a sense, richer and more fundamental than their continuous counterparts
and, for these reasons, worth studying), one often makes use of the mutual
interplay between geometry and the theory of integrable systems in the discrete case
too [3].

The main goal of this paper is to present two examples of such an interplay; we
start with the self-adjoint 7-point operator
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134 M. NIESZPORSKI AND P. M. SANTINI

L7 := am,nTm + am−1,nT−1
m + bm,nTn + bm,n−1T−1

n + sm+1,nTmT−1
n

+ sm,n+1T−1
m Tn − fm,n (1)

and with the self-adjoint 5-point operator

L5 := am,nTm + am−1,nT−1
m + bm,nTn + bm,n−1T−1

n − fm,n, (2)

for which the existence of Darboux transformations has been recently established
[4], and we obtain their geometric interpretation through the construction of their
Lelieuvre formulae. It is worth mentioning that, very often, one follows the opposite
direction: a “geometric insight” allows one to construct an integrable system.

In the equations above Tm and Tn are the translation operators with respect to the
discrete variables (m, n) ∈ �2

Tm fm,n = fm+1,n, Tn fm,n = fm,n+1

and fm,n = f (m, n) is a function of (m, n).
The classical Lelieuvre formulae [5]

�R,u = �N,u × �N, �R,v = �N × �N,v (3)

allow one to construct a two-dimensional surface �R(u, v) in E3 from its normal (not
necessarily the unit one) image �N(u, v). The coordinate net (u, v) of the surface obtained
in this way is the asymptotic one and the normal field satisfies the Moutard equation [6]

�N,uv = F(u, v) �N. (4)

The Moutard equation is covariant under the Moutard transformation – the second
transformation of Darboux type appeared in the literature [6] (the first was the trans-
formation of Ribaucour [7]). In the modern theory of integrable systems all these
transformations are indicated generically as transformations of Darboux type, or DTs,
although the famous Darboux transformation for the 1-D Schrodinger equation has
been derived by Darboux as a reduction of Moutard’s result. This is the reason why
we use the terminology “Moutard transformations” (MTs) rather than “Darboux
transformations” from now on. The Moutard transformation gave Guichard [8] the
possibility to describe Weingarten rectilinear congruences in a very elegant way and, in
turn, it allowed Bianchi and other geometers to construct many systems of nonlinear
differential equations which now are called soliton systems.

Another example of a Lelieuvre type formulae was obtained by Bianchi [9, p. 253]:

�R,x = �N,y × �N, �R,y = �N × �N,x . (5)

Now the normal field satisfies the 2D Schrödinger equation

�N,xx + �N,yy = F �N, (6)

which is also covariant under a Moutard transformation, and the coordinate net (x, y)
is, in this case, the isothermally-conjugate one.

An extension of the Lelieuvre formulae to an arbitrary coordinate system (or, better
to say, to a coordinate free language) and to hypersurfaces in the equiaffine space of
arbitrary dimension has been obtained in [10] and [11, p. 57]. Another extension of
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ASSOCIATED DIRICHLET PROBLEMS 135

the Lelieuvre formulae can be found in [12]. A discretization of the Lelieuvre formulae
(3) was first given in the paper [13] and a discretization of the notion of Weingarten
congruences was proposed in [14].

The main result of this paper consists in the construction of the Lelieuvre formulae
for a 2D quadrilateral lattice (a lattice whose elementary quadrilaterals are planar) [15],
[16] and for an essentially arbitrary 2D lattice in eA3 space. This result allows one to
establish that the operators (2) and (1) characterize, at the level of the normal vectors,
respectively, the above 2D lattices.

For our purposes it is not necessary to deal with the Euclidean space, but it is
enough to enrich the affine space with the volume form Vol (by Vol∗ we denote the dual
form of Vol ); i.e., it is enough to deal with the equiaffine space eA3. This enables one to
construct the cross product from an ordered pair of linearly independent vector fields
(say ( �a, �b)); i.e., to construct the element N̂ ∈ T∗eA3 such that 〈N̂ | �a〉 = 0 = 〈N̂ | �b〉 and
〈N̂ | �c〉 = Vol{ �a; �b; �c} for every �c ∈ TeA3.

The second goal of this paper consists of the illustration of some of the basic
criteria for constructing the proper discretizations of partial differential operators.
Again we use, as illustrative examples, the operators (1) and (2).

The paper is organized as follows. In Section 2 we present some of the basic criteria
which we use as a guide for constructing the proper discretizations of partial differential
operators. These criteria are systematically applied, in the remaining sections, to the
illustrative examples given by the operators L5 and L7. In Section 3 we show that the
operators L5 and L7 preserve the elliptic character of their differential counterpart,
being applicable to solve the Dirichlet problem on a 2D lattice. In Section 4 we show
that the operators L5 and L7 possess, like their differential counterparts, MTs. In
Sections 5, 6 and 7 we derive the Lelieuvre formulae for, respectively, the continuous
counterpart of L7, for L7, for the continuous counterpart of L5 and for L5, verifying
that the geometric meaning of the operators L5 and L7 is the proper discretization of
the geometric meaning of their differential counterparts.

We conclude this introductory section with some general remarks on the operators
L5 andL7. The operatorL7 can be interpreted as the most general self-adjoint operator
on the star of a regular triangular lattice [17, 18]; it possesses a class of Laplace
transformations [17, 18] and plays a relevant role in a recently developed discrete
complex function theory [19]. Its natural continuous limit [4]

A∂2
x + B∂2

y + 2S∂x∂y + (A,x +S,y )∂x + (B,y +S,x )∂y − F (7)

is the most general, second order, linear, self-adjoint operator. The operator L5 is
instead the most general self-adjoint operator on the star of a square lattice [4] and its
natural continuous limit is the following self-adjoint elliptic (if AB > 0) operator

A∂2
x + A,x ∂x + B∂2

y + B,y ∂y − F. (8)

It is interesting to remark that the following distinguished gauge equivalent form of
the operator L5 [4]

LSchInt := �m,n

�m+1,n
Tm + �m−1,n

�m,n
T−1

m + �m,n

�m,n+1
Tn + �m,n−1

�m,n
T−1

n − qm,n (9)
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(m–1,n) (m,n) (m+1,n)

(m,n+1)

 (m,n–1)

(m–1,n) (m,n) (m+1,n)

(m,n+1)

 (m,n–1)

(m–1,n+1)

(m+1,n–1)

Figure 1. The 5 - and 7 - point schemes on the square lattice

admits MTs and reduces, in the continuous limit, to the celebrated Schrödinger
operator in the plane

∂2
x + ∂2

y − Q. (10)

Therefore it can be considered as a distinguished integrable discretization of the
Schrödinger operator [4].

2. Basic criteria for discretizing partial differential operators. In order to
construct the proper discretization of a partial differential operator we are guided
by the following criteria.

1. It should possess a large class of (discrete, continuous, isospectral, nonisospec-
tral, . . .) symmetries, (at least) as large as that of its differential counterpart.

2. Its spectral properties should be similar to those of its differential counterpart.
3. The discretization should preserve the hyperbolic or elliptic character of

the partial differential operator; in particular, if the operator is elliptic, the
discretization should be applicable to solve a generic Dirichlet boundary value
problem on a 2D lattice.

4. If the continuous operator is geometrically significant, the discretization should
possess a geometric meaning which generalizes naturally that of the continuous
operator.

In this paper we show that the difference operators (1), (2) are discretizations,
respectively, of the partial differential operators (7), (8) that satisfy the properties 1, 3
and 4. The spectral properties of the self-adjoint 5-point scheme in the case of periodic
and quasi-periodic potentials are discussed in [20].

3. The Dirichlet boundary value problem. As we pointed out in Section 2, a proper
discretization of a second order elliptic operator should be applicable to solve Dirichlet
boundary value problems on a 2D lattice.

Consider, for the sake of concreteness, the following Dirichlet problem on a
bounded domain of �2 for the operator (8):

(A�,x ),x +(B�,y ),y = F�, (x, y) ∈ D ⊂ �2, �(x, y) given on ∂D. (11)

This appears very frequently in applications.
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ASSOCIATED DIRICHLET PROBLEMS 137

(0,0)

Figure 2. A simple Dirichlet problem for the 5-point scheme

It is easy to convince oneself that the 5-point self-adjoint scheme for the operator
L5 (see equation (2))

am,nψm+1,n + am−1,nψm−1,n + bm,nψm,n+1 + bm,n−1ψm,n−1 = fm,nψm,n (12)

which, in the natural continuous limit, reduces to the above equation (11), is perfectly
adequate to solve a generic Dirichlet boundary value problems on a 2D lattice. The
reasoning behind it (wellknown to numerical analysts [21]) is clarified by the illustrative
example of Figure 2.

Suppose we want to solve the Dirichlet problem associated with the 5-point scheme
(12) in the subset of �2 consisting of the white and black points in Figure 2. If the field
ψm.n is given at the boundary points (the white points), the unknown values of ψm.n at
the 4 interior points (the black points) are uniquely constructed solving the following
linear, inhomogeneous, determined system of 4 equations for 4 unknowns:

−f0,0ψ0,0 + a0,0ψ1,0 + b0,0ψ0,1 = −a−1,0ψ−1,0 − b0,−1ψ0,−1,

a0,0ψ0,0 − f1,0ψ1,0 + b1,0ψ1,1 = −a1,0ψ2,0 − b1,−1ψ1,−1,
(13)

b0,0ψ0,0 − f0,0ψ0,1 + a0,1ψ1,1 = −a−1,1ψ−1,1 − b0,1ψ0,2,

b1,0ψ1,0 + a0,1ψ0,1 − f1,1ψ1,1 = −a1,1ψ2,1 − b1,1ψ1,2

obtained by applying 4 times the 5-point scheme (12) with center at the interior points.
The same argument holds for more general subsets of �2; its only possible failure

is associated with the non generic situation in which the relevant matrix determinant
of the system (which depends on the coefficients a, b, f ) is zero.

The definitions of interior and boundary points used in the illustrative example
above are intuitive: the (nearest) neighbourhood of a point (m, n) of the square lattice
consists of the four points (m + 1, n), (m, n + 1), (m − 1, n), (m, n − 1). Given a subset
� of �2, its interior points are the points of � for which all neighbouring points
belong to �; its boundary points ∂� are instead the points of � such that some of the
neighbouring points do not belong to �.

We remark that the 5-point scheme (12) is, among all possible difference equations
adequate to solve Dirichlet problems on 2D lattices, the simplest possible scheme.

Using similar considerations, one can show that the 7-point scheme

am,nψm+1,n + am−1,nψm−1,n + bm,nψm,n+1 + bm,n−1ψm,n−1

+ sm+1,nψm+1,n−1 + sm,n+1ψm−1,n+1 = fm,nψm,n, (14)
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(0,0) (1,0)

(0,1)

Figure 3. A Dirichlet problem for the 7-point scheme on the square lattice

is applicable to solve Dirichlet problems on a 2D lattice. Notice that, on a square
lattice, two white points should be added to the boundary with respect to the 5-point
scheme.

4. Moutard transformations. Non isospectral symmetries of Darboux type for
linear differential operators play an important role in the theory of nonlinear integrable
systems. They allow us, for instance, to construct solutions of these nonlinear systems
from simpler solutions through an iterative procedure. As we mentioned in Section 2,
a good discretization of a partial differential operator should preserve this type of
symmetry.

In this section we present the MTs for the operators L5 and L7. These results are
extracted from [4].

4.1. MTs for L5. Consider the operatorL5 together with the associated difference
equation

am,nψm+1,n + am−1,nψm−1,n + bm,nψm,n+1 + bm,n−1ψm,n−1 = fm,nψm,n, (15)

where am,n, bm,n and fm,n are given functions.
The operator L5 exhibits the following covariance property (gauge invariance):

L5 → L̃5 = gm,nL5gm,n

am,n → ãm,n = am,ngm,ngm+1,n, bm,n → b̃m,n = bm,ngm,ngm,n+1,

fm,n → f̃ m,n = fm,ng2
m,n

(16)

and possesses the following MTs.
Let θ be another solution of (15); i.e.

am,nθm+1,n + am−1,nθm−1,n + bm,nθm,n+1 + bm,n−1θm,n−1 = fm,nθm,n; (17)

then

fm,n = 1
θm,n

(am,nθm+1,n + am−1,nθm−1,n + bm,nθm,n+1 + bm,n−1θm,n−1) . (18)

Eliminating fm,n from (15) and (17) we get

�m(am−1,nψm,nθm−1,n − am−1,nθm,nψm−1,n)

+ �n(bm,n−1ψm,nθm,n−1 − bm,n−1θm,nψm,n−1) = 0, (19)
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ASSOCIATED DIRICHLET PROBLEMS 139

where

�m fm,n := fm+1,n − fm,n, �n fm,n := fm,n+1 − fm,n,

�−m fm,n := fm−1,n − fm,n, �−n fm,n := fm,n−1 − fm,n.

It means that there exists a function α such that

�nα = am−1,nθm,nθm−1,n�−m
ψm,n

θm,n
,

�mα = −bm,n−1θm,nθm,n−1�−n
ψm,n

θm,n
,

(20)

where

�m fm,n = fm+1,n − fm,n, �n fm,n = fm,n+1 − fm,n,

�−m fm,n = fm−1,n − fm,n, �−n fm,n = fm,n−1 − fm,n.

Setting

ψ ′
m,n = αm,n

θm,n
,

we find that ψ ′
m,n satisfies the following equation

a′
m,nψ

′
m+1,n + a′

m−1,nψ
′
m−1,n + b′

m,nψ
′
m,n+1 + b′

m,n−1ψ
′
m,n−1 = f ′

m,nψ
′
m,n, (21)

where

a′
m−1,n = θm,n

bm−1,n−1θm−1,n−1
, b′

m,n−1 = θm,n

am−1,n−1θm−1,n−1
(22)

and

f ′
m,n = θm,n

(
a′

m,n
1

θm+1,n
+ a′

m−1,n
1

θm−1,n
+ b′

m,n
1

θm,n+1
+ b′

m,n−1
1

θm,n−1

)
. (23)

Comparing equations (18) and (23), we also infer that θ ′ = 1/θ is a solution of (21). We
end this subsection remarking that the superposition principle for the above Moutard
transformation for L5 can be found in [22, 20].

4.2. MTs for L7. The construction of MTs presented in the previous sub-section
applies to the self-adjoint 7-point scheme associated with L7:

am,nψm+1,n + am−1,nψm−1,n + bm,nψm,n+1 + bm,n−1ψm,n−1

+ sm+1,nψm+1,n−1 + sm,n+1ψm−1,n+1 = fm,nψm,n, (24)

which is a discretization of the most general second order, self-adjoint, linear,
differential equation in two independent variables.

Let θm,n be another solution of equation (24):

am,nθm+1,n + am−1,nθm−1,n + bm,nθm,n+1 + bm,n−1θm,n−1

+ sm+1,nθm+1,n−1 + sm,n+1θm−1,n+1 = fm,nθm,n. (25)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089505002351
Downloaded from https://www.cambridge.org/core. IP address: 207.241.231.82, on 24 Jul 2018 at 19:29:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0017089505002351
https://www.cambridge.org/core


140 M. NIESZPORSKI AND P. M. SANTINI

Eliminating fm,n from (24) and (25) we get

�m

[
am−1,nθm,nθm−1,n

(
ψm,n

θm,n
− ψm−1,n

θm−1,n

)
+ sm,nθm−1,nθm,n−1

(
ψm,n−1

θm,n−1
− ψm−1,n

θm−1,n

)]

+ �n

[
bm,n−1θm,nθm,n−1

(
ψm,n

θm,n
− ψm,n−1

θm,n−1

)

+ sm,nθm−1,nθm,n−1

(
ψm−1,n

θm−1,n
− ψm,n−1

θm,n−1

)]
= 0. (26)

It means that there exists a function ψ ′ such that

�n(ψ ′
m,nθm,n) = (am−1,nθm,nθm−1,n + sm,nθm−1,nθm,n−1) �−m

ψm,n

θm,n

− sm,nθm−1,nθm,n−1�−n
ψm,n

θm,n
,

(27)
�m(ψ ′

m,nθm,n) = −(bm,n−1θm,nθm,n−1 + sm,nθm−1,nθm,n−1)�−n
ψm,n

θm,n

+ sm,nθm−1,nθm,n−1�−m
ψm,n

θm,n
.

The function ψ ′
m,n satisfies the following equation

a′
m,nψ

′
m+1,n + a′

m−1,nψ
′
m−1,n + b′

m,nψ
′
m,n+1 + b′

m,n−1ψ
′
m,n−1

+ s′
m+1,nψ

′
m+1,n−1 + s′

m,n+1ψ
′
m−1,n+1 = f ′

m,n ψ ′
m,n, (28)

where the new fields are given by

a′
m,n = θm,nθm+1,nam−1,n

θm,n−1pm,n
, b′

m,n = θm,nθm,n+1bm,n−1

θm−1,npm,n
, s′

m,n = sm−1,n−1θm−1,nθm,n−1

θm−1,n−1pm−1,n−1
,

f ′
m,n = θm,n

(
a′

m,n
1

θm+1,n
+ a′

m−1,n
1

θm−1,n
+ b′

m,n
1

θm,n+1
+ b′

m,n−1
1

θm,n−1
(29)

+ s′
m+1,n

1
θm+1,n−1

+ s′
m,n+1

1
θm−1,n+1

)

and where pm,n = θm,nam−1,nbm,n−1 + θm−1,nsm,nam−1,n + sm,nθm,n−1bm,n−1. Again θ ′
m,n =

1/θm,n is a solution of (28).

5. Lelieuvre formulae. Lelieuvre’s idea of describing the surface parametrized
with asymptotic coordinates via its co-normal image [5, 23] plays an important role
in the theory of surfaces in equiaffine spaces. Due to the generalizations of Lelieuvre
formulae to a coordinate free language [10, 11], one can describe the hyper-surface via
its co-normal image in an arbitrary coordinate system.

In this section we show that the co-normal image of a general 2D surface in eA3 is
a vector solution of the partial differential equation

(A�,x )x + (S�,y ),x +(B�,y ),y +(S�,x ),y = F� (30)

associated with the operator (7).
We recall some basic facts. We denote by �R the position vector �R : �2 → eA3 of a

parametrized surface in eA3 and we assume that the surface
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(i) is regular, i.e.

N̂ ∝ �R,x × �R,y �= 0; (31)

(ii) is twice differentiable; i.e., in particular

�R,xy = �R,yx; (32)

(iii) is locally strongly convex, so that

Vol∗(N̂;N̂,x ; N̂,y ) �= 0. (33)

Then, from (33), we infer that the vector fields N̂ × N̂,x and N̂ × N̂,y are linearly
independent and are tangent fields to the surface. Therefore one can decompose the
fields �R,x and �R,y as follows:

�R,y = AN̂ × N̂,x +PN̂ × N̂,y ,

�R,x = −QN̂ × N̂,x −BN̂ × N̂,y ,
(34)

where, since �R,x × �R,y = (AB − PQ)Vol∗(N̂;N̂,x ; N̂,y )N̂, due to assumption
(31), we have AB − PQ �= 0. The equality 〈N̂ | �R,xy − �R,yx 〉 = 0 gives
(P − Q)Vol∗(N̂; N̂,x ; N̂,y ) = 0, so that we have P = Q =: S and, finally,

�R,y = AN̂ × N̂,x +SN̂ × N̂,y ,

�R,x = −SN̂ × N̂,x −BN̂ × N̂,y ,
(35)

AB − S2 �= 0. (36)

The compatibility condition �R,xy = �R,yx of equations (35) leads to the partial
differential equation

(AN̂,x )x + (SN̂,y ),x +(BN̂,y ),y +(SN̂,x ),y = FN̂ (37)

associated with the operator (7), which is nothing but the most general self-adjoint
equation of second order in two independent variables.

Conversely, let N1, N2 and N3 be three linearly independent solutions of the self-
adjoint equation (30), which we assume to be non parabolic; i.e.

AB − S2 �= 0. (38)

Select any frame in eA3 and the vector field N̂ = [N1, N2, N3] with respect to the co-
frame. Since N1, N2 and N3 are linearly independent, we have that Vol∗(N̂;N̂,x ;N̂,y ) �=
0. In addition N̂ satisfies equation (37); the vector multiplication of both sides of this
equation for N̂ by N̂ itself yields, after manipulation, the equation

(AN̂ × N̂,x +SN̂ × N̂,y ),x +(SN̂ × N̂,x +BN̂ × N̂,y ),y = 0,

from which we infer that there exists a vector field �R such that equations (35) hold.
Interpreting �R as the position vector of a surface, we infer that N̂ is a co-normal field
to this surface and that this surface is regular, since

�R,x × �R,y = (AB − S2)Vol∗(N̂;N̂,x ; N̂,y )N̂.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089505002351
Downloaded from https://www.cambridge.org/core. IP address: 207.241.231.82, on 24 Jul 2018 at 19:29:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0017089505002351
https://www.cambridge.org/core


142 M. NIESZPORSKI AND P. M. SANTINI

rm+1,n

rm+1,n+1

rm,n+1

n m,n
nm,n

rm,n

^ ^
L

U

Figure 4. Upper and lower triangles of the 2D lattice

6. Lelieuvre formulae associated with the 7-point scheme. In the previous section
we have shown that the operator (7) characterizes the co-normal image of a generic
surface in eA3. According to the last criterion of Section 2, a good discretization of (7)
should possess an analogous geometric meaning. Indeed in this section we shall show
that the difference operator L7 describes the co-normal image of a generic 2D lattice
in eA3.

Consider a lattice �2 ⊃ � ∪ ∂� → eA3 and denote by �rm,n the position vector
with respect to a frame. By “lower” triangles we mean the triangles with vertices
(�rm,n, �rm+1,n, �rm,n+1) and by “upper” triangles we mean the triangles with vertices
(�rm+1,n+1, �rm+1,n, �rm,n+1).

We make the following assumptions.
(A) The upper and lower triangles are not degenerate; i.e., the three points of each

triangle are not collinear. For the lower triangles of the 2D lattice this condition means
that

�m �rm,n × �n �rm,n �= 0. (39)

Then we denote by n̂L
m,n any co-normal non-vanishing field to the lower triangles:

n̂L
m,n := λL

m,n�m �rm,n × �n �rm,n,

where λL
m,n is a non-vanishing scalar field. Analogously, the non degeneracy condition

�m �rm,n+1 × �n �rm+1,n �= 0 (40)

for the upper triangles of the 2D lattice allows one to define any co-normal non-
vanishing field n̂U

m,n to the upper triangles by

n̂U
m,n := λU

m,n�m �rm,n+1 × �n �rm+1,n,

where λU
m,n is a non-vanishing scalar field.

(B) The fields n̂L
m,n and n̂U

m,n satisfy the following conditions:

VL
m,n := Vol∗

(
n̂L

m,n, n̂L
m+1,n, n̂L

m,n+1

) �= 0, (41)

VU
m,n := Vol∗

(
n̂U

m,n, n̂U
m−1,n, n̂U

m,n−1

) �= 0. (42)
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From assumption (41) it follows that the discrete vector fields n̂L
m,n × n̂L

m−1,n and
n̂L

m,n × n̂L
m−1,n+1 are linearly independent and therefore they span the tangent space to

the lower triangle (the same is true for fields n̂L
m,n × n̂L

m,n−1 and n̂L
m,n × n̂L

m+1,n−1). Thus
we can write

�n �rm,n = n̂L
m,n × (

am−1,nn̂L
m−1,n + pm−1,nn̂L

m−1,n+1

)
,

�m �rm,n = −n̂L
m,n × (

bm,n−1n̂L
m,n−1 + qm,n−1n̂L

m+1,n−1

)
.

(43)

The equality 〈n̂L
m,n | �m�n �rm,n〉 = 〈n̂L

m,n | �n�m �rm,n〉 is equivalent to (p − q)VL
m,n = 0 and

so we have (taking into account (41)) p = q =: s and, as a result of this,

�n �rm,n = n̂L
m,n × (

am−1,nn̂L
m−1,n + sm−1,nn̂L

m−1,n+1

)
,

�m �rm,n = −n̂L
m,n × (

bm,n−1n̂L
m,n−1 + sm,n−1n̂L

m+1,n−1

)
,

(44)

where the coefficients a, b, s are defined by:

am,n = −
〈
n̂L

m,n+1

∣∣�n �rm+1,n
〉

VL
m,n

, bm,n = −
〈
n̂L

m+1,n

∣∣ �n �rm,n+1
〉

VL
m,n

,

sm,n =
〈
n̂L

m,n

∣∣�n �rm+1,n
〉

VL
m,n

=
〈
n̂L

m,n

∣∣�m �rm,n+1
〉

VL
m,n

.

(45)

From �m�n �rm,n = �n�m �rm,n we finally get that the lower co-normal vector satisfies
the self-adjoint 7-point scheme

am,nn̂L
m+1,n + am−1,nn̂L

m−1,n + bm,nn̂L
m,n+1 + bm,n−1n̂L

m,n−1

+ sm−1,nn̂L
m−1,n+1 + sm,n−1n̂L

m+1,n−1 = fm,nn̂L
m,n. (46)

Consider now the co-vector fields:

Xm,n := am,nn̂L
m+1,n + bm,nn̂L

m,n+1,

Ym,n := am−1,nn̂L
m−1,n + sm−1,nn̂L

m−1,n+1,

Zm,n := bm,n−1n̂L
m,n−1 + sm,n−1n̂L

m+1,n−1.

Then equation (46) can be re-written in these terms:

Xm,n + Ym,n + Zm,n = fm,nn̂L
m,n. (47)

A direct calculation shows that

�m �rm,n × �n �rm,n = −VL
m,nVol∗

(
n̂L

m,n; Ym,n; Zm,n
)
n̂L

m,n, (48)

from which we infer that

Vol∗
(
n̂L

m,n; Ym,n; Zm,n
) �= 0. (49)

For the normal to the upper triangle, we have

n̂U
m,n = λU

m,n�n �rm+1,n × �m �rm,n+1

= λU
m,nVL

m,n

(
am,nbm,nn̂L

m,n + am,nsm,nn̂L
m+1,n + bm,nsm,nn̂L

m,n+1

)
, (50)
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so that

am,nbm,n �= 0 or am,nsm,n �= 0 or bm,nsm,n �= 0, (51)

VU
m,n = λU

m,nVL
m,nλ

U
m−1,nVL

m−1,nλ
U
m,n−1VL

m,n−1Vol∗
(
n̂L

m,n; Ym,n; Zm,n
)

∗ (am,nam−1,nbm,nbm,n−1 + am,n−1am−1,nsm,nbm−1,n + bm,n−1bm−1,nsm,nsm,n−1).

(52)

Therefore

am,nam−1,nbm,nbm,n−1 + am,n−1am−1,nsm,nsm−1,n + bm,n−1bm−1,nsm,nsm,n−1 �= 0. (53)

Summarizing, we have the following result.

THEOREM 1. Consider a two-dimensional lattice � � � → eA3 such that its position
vector �rm,n and its lower n̂L

m,n and upper n̂U
m,n co-normals obey the conditions (39), (40), (41)

and (42). Then there exist functions am,n, bm,n and sm,n obeying conditions (51), and (53)
such that the following Lelieuvre type relations hold

�n �rm,n = n̂L
m,n × (

am−1,nn̂L
m−1,n + sm−1,nn̂L

m−1,n+1

)
,

�m �rm,n = −n̂L
m,n × (

bm,n−1n̂L
m,n−1 + sm,n−1n̂L

m+1,n−1

)
,

(54)

and such that the lower co-normal field satisfies the 7-point self-adjoint scheme

am,nn̂L
m+1,n + am−1,nn̂L

m−1,n + bm,nn̂L
m,n+1 + bm,n−1n̂L

m,n−1

+ sm−1,nn̂L
m−1,n+1 + sm,n−1n̂L

m+1,n−1 = fm,nn̂L
m,n. (55)

Conversely, consider the field n̂L
m,n satisfying: (i) equation (55) with the coefficients

obeying conditions (51) and (53); (ii) the conditions (41) and (49). Then the Lelieuvre
type formulae (54) define the position vector �rm,n of a 2D lattice in eA3, having n̂L

m,n as a
lower co-normal. The position vector, the lower co-normal and the upper co-normal n̂U

m,n
given by n̂U

m,n := λU
m,n�m �rm,n+1 × �n �rm+1,n satisfy the conditions (39), (40) and (42).

7. Lelieuvre formulae associated with the self-adjoint 5-point scheme. In the
previous two sections we have shown that, on the level of the Lelieuvre type
description, the operator (7) and its discretizationL7 characterize respectively a generic
2D coordinate net and a generic 2D lattice in eA3. In this section we introduce
distinguished reductions on the above generic nets (lattices), showing that (i) the
reduction from a generic net to a conjugate net (a surface parametrized by conju-
gate coordinates) is characterized, on the level of the Lelieuvre type description, by
the reduction from the general self-adjoint partial differential operator (7) to the self-
adjoint operator (8); (ii) the reduction from a generic 2D lattice to a 2D quadrilateral
lattice (a lattice whose elementary quadrilaterals are planar) is characterized, on the
level of the Lelieuvre type description, by the reduction from the 7-point scheme (14)
to the 5-point scheme (12).

Let �R(x, y) be the position vector of a conjugate net and let N̂(x, y) be any co-
normal vector field; then we have

〈N̂ | �Rx〉 = 0 = 〈N̂ | �Ry〉 (by definition of N̂),

〈N̂ | �Rxy〉 = 0 (by conjugacy).
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Therefore, assuming that the surface is locally strongly convex (condition (33)), one
infers that the following Lelieuvre type formulae hold:

�Rx = BN̂y × N̂, �Ry = AN̂ × N̂x, (56)

where

B(x, y) = 〈N̂x | �Rx〉
Vol∗(N̂, N̂x, N̂y)

, A(x, y) = 〈N̂y | �Ry〉
Vol∗(N̂, N̂x, N̂y)

. (57)

The integrability condition �Rxy = �Ryx implies the equation

(AN̂xx + AxN̂x + BN̂yy + ByN̂y) × N̂ = 0, (58)

which is equivalent to the desired self-adjoint equation

(AN̂x)x + (BN̂y)y = FN̂, F = F(x, y). (59)

Conversely, it is straightforward to prove that, if N̂ satisfies equation (59) for some
coefficients A, B, F , then the vector �R, defined by (56), is the position vector of a
conjugate net having N̂ as normal vector.

For the discrete case we follow the same reasoning. Any co-normal vector field of
a quadrilateral lattice satisfies the equations

〈N̂m,n | �m �rm,n〉 = 0 = 〈N̂m,n | �n �rm,n〉 (by definition of N̂),

〈N̂m,n | �m�n �rm,n〉 = 0 (by quadrilaterality).

Therefore, assuming that

Vol∗(N̂m,n, N̂m+1,n, N̂m,n+1) �= 0, (60)

the following Lelieuvre type relations exist between the tangent vectors and the co-
normal to the lattice

�m �rm,n = −bm,n−1N̂m,n × N̂m,n−1, �n �rm,n = am−1,nN̂m,n × N̂m−1,n, (61)

where the scalar fields am,n and bm,n are defined by:

am,n = − 〈N̂m,n+1 | �n �rm+1,n〉
Vol∗(N̂m,n, N̂m+1,n, N̂m,n+1)

, bm,n = 〈N̂m+1,n | �m �rm,n+1〉
Vol∗(N̂m,n, N̂m+1,n, N̂m,n+1)

. (62)

The integrability condition for equations (61) implies the equation

(am,nN̂m+1,n + am−1,nN̂m−1,n + bm,nN̂m,n+1 + bm,n−1N̂m,n−1) × N̂m,n = 0, (63)

which is equivalent to equation L5N̂ = 0.
Conversely, it is also easy to show that, if N̂m,n satisfies equation (63), then the

Lelieuvre formulae (61) define a proper embedding of a 2D quadrilateral lattice having
N̂m,n as co-normal.

We remark that this result could have been deduced in a faster way; i.e. from (45c),
observing that the reduction from L7 to L5, expressed by the equation sm,n = 0, is
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Figure 5. The 5-point scheme for the normal vector

equivalent to the condition that the tangent vectors of the upper triangles of the 2D
lattice are perpendicular to n̂L

m,n; i.e., it is equivalent to the condition that the 2D lattice
is quadrilateral.

We conclude this section by remarking that, due to the gauge covariance properties
of the operators (8) and L5 (see (16) and its continuous limit), the normal vectors
appearing in the characterizing equations (59) and L5N̂ = 0 have an arbitrary
normalization. The characterizations (see, e.g., [24])

N̂xy + αN̂x + βN̂y = 0,

�m�nN̂m,n + α�mN̂m,n + β�nN̂m,n = 0

of respectively a 2D conjugate net and of a 2D quadrilateral lattice in terms of their
co-normal vectors are instead gauge dependent.
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