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Abstract

In this paper we present an analysis of the response of the vortices in YBa2Cu3O7�d to different configurations of

applied driving forces. The use of inhomogeneous current allows us to induce vortex cutting. We determine the

maximum current injected in different electrical contact distributions which preserves vortex integrity, and we show that

vortex cutting cannot be explained by a single vortex picture. � 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

The mixed state of high temperature supercon-
ductors has been a subject of extensive theoretical
and experimental studies [1]. It was early recog-
nized, both theoretically [2] and experimentally [3]
that thermal fluctuations melted the vortex lattice
into a liquid, characterized by linear resistivity
in the ab plane, that is, the vanishing of the criti-
cal current. Thermal fluctuations can also in-
duce vortex cutting and reconnection in the liquid
phase. The problem of longitudinal vortex veloc-
ity coherence in the liquid was addressed by sev-
eral works using the dc-transformer configuration
[4]. Using this technique it was shown that in
YBa2Cu3O7�d samples with twin boundaries there

is a well defined temperature TthðdÞ above the
melting temperature, where the correlation across
a sample of thickness d is lost. Among the conse-
quences of this finite correlation length is the non-
local character of the resistivity tensor measured in
this type of samples [5,6].
At temperatures below Tth, the injection of in-

homogeneous currents is a controlled way of in-
ducing cutting strains to probe vortex longitudinal
coherence. In Ref. [7], the current induced vortex
loss of correlation was studied experimentally, and
a phenomenological model for vortex cutting was
used to explain the results. They used a modified
version of Giaver’s flux transformer geometry
[4], in which the intrinsic anisotropy of the high
Tc superconductors is used to achieve an inho-
mogeneous distribution of the current in the di-
rection perpendicular to the magnetic field. The
result is that a single vortex experiences Lorentz
forces which are different in different regions of
the sample. In this way a shear strain proportional
to the current shear stress is exerted upon the
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vortices. When the current is raised above some
threshold current, Icut, the strain induced upon the
vortices is such that the vortices cut. They subse-
quently studied the temperature and field depen-
dence of this cutting current Icut.
In this paper we revisit the problem of current-

induced vortex cutting. We first consider a trivial
extension of the phenomenological model used
in Ref. [7] to take into account different current
configurations. Next we consider the experimental
results obtained in this configurations and show
the inadequacy of this model to explain our re-
sults. Finally we propose a different criteria for
vortex cutting which proves to be more successful.

2. Theory

Flux cut experiments have been explained in
terms of a model introduced by Ekin and Clem [9]
and generalized in Ref. [7], which we (trivially)
extend to the case of different top and bottom
currents. The material is modeled as an array of
N superconducting layers, each one containing a
number of vortex segments. Each segment in a
layer is subject to forces due to interaction with its
nearest neighbours, pinning, and an external force
which can be different in each layer. In this situa-
tion, the equation of motion for the vortex i in the
layer m is given by the array

gvi;1 ¼ f ð1Þ þ f 1i;1 þ f 2i;1 � f Pi;1

..

.

gvi;m ¼ f ðmÞ þ f m
i;m þ f m�1

i;m þ f mþ1
i;m � f Pi;m ð1Þ

..

.

gvi;N ¼ f ðNÞ þ f N
i;N þ f N�1

i;N � f Pi;N ;

where g is the friction coefficient (which will be
taken unity for simplicity) and all forces are as-
sumed parallel to the layer. The (arbitrary) func-
tion f ðmÞ is the external force applied to the
vortices in layer m, f Pi;m is the pinning force acting
upon vortex i in layer m, f m

i;m is the force exerted
upon ði; mÞ by neighbouring vortices in the same
layer, and f m�1

i;m denotes the force between the
vortex i in layer m and the same vortex in layers

immediately above and below. The relation f mþ1
i;m ¼

�f m
i;mþ1 must hold.
These equations can be easily solved in the case

when vortices maintain integrity (vi;m ¼ v) and the
pinning force is homogeneous (f Pi;m ¼ f P). Then the
force between layers is

f mþ1
m ¼ m

N

XN
i¼1

f ðiÞ �
Xm

i¼1
f ðiÞ; ð2Þ

independent of f P. It is assumed that a vortex will
cut when the force between two elements reaches
some threshold fmax.
To apply this model to the flux transformer,

we recall that it has been shown [7] that in this
configuration, the applied currents are confined
to a surface layer much thinner than the sample
thickness. Thus we can set all external forces to 0
except in the top and bottom layers, and consider
N ! 1. This defines the effective thickness of each
layer. As discussed below, the vortex cut cur-
rent cannot be directly determined experimentally
when the top and bottom currents are equal. In-
stead, several measurements are done with a dif-
ference Df between currents, and the result is
extrapolated to Df ! 0. So we are interested in the
case when the external forces are

f ðmÞ ¼
f t if m ¼ 1
f b if m ¼ N
0 all other layers

8<
: ð3Þ

The interlayer force is

f mþ1
m ¼ f b

2m � N
N

� �
þ Df

m
N

�
� 1

�
; ð4Þ

whereDf ¼ f t � f b. This has amaximum for m ¼ 1,

f 21 ¼ f b
2� N
N

� �
þ Df

1� N
N

� �
: ð5Þ

The cut is assumed to happen when f 21 reaches
the threshold current.
With no bottom current (f b ¼ 0), we obtain for

the cutting current

fcut ¼
N

N � 1
fmax: ð6Þ

In the case when f t ¼ f b, the cutting force
(which we call f b¼tcut in this case) is
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f b¼tcut ¼ N
N � 2

fmax; ð7Þ

which in the limit N ! 1 is identical to the fb ¼ 0
case. Finally, using Eqs. (5)–(7) we can write for
the general case

Dfcutðf bÞ ¼ fcut � f b
fcut
f b¼tcut

; ð8Þ

where Dfcut is the current difference between top
and bottom layers needed to cut a vortex at fixed
f b.

3. Experimental

Several YBa2Cu3O7�d crystals were picked with
a high density of singly oriented twin boundaries,
as revealed by polarised light microscopy. They
were prepared as indicated in Ref. [4]. In a first
stage electrical contacts were put in the configu-
ration of Giaver’s flux transformer [4] (see Fig. 1).
In some crystals the wiring was later modified, as
described below, in order to allow for an homo-
geneous current to be injected in addition to the
flux transformer driving current.
Fig. 2 shows a typical I–V characteristic of

the flux transformer current configuration (see
Fig. 1(a)) at a fixed temperature T < Tth. Tth is
the temperature at which the velocity correlation
length becomes of the order of the sample width.
For small currents the top and bottom voltages are
equal, indicating that the vortices move correlated
across the sample. For higher currents, the volt-

ages start to differ as the inhomogeneous current
induces vortex cuttings and re-connections. This
is better seen through the difference, DV ¼ Vtop�
Vbot, plotted semi-logarithmically in the inset. The
current at which DV vanishes below our experi-
mental resolution is what we define as Icut. Fig. 3
shows a comparison between the I–V curve cor-
responding to the flux transformer configuration
(Ib ¼ 0) and the one corresponding to a configu-
ration in which an additional constant current of
Ib ¼ 5 mA is injected through the bottom surface.
The applied external field is 1 T and the temper-
ature is 88.38 K. The current DI is defined as the
difference between that injected in the top and

Fig. 1. Schematic drawing of the contact configuration and current distributions used in the experiments: (a) usual flux transformer

configuration, used to determine the cutting current Icut and (b) configuration used to determine Ib¼tcut .

Fig. 2. Top Vtop and bottom Vbot voltages as a function of the
current at a fixed temperature of 0:99Tth and at an applied

external magnetic field of 1 T. In the inset the top voltage and

the difference DV ¼ Vtop � Vbot on a semi-logarithmic scale.
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bottom surfaces; DI ¼ 0 in this case corresponds
to the situation in which a current of 5 mA is being
injected through both surfaces. It can be seen that
the differential cutting current DIcutð5Þ is smaller
than DIcutð0Þ, as expected from Eq. (8).
Figs. 4 and 5 show the dependence of the dif-

ferential cutting current as a function of the base
current. It can be seen that the results follow a
linear dependence in Ib to a good extent, as pre-

dicted by Eq. (8). Extrapolation to DIcut ¼ 0 gives
an experimental way of determining Ib¼tcut , that
is, the cutting current when the applied top and
bottom currents are equal. However, contrary to
the model’s prediction, see Eqs. (6) and (7), Ib¼tcut

is found to be larger than Icut. This difference
increases with increasing field.
Fig. 6 condenses the results obtained so far; the

different characteristic currents are shown as a
function of the normalised temperature T=Tth. The
data for external field of 1 and 4 T are qualitative
the same. Experiments at intermediate values of

Fig. 3. Top Vtop and bottom Vbot voltages against the current
difference between top and bottom faces. The temperature is

88.38 K and the external magnetic field is 1 T. The measure-

ment was done using configuration (b). In the lower curve, the

applied current on the bottom face of the crystal is Ib ¼ 0 mA;

while in the upper curve Ib ¼ 5 mA.

Fig. 4. Differential cutting current DIcut as a function of Ib for
three different temperatures at H ¼ 1 T. The linear extrapola-

tion determines Ib¼tcut ðH ; T Þ.

Fig. 5. Same as in Fig. 4 for external field H ¼ 4 T.

Fig. 6. Critical current (circles), cutting currents Icut (squares)
and Ib¼tcut (triangles) as a function of the normalized temperature

T=Tth for applied magnetic fields of 1 T (open symbols) and 4 T
(full symbols).
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the field yielded similar results, which are not
shown. It can be seen that Icut is a decreasing
function of the temperature, and vanishes at Tth,
where thermal fluctuations are big enough to in-
duce vortex cutting in the absence of any injected
current. It is also seen that the difference between
Icut and Ib¼tcut has a weak temperature dependence,
except close to Tth, and therefore cannot be simply
attributed to thermal fluctuations, which were not
considered in the model. The field dependence of
this difference, on the other hand, is seen to be
significative.
In the case when the top and bottom currents

are equal, vortex begin to cut at a higher total
current density. It might be thought, consequently,
that neglected effects such as the washing out of
point-like disorder could account for the differ-
ence. To check the correctness of this line of rea-
soning, we performed the following experiment.
We took some of the samples for which Icut and
Ib¼tcut had been measured, and added two current
contacts at the sides, in order to be able to inject
an homogeneous current (see Fig. 7). We repeated
the previous experiments with an extra homo-
geneous current between 0 and 20 mA (our ex-
perimentally available range). We observed no
changes in either Icut or Icutb¼t.
The weakest point in the phenomenological

model we revised and extended above is the con-
dition for vortex cutting: it is a simple maximum
stress criterion, as would hold in a solid. Vortices,
however, are different in that a vortex line cannot

terminate at a point because it is a line of magnetic
field. The consequence is that vortex-cutting can-
not happen without a subsequent reconnection.
The fracture condition, then, should be formulated
taking into account the geometry of the vortex and
its neighbours. A good approximation is to con-
sider that cut and reconnection occurs when the
maximum displacement from the equilibrium po-
sition equals a fraction of the lattice parameter.
In Appendix A we discuss a model in which vor-
tices are considered as continuous elastic rods,
from which we can obtain the profile of vortices
for the two different current configurations. Fig. 8
shows the profile cðxÞ of a vortex and its nearest
neighbour with current flowing in the top surface
only (F0 6¼ 0, FL ¼ 0), and with current flowing in
both surfaces (F0 ¼ FL 6¼ 0). In both cases ~FF ¼ 0:2.
It is clearly seen how the condition for cut and
reconnection would be satisfied first by the vortices
being driven only by a force exerted on the top (the
situation from where we derive Icut). On the other
hand, the successful predictions of the previous
model, like the linear dependence of DIcut with the
base current, are also obtained using this model.

4. Conclusions

In this paper we have analyzed the flux cutting
induced by inhomogeneous currents in YBa2-
Cu3O7�d. By using different current configurations
we have been able to show the inadequacy of the

Fig. 7. Schematic drawing of the contact configuration used for

applying an homogeneous current simultaneous to the flux

transformer measurement of Icut.

Fig. 8. Plot of the vortex profile as obtained from the contin-

uous model for an applied force of 0.2 at the top surface only

(thin lines) and at the top and bottom surfaces (thick line). A

second vortex is plotted to allow a comparison of the minimum

distance between neighbouring vortices in the two current

configurations. The gray region is that where the top current is

flowing.
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vortex cutting criterion commonly used in the lit-
erature, i.e., maximum local stress. We propose a
different criterion, maximum distortion of a vortex
equals a fraction of the lattice parameter, which
explains our experimental results.

Appendix A. Continuum model

To consider the geometrical properties of a
vortex under stress, we model it as an elastic,
massless rod subject to a friction force. Let G note
the rods elastic coefficient, A its cross-section and
L its length. We take its main axis along the x-axis
(see Fig. 9) and call cðxÞ the displacement of the
rod from its equilibrium position at x. If we con-
sider an effective viscosity g of the superconductor,
the equation for cðxÞ can be written

AG
o2c
ox2

¼ g
oc
ot

: ðA:1Þ

Here we have neglected the pinning force, inclu-
sion of which would only shift the velocity a
constant amount. To solve this equation in the
case of vortex integrity we try the ansatz cðx; tÞ ¼
cðxÞ þ cðtÞ, because the velocity must not depend
on x in this case. We straightforwardly get

oc
ot

¼ v; ðA:2Þ

AG
o2c
ox2

¼ gv ðA:3Þ

and then for cðxÞ

cðxÞ ¼ 1
2
ax2 þ bxþ c; ðA:4Þ

with a ¼ gv=AG. We consider the boundary con-
ditions given by a force F0 at 0 and FL at L. Since
the stress is given by S ¼ F =A ¼ Goc=ox, the con-
ditions are

c0ð0Þ ¼ �F0=AG
c0ðLÞ ¼ �FL=AG

	
ðA:5Þ

and then

cðx; tÞ ¼ ðF0 þ FLÞ
2AGL

x2 � F0
AG

xþ ðF0 þ FLÞ
Lg

t; ðA:6Þ

which using the dimensionless variables ~cc ¼ c=L,
~FFX ¼ FX=AG, ~xx ¼ x=L can be written as

~ccð~xx; tÞ ¼ 1
2
ð ~FF0 þ ~FFLÞ~xx2 � ~FF0~xxþ ~vvt: ðA:7Þ
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