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Abstract—Classification techniques applied to hyperspectral im-
ages are very useful for lithologic discrimination and geologi-
cal mapping. Classifiers are often applied either to all spectral
channels or only to absorption spectral channels. However, it is
difficult to obtain different lithology information using specific
absorption regions from the narrow bandwidth and contiguous
spectral channels due to spectral variability among rocks. In this
article, we propose a band selection (BS) method for hyperspectral
lithologic discrimination, in which the lithological superpixels are
first gathered. A spectral bands selection criterion is learned by
measuring the homogeneity and the variation of the lithological
superpixels, and lithologic discriminating bands are identified by
an efficient clustering algorithm based on affinity propagation. In
this article, two geologic test sites, i.e., the Airborne Visible/Infrared
Imaging Spectrometer data of the Cuprite, Nevada, USA, including
11 lithologic units (9 types of rocks) and the Hyperion data of
Junggar, China, with 5 lithologic units, are chosen for validation.
The performance of the proposed BS method is compared with
those of using all the bands, specific absorption spectral channels,
and two literature BS techniques. Experimental results show that
the proposed method improves mapping accuracy by selecting
fewer bands with higher lithologic discrimination capability than
the other considered methods.
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I. INTRODUCTION

HYPERSPECTRAL images (HSIs) can acquire hundreds
of narrow and adjacent spectral bands with a high spectral

resolution from visible to infrared region of the electromagnetic
spectrum [1], [2]. Hyperspectral scanners usually measure ra-
diance in the visible and near-infrared (VNIR, 400–1000 nm),
as well as in short-wavelength infrared (SWIR, 1000-2500 nm)
with a spectral bandwidth generally smaller than 25 nm. The
huge information contained in HSIs results in a great potential
for identifying and mapping rocks and minerals distribution,
as demonstrated since the first acquisitions by Airborne Vis-
ible/Infrared Imaging Spectrometer (AVIRIS) [3]. HSIs in the
VNIR and SWIR channels have been widely used for geological
mapping due to the spectral absorption properties of rocks and
minerals [4]–[7].

For identifying specific types of rocks and minerals, usually
spectral absorption bands are considered [8]–[10]. For example,
carbonated rocks and hydroxyl-bearing minerals can be easily
identified and discriminated with spectral features in the VNIR
and SWIR regions [4], [11]. Kruse et al. [12]–[15] made a
series of studies on the spectral absorption features of rocks and
minerals, proving that different rocks and minerals present spec-
tral differences in HSIs. Therefore, researchers usually expect
the VNIR [16], [17] and partially the SWIR (2000–2500 nm)
spectral regions [18]. Although spectral absorption features are
very informative, their use can be problematic for rocks having
spectra characterized by a continuum shape and/or very broad
absorption. Thus, it is difficult to satisfy requirements for the
discrimination of different types of rocks just looking at specific
absorption regions.

In HSIs, common techniques for lithologic discrimination and
mapping are based on the comparison of the absorption features
with reference spectra or on supervised classification techniques
defined by a given number of labeled training samples [4], [5].
However, it is hard to collect a sufficient number of lithologic
(pure) pixels as the reference spectra or the training samples.
Rock-forming geologic processes determine spectral variability
in rocks (e.g., differences in the spectral shape, in the position, in
the strength, and shape of absorption features [19], [20]), which
is due to chemical properties and structure, mineral composition,
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grain size, and texture [21]. This is magnified in the remote
sensing data acquisition process [22]. Spectral variability of
rocks significantly affects lithologic discrimination, especially
when reference spectra are inadequate. Meanwhile, insufficient
training samples with the large number of highly correlated
spectral bands present in HSIs often lead to ill-conditioned
problems (e.g., the Hughes phenomenon, also known as the curse
of dimensionality) [23] when discriminating and mapping with
classification algorithms [24].

According to the abovementioned analysis, it is necessary to
extract discriminating spectral bands contained in the HSIs and
remove redundant information for improving lithologic discrim-
ination. Band selection (BS), which is one of the dimensionality
reduction (DR) approaches, has been widely applied to HSIs
[25]. A suitable small subset of original hyperspectral bands can
be identified and selected with BS methods according to a given
criterion that ranks the spectral channels by considering either
their discriminant capability (e.g., information divergence [26],
[27] and the maximum-variance principal component analysis
[28]) or their degree of correlation (e.g. clustering-based BS).
Ranking-based methods often do not consider the spectral corre-
lation between bands, leading to the selection of bands contain-
ing redundant information. Clustering-based BS methods focus
on partitioning bands into similar groups; the redundancy reduc-
tion can be obtained by selecting the centers of clusters as the
representative bands. Recently, one of the most representative
algorithms is the affinity propagation (AP) [29]. Qian et al. [30]
first introduced the use of AP with the Euclidean distance (ED)
in HSIs BS and showed its advantages over traditional methods.
Su et al. [31] proposed an adaptive AP (AAP) algorithm with
spectral angle mapper and an exemplar number determination
procedure to obtain a fixed number of selected bands. The
abovementioned BS methods can select relatively low redundant
and stable bands, but do not consider discriminative capability
of each band. Moreover, few ranking-clustering BS methods
have been presented. Jia et al. [32] proposed an enhanced fast
density-peak-based clustering (E-FDPC) in which the score
of each band is computed by weighting the normalized local
density and the intracluster distance obtained by ranking-based
clustering. However, BS techniques are rarely used in lithologic
discriminate problems. For example, Iqbal et al. [33] adopted
the genetic algorithms coupled with the spectral angle mapper
as a spectral bands selector to find HyspIRI optimal TIR bands
position for the earth compositional mapping.

On the other hand, the spectral characteristics of the same
rock category are highly similar. The commonly used mapping
methods are based on this principle. HSIs represent that real
land surfaces have nearby pixels that exhibit high probabilities to
belong to the same class, i.e., they are spatially correlated. Rocks
usually presents regional distribution in the spatial domain [34].
Therefore, adjacent similar pixels likely belong to the same
lithologic unit. Recently, some segmentation methods [35] have
been proposed for grouping pixels into some meaningful atomic
regions by oversegmentation of an image. Each segmented pixel
block is known as superpixel [36]. Differently from the rigid
structure of pixel grid, the boundaries of superpixels align well

with the natural object boundaries. Many papers have demon-
strated that the combination with superpixels can effectively
improve the efficiency of HSIs analysis tasks by leveraging
on the intraclass spectral variability of pixels. This has been
shown in classification [37], [38], target detection [39], [40],
endmember detection [41], image decomposition [42] and DR
[43], [44]. Two representative superpixel algorithms widely used
in HSIs are entropy rate superpixels (ERS) [45] and simple
linear iterative clustering (SLIC) [46]. The ERS is a graph-
based method that focuses on adherence to image boundaries.
The SLIC can be considered as an adaptation of k-means to
superpixel generation and can obtain regular superpixels that
adhere well and efficiently to boundaries. However, these two
superpixel algorithms generates a coherent grouping of pixels
by using either single gray level natural images or three channels
color images [47], which typically do not model the information
required for rocks homogeneity assessment. Thus, they are not
suitable to discriminate lithologic units, especially when there
is a subtle difference between their spectra.

In this article, we propose a BS method that considers the
spectral and spatial characteristics of rocks for lithologic dis-
crimination and geological mapping of HSIs. The main contri-
butions of this article can be summarized as follows.

1) A new spectral–spatial structure, i.e., the lithologic super-
pixel (LS), is constructed by using an improved superpixel
algorithm based on spectral angle distance (SAD) [20].

2) A BS criterion is defined by learning a whitening trans-
formation to estimate and minimize within-LS covariance
of data based on the high homogeneity and consistency
within LSs.

3) A BS search strategy is presented by introducing the
defined band-selection criterion into the AP for selecting
lithologic discriminating bands that have high homogene-
ity in the same LS and low spectral correlation between
them.

The effectiveness of the proposed BS method is ana-
lyzed on two HIS datasets, i.e., the Cuprite, Nevada, USA,
based on AVIRIS images and the Junggar, Xinjiang, China,
based on Hyperion images. The mapping performance are
compared with those obtained by using all spectral channels,
the VNIR (400–1000 nm) spectral channels, the partial SWIR
(2000–2500 nm) spectral channels, three general literature BS
methods, and a superpixel-based BS (SBS) method.

II. PROPOSED BS METHOD

In this section, a lithologic-SBS (LSBS) method is proposed
for lithologic discrimination and geological mapping. The pro-
posed LSBS method consists of two main parts: 1) generation
of LSs, and 2) identification of lithology discriminating bands.
A detailed presentation and description of these parts is given in
the following subsections.

A. Generation of LSs

Considering the spectral variability and the spatial regional
characteristics of the same rock types, the LSs are generated to
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Fig. 1. Flowchart of the process of generation of lithological superpixels (LSs).

improve the performance of lithologic discrimination. Given the
lithologic spectral characteristic of HSIs, we introduce the SAD
into SLIC. In the conventional SLIC algorithm, the similarity
and proximity of pixels are calculated in color images [48].
Meanwhile, SLIC groups adjacent pixels with spatial proximity
by calculating the spatial distance between the spatial coor-
dinates of each pixel. For segmenting the LSs in HSIs, the
similarity of lithologic spectrums is defined based on SAD. Here,
the spatial distance is not considered for the subtle difference
between lithologic spectra that results in approximately equally
division of superpixels.

Let X = {x1, x2, . . . , xN} ⊂ RB×N be a set of HSI pixel
vectors, where xi = {xi1, xi2, . . . , xiB} (i = 1, 2, . . . , N) is
the ith spectral pixel vector in the HSI band space, N is the total
number of pixels in the HSIs, and B is the number of bands.
Accordingly, the similarity of lithologic spectrums SLS based
on the SAD in HSIs can be calculated as follows:

SLS = cos−1

⎛
⎜⎝

∑B
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⎞
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where xi and xj are the different lithologic spectrum vectors in
the HSIs. This measures the similarity of lithologic spectra by
calculating the spectral angles between them. A smaller angle
represents a closer match and thus a higher similarity to each
other.

The generation process of LSs is described as follows.
Step 1: Initialize cluster centers and select k cluster centers

from the N pixels, using S =
√

N/k as a sampling

interval, and moving these cluster centers to a place
where the gradient value is smallest.

Step 2: Use (1) to calculate similarity of lithologic spectra
between each cluster center and its sounding pixels
in the HSIs.

Step 3: Perform iterative optimization updating each cluster
center until error converges, and then obtain the LS
segmentation image and the LSs.

Fig. 1 illustrates the flowchart of the generation of LSs. In
this figure, four pixel points marked in the HSI feature space
with green, orange, and blue denote three different lithologic
units, i.e., silicified, tuff1, and tuff2. As one can see from their
spectral curves, the spectral characteristics of the orange and
the blue points belong to different lithologic units but are very
similar and close to each other. Whereas the curves of two green
points within the same lithologic unit show large differentia-
tion. This behavior is due to the intrinsic spectral variability of
rocks. To address this issue, we use spatial correlation combined
with spectral information by segmenting pixels with the SAD
for discriminating different lithologic units. From Fig. 1, one
can observe that the orange and blue points are segmented in
different LSs, whereas the two green points belong to the same
LS. Then, the spectral variability of the same rock types can be
mitigated while discriminating rocks in the HSIs feature space.

B. Identification of Lithology Discriminating Bands

The goal of BS is to find a Y = {y1, y2, . . . , yf , } (f << B)
lithologic discriminating bands subset from HSI spectral
channels XT = {x1, x2, . . . , xB}. The selected bands should
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contain high lithologic absorption features and discrimination
capability for different rock types. The pixels within the same
lithologic unit should have high relevance, i.e., the spectral
variability should be low in the selected bands. Meanwhile,
the selected bands should have low redundancy. Accordingly, a
covariance matrix based on LSs, i.e., the within-LS covariance
matrix is defined and can be expressed as follow:

ĈWLS =
1

LSs

NLS∑
k=1

nk∑
l=1

(xkl − m̂k) (xkl − m̂k)
T (2)

where m̂k =
∑nk

l=1 xkl denotes the mean of the kth LS; nk

indicates the total number of pixels in the kth LS; xkl is the
lth pixel of the kth LS; NLS is the total numbers of LSs.

The performance of BS critically depends on the adopted BS
criterion. A BS criterion, i.e., the lithology discriminating BS
criterion (LDC) is learned here based on the optimal criterion of
the relevant component analysis (RCA) [49]–[51], which learns
a whitening transformation to estimate and minimize within-LS
covariance of data for making the learned LDC more effective for
classification in the new transformed feature space. According
to the Fisher theory [52], [53] and its derived algorithms [54],
the whitening transformation matrix associated with within-LS
covariance matrix can be written as follows:

W LS = Ĉ
− 1

2
WLS. (3)

Following this, the LDC is used to measure the homogeneity
and variation of LSs. The LDC between different bands xi and
xj can be computed as follows:

LDC(xi, xj) = W LS
ij (4)

where i = 1, 2, …, B, j = 1, 2, …, B, and W LS
ij is the (xi, xj) ele-

ment of the matrixW LS. The LDC(xi, xj) is used for measuring
the similarity between two different bands.

In terms of BS, the selected bands should have low variability
within LSs. The LDC of a single band xi can be expressed as
follows:

LDC(xi, xi) = −BTS · 1

W LS
ii

(5)

where i = 1, 2, …, B; BTS (called band threshold scalar with
LS) is used to get the expected number of selected bands by
setting an appropriate value. Then the defined LDC is given
as input to the AP [29]. In the conventional AP, a common
choice for the similarity measure is the negative ED. In the
proposed LSBS method, the self-similarity LDC(xi, xi) is used
for measuring the lithologic discrimination capability of each
band.

The process of clustering in the AP consists in finding the
optimal set of cluster centers (i.e., exemplars) for which the
sum of similarities of each point to its center is maximized.
AP is derived from a factor graph, which is constructed by the
net similarity. Two types of messages exchange between data
points. (i.e. responsibility and availability) are considered, which
take into account two different kinds of competitions and are
propagated into the factor graph. The responsibility indicates
how appropriate the considered candidate exemplar would be as

a cluster center. The availability indicates how well suited the
data point would be as a member of the cluster of candidate
exemplars. When the AP converges, the cluster centers are
obtained by calculating the set of availability and responsibility
messages for each data point.

Initially, the values of availability a(xi, xj) are set to zero,
i.e. a(xi, xj) = 0. The responsibility and availability between
two bands xi and xj are updated by a max-product algorithm as
follows:

r(xi, xj) = LDC(xi, xj)− max
q �=j

{LDC(xi, xq) + a(xi, xq)}

(6)

a (xi, xj) =
{

min
{
0, r (xi, xj) +

∑
p �=i,j max {0, r (xp, xj)}

}
i �= j∑

p �=j max {0, r (xp, xj)} i = j

(7)

where responsibility r(xi, xj) indicates the degree of the band
xj to serve as the cluster exemplar of band xi; availability
a(xi, xj) denotes the suitability of band xj as the exemplar for
band xi; xq and xp are the qth and pth band, respectively; the
responsibility update makes all candidate exemplars compete
for the ownership of a band. The availability update confirms
whether each candidate exemplar would be a good exemplar. In
the first iteration, the competitive updating is data driven. In later
iterations, when some bands are assigned to other exemplars,
their availabilities will drop below zero according to (7). These
negative availabilities will decrease the values of some of the
LDC(xi,xj), removing the corresponding candidate exemplars
from the competition. The self-responsibility r(xi, xj) reflects
accumulated evidence that band xj is a band exemplar. For i � j,
only the positive portions of incoming responsibilities are added.
If the self-responsibility r(xi, xj) is negative, the band xj is not
an exemplar. The availability of band xj as an exemplar can
be increased if some other bands have positive responsibilities
for band xj . To limit the influence of strong incoming positive
responsibilities, a(xi, xj) cannot go above zero. For i = j, the
self-availability a(xi, xj) reflects accumulated evidence that
band xj is an exemplar, based on the positive responsibilities
sent to the candidate exemplar band xj from other bands.

To avoid oscillations of the search algorithm when computing
responsibilities and availabilities, damping is used. The two
kinds of messages are damped according to following equations:

R̂t+1 = βR̂t−1 + (1− β)R̂t

Ât+1 = βÂt−1 + (1− β)Ât (8)

where R̂ and Â represent responsibility and availability vectors,
respectively; β is the factor of damping (which should satisfy
0.5 ≤ β < 1) and t is the number of iterations. Higher values of
a will lead to slower convergence.

For any band, the largest sum of availability a(xi, xj) and
responsibility r(xi, xj) represents the greatest possibility of
band xj to be the final cluster center of band xi and is obtained
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according to the following rule:

max
xj∈C

{a(xi, xj) + r(xi, xj)}. (9)

The cluster exemplars in the set C are the identified lithology
discriminating bands. Therefore, the bands subset Y (Y=C) with
high lithology discrimination capabilities and low redundancy
can be selected and retained.

The detailed procedure to be implemented for the proposed
LSBS method is as follows.

Step 1: Generate LSs based on the SLIC with SAD.
Step 2: Estimate the variability of LSs according to (2).
Step 3: Obtain the whitening transformation using (3).
Step 4: Compute the LDC for all the spectral bands according

to (4) and (5).
Step 5: Update availability and responsibility based on AP
1) Calculate availability a and responsibility r according to

(6) and (7).
2) Responsibility and availability are damped according to

(8).
Step 6: Obtain the cluster centers set C
1) Determine the cluster centers of bands using (9).
Step 7: Identify the lithology discriminating bands
1) Repeat steps 5 and 6 until the decisions for cluster centers

are unchanged.
At convergence we obtain the final cluster representatives,

i.e., the selected bands and the related number of bands. The
resulting lithologic discriminating band subset can be used for
lithologic discrimination and geological mapping.

III. EXPERIMENT RESULTS

A. Data Description

In this article, two hyperspectral datasets are used in the
experiments. In the following, the description of the two datasets
is given.

The first dataset is the AVIRIS image [55] captured on June
19, 1997, at Cuprite, Nevada [56]. Cuprite [4], Nevada (37°30′

to 37°34′30′′North, 117°9′50′′ to 117°14′10′′West) is located in
the south of Goldfield and northwest of the Stonewall Mountain.
The US highway 95 separates this area into east and west
regions providing necessary conditions for ore transportation,
as shown in Fig. 2. This image has 224 spectral channels with a
wavelength range from 400 to 2500 nm and a spatial resolution
of 20 m. After removing the lower signal-to-noise (SNR) bands
and atmospheric water absorption regions bands (1–3, 105–115,
150–170, and 221–224 bands) [4], 185 channels with 465× 365
pixels were selected as input bands for the geological mapping.
Fig. 3 shows the image cube of Cuprite with a false color
composition.

The major stratum of Cuprite [57]–[60] is Paleozoic Cam-
brian, Mesozoic Triassic, and Quaternary Cenozoic. Fig. 4
shows the geological and alteration map of the study area [59].
Cambrian is dominated by sedimentary rocks, which exposed
extensively in the western and rarely found in the northwest and
southwest of the study area, including quartzite, limestone, and

Fig. 2. Geographical location of the study area of Cuprite dataset.

Fig. 3. AVIRIS Cuprite image cube with a false color composition [R =
band 183 (2099.71 nm), G = band 193 (2186.61 nm), and B = band 207
(2338.98 nm)].

phyllite. Tertiary volcano is widely exposed in the eastern and
northern regions that consist of volcanic tuff, volcanic conglom-
erate, ancient alluvium, basalt, rhyolite, and crystal-rich rhyolite.
Quaternary is widespread in the west section and dominated by
Quaternary loose sediments and alluvial deposits.

The topography of the Cuprite is relatively flat with a wide
variety of types of rocks exposed and sparsely covered with
vegetation. Furthermore, hydrothermal alterations are widely
distributed in the study area of Cuprite dataset, which contains
three field-mappable zones, i.e., opalized rocks, silicified rocks,
and argillized rocks [see Fig. 4(b)]. The opalized rocks are the
most widely exposed alteration rocks, including opal, kaolinite,
calcite, alumite, montmorillonite, muscovite, and feldspar. The
silicified rocks are the most intensely altered zones, where
the dominant minerals include quartz, calcite, montmorillonite,
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Fig. 4. Geological map and alteration map of the Cuprite (digitized according
to Ashley and Abrams [55]).

Fig. 5. Geographical location of the study area of Junggar dataset.

kaolinite, and minor alumite. The argillized rocks generally
separate at the edge of opalized rocks and consist of Plagioclase,
opal, kaolinite, montmorillonite, biotite, and volcanic glass
alterations.

The second dataset is the Hyperion [62] image acquired
on Junggar, Xinjiang, China (43°57′31′′ to 44°5′3′′North,
92°10′41′′ to 92°14′3′′East) on September 9, 2002 [63]. Fig. 5
shows the geographical location of the Junggar. The original
image contains 242 spectral channels with a wavelength range
356–2577 nm with spectral resolution 10 nm and spatial resolu-
tion 30 m. After removing zeros and repeated bands in SWIR and
VNIR regions (1–7, 58–78, and 221–242 bands), 193 channels
with 467 × 146 pixels were selected for geological mapping
[61]. The color composite of the Junggar image is shown in
Fig. 6.

Fig. 6. Hyperion Junggar image cube with a false color composition
[R = band 29 (640.5.71 nm), G = band 20 (548.92 nm), and B = band 12
(467.52 nm)].

Fig. 7. Geological map of the Junggar [61].

The Carboniferous and Permian volcanic strata, Quaternary,
and granite are widely developed in the study area [61], [64],
[65]. Fig. 7 shows the geological map of the Junggar. The Car-
boniferous and Permian volcanic strata are extensively exposed
in the north and southern area, including basalt, porphyrite,
felsite, sandstone, siltstone, tuff, tuff breccia, diabase dacite
porphyry, and rhyolite porphyry. Granite is widely exposed in
the northwest. Quaternary is widespread in the midwest area and
dominated by Quaternary loose sediments. In the Junggar area,
spectral differences in rocks and late-stage geological processes
bring many difficulties to the geological mapping works.

B. Design of Experiments

According to the regional geology of the study area of the
Cuprite dataset [66], [67], 11 lithologic units (9 types of rocks),
including opalized, silicified, argillized, tuff1, tuff2, basalt,
chlorite-rich phyllite, limestone, phyllite, quartzite, and felsite
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Fig. 8. (a) Locations of lithologic units on Cuprite AVIRIS data of band 199
(2259.38 nm). (b) Available ground truth map of Cuprite AVIRIS data.

Fig. 9. Locations of lithologic units on Junggar Hyperion data of band 139
(2259.38 nm). (b) Available ground truth map of Junggar Hyperion data.

[4], were selected to complete the geological mapping on Cuprite
[57]. Due to the complexity of rocks composition in each decade
of geology, the Triassic volcanic tuffs were divided into two
lithologic units [4], i.e. the Upper Triassic volcanic tuff (tuff1)
and the Lower Triassic volcanic tuff (tuff2). The shapes of the
spectra of tuff1 and tuff2 were similar. Fig. 8 shows the locations
and available ground truth map of 11 lithologic units on Cuprite
AVIRIS data [4]. It contains 20 132 ground truth pixels. The
quartzite and phyllite from the Cambrian Harkless Formation
are located in the eastern part of the Triassic felsite dyke and
in the north part of the Cambrian limestone, respectively. The
chlorite-rich phyllite is located in the eastern part of basalt
[see Fig. 8(a)]. For the Junggar dataset, five lithologic units,
i.e., basalt, porphyrite, tuff, diabase, and granite were selected
to complete the geological mapping [61]. The locations and
available ground truth map of the five lithologic units are shown
in Fig. 9. The generated truth map contains 9241 pixels.

To access the performance of proposed LSBS method, we
employ a widely used supervised classifier, i.e., support vector

TABLE I
NUMBER OF THE REFERENCE/TRAINING AND TESTING SAMPLES ON CUPRITE

AND JUNGGAR DATASETS

machines (SVM) for lithologic discrimination and geological
mapping. In the experiments, different accuracy metrics, i.e.,
producer’s accuracy (PA), user’s accuracy (UA), and overall
accuracy (OA) are computed. Table I reports the number of the
training and test samples that were selected on the basis of the
geological maps for the two considered data sets.

Fig. 10 shows the mean spectral emissivity profiles of train-
ing samples for lithologic units extracted from AVIRIS and
Hyperion data compared with the ASTER and USGS spectral
libraries. As one can see in Fig. 10(a), for most of lithologic
units, the positions of absorption features in AVIRIS and spectral
libraries profiles are very similar. In several wavelength ranges,
the overall spectral shape of the AVIRIS and spectral libraries
spectra are nearly identical except for slight differences in the
magnitude of emissivity values. In greater detail, we can see from
Fig. 10(a) that different types of rocks have their respective spec-
tral characteristics. The phyllite, opalized, and felsite exhibit a
strong absorption feature around 2.2 μm. Chlorite-rich phyllite
presents a distinctive low albedo at the same wavelength [see
Fig. 10(a)] when chlorite is contained in phyllite [58]. Silicified,
basalt, and chlorite-rich phyllite do not show strong absorption
from 2.0 to 2.5 μm (partial SWIR).

From Fig. 10(b), one can see that the spectral profiles of the
five lithologic units are very similar. This may be due to the fact
that geological process have big influence in Junggar Hyperion
data, which makes the spectral features and spectral libraries
spectra quite different. However, the values of spectral profiles
of the five lithologic units represent their respective spectral
characteristics in several wavelength ranges.

C. LS Identification

According to the SLIC improved with SAD, Cuprite dataset
and Junggar dataset are divided into different LSs by setting the
segmentation thresholds k. The LSs in the experiments are used
for the LSBS learning. In this article, eight threshold values,
(i.e., cluster centers k) are considered {50, 100, 200, 300, 400,



478 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 10. Mean spectral profiles of training data with lithologic units extracted from the (a) Cuprite AVIRIS data (color lines) and (b) Junggar Hyperion data (color
lines) and spectral libraries profiles (black lines) in ASTER and USGU.

Fig. 11. OA% versus the number of selected bands for different numbers of LSs obtained by the proposed LSBS method on the (a) Cuprite dataset and
(b) Junggar dataset. The results obtained by using all spectral channels are also reported (Baseline).

500, 800, and 1000} to split the Cuprite image and the Junggar
image into different numbers of LSs (NLS), i.e., {175, 227, 310,
388, 433, 489, and 609} and {93, 147, 180, 215, 249, 258, 269
and 270}, respectively.

Fig. 11 shows the geological mapping accuracy (OA with the
SVM) obtained by the proposed LSBS with different numbers
of LSs and by using all the channels (Baseline) on the two
considered datasets. The number of selected bands ranges from
5 to 60, which can be obtained by setting different values of BTS.

From Fig. 11, one can observe that the OA values of the proposed
LSBS method have different behaviors versus the number of LSs
compared with the Baseline.

From the lithologic discrimination and geological mapping
results, we can observe that the proposed LSBS method yielded
a higher OA than the Baseline with a reduced number of selected
bands for all the eight different LSs on the two considered
datasets. In greater detail, for the Cuprite dataset, the OAs
obtained by the proposed LSBS method with different LSs were
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Fig. 12. OA% versus the number of selected bands obtained by the EDAP, the AAP, the E-FDPC, the SBS, and the proposed LSBS method on the (a) Cuprite
dataset and (b) Junggar dataset. The results obtained by using all spectral channels are also reported (Baseline).

close or higher than those yielded with all 185 channels when
more than 25 bands were selected. The highest OA was obtained
when the numbers of LSs was 433. For the Junggar dataset,
most of OAs are higher than all that obtained with 193 channels
when more than 10 bands are selected. However, they fluctuate
significantly with different number of LSs. Note that the highest
OA was yielded with 249 LSs. Accordingly, the number of LSs
was set to 433 for the Cuprite dataset and to 249 for the Junggar
data set in the following experiments.

D. Band Selection Results

In the experimental analysis, we compared the performance of
the proposed LSBS method against the standard use of specific
bands in the absorption regions, three general literature BS
methods, and an SBS method.

1) Comparison of Mapping Accuracy: As already men-
tioned, VNIR spectral channels (400–1000 nm spectral range)
and SWIR spectral channels are generally used for geological
mapping. The most typical rocks have specific absorptions in
the 2000–2500 nm range (i.e. partial SWIR range) [68]. Thus,
the results of the proposed LSBS method on Cuprite (NLS =
433) and Junggar (NLS= 249) datasets are compared with those
obtained by the use of all spectral channels (Baseline), the 58
VNIR (400–1000 nm) bands, and the use of 48 partial SWIR
(2000–2500 nm) spectral channels.

To further assess the effectiveness of the proposed LSBS
method, three literature methods, i.e., the EDAP [41], the AAP
[23], and the E-FDPC [25] are used for comparisons in the
experiments. Moreover, an SBS method in which the classic
SLIC is used to generate superpixels is also considered in the
comparison. The OA values obtained by using all the spectral
channels and the different band subsets are compared in Fig. 12.
It is worth noting that we set the same thresholds values, i.e., k
= 400 for the SBS and the proposed LSBS, and the number of

LSs for the SBS are 441 and 237 on the Cuprite and the Junggar
datasets, respectively.

For the Cuprite dataset [see Fig. 12(a)], the proposed LSBS
method exhibited the highest accuracy. One can see that the
proposed LSBS resulted in an OA values of 87.86% by selecting
25 bands, which is slightly higher than that obtained by Baseline
(87.83%) with all the spectral channels. The OAs obtained with
the SBS were higher than or close to those obtained with the
proposed LSBS when the number of selected bands was small.
However, the SBS achieves lower accuracies than the proposed
LSBS when the number of selected bands increases. The AAP
and the EDAP produced results closed to Baseline when the
number of selected bands is higher than 20. However, they did
not achieve higher values when more bands were selected. The
OAs obtained by the E-FDPC are always lower than the Baseline.
For the Junggar dataset, the proposed LSBS obtained a higher
OA (71.29%) than the Baseline (70.25%) when ten bands were
selected. Although the SBS also achieved high classification
accuracies, the OAs never exceed those of the proposed LSBS.
The accuracies obtained by the EDAP, the AAP, and the E-FDPC
are lower than that of the Baseline when the number of selected
bands is smaller than 45.

Table II gives the mapping accuracies provided by the Base-
line, the VNIR, the partial SWIR, and the best OA obtained by
the EDAP, the AAP, the E-FDPC, the SBS, and the proposed
LSBS methods versus the number of selected bands. From the
table, for Cuprite dataset, one can observe that the proposed
LSBS method with 30 bands almost always achieved the highest
mapping accuracies compared with the use of the 58 VNIR
spectral channels, the 48 partial SWIR spectral channels, and
all 185 bands (Baseline). In greater detail, one can observe
that the OAs% obtained with the proposed LSBS are much
higher than those obtained with the VNIR spectral channels and
the partial SWIR spectral channels, i.e., +9.76% and +3.45%,
respectively. A similar situation occurred when mapping with
all 185 bands from 400 to 2500 nm. It is worth noting that the
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TABLE II
PA, UA, AND OA PROVIDED BY THE BASELINE, THE VNIR, THE PARTIAL SWIR, THE EDAP, THE AAP, THE E-FDPC, THE SBS, AND THE PROPOSED LSBS

METHODS FOR DIFFERENT NUMBERS OF SELECTED BANDS (NB) ON THE CUPRITE AND THE JUNGGAR DATASETS

The bold entities in Table II are the maximum value of producer’s accuracy (PA) and user’s accuracy (UA) in different algorithms.

highest OA% for the different techniques were obtained with
a number of selected bands equal to 40 for the EDAP, 50 for
the AAP, 55 for the E-FDPC, 45 for the SBS, and 30 for the
proposed LSBS method.

For the Junggar dataset, the accuracies achieved by proposed
LSBS method with 45 bands are the highest among all the
compared methods. In greater detail, one can observe that the
OA% obtained with the proposed LSBS method is higher than
those obtained with the Baseline, the VNIR spectral channels,
and the partial SWIR spectral channels, i.e., +4.29%, +5.35%,
and +7.34%, respectively. Compared with the EDAP, the AAP,
the E-FDPC, and the SBS, a similar situation occurred. The
number of selected bands with the highest accuracies for the
EDAP is 55, for the AAP is 55, for the E-FDPC is 50, and for
the SBS is 55. The number of bands selected by the proposed
LSBS method that provided the highest OA% is 45, which is
smaller than those of the other techniques.

Fig. 13 shows the wavelength of the 30 selected bands for
the Cuprite dataset [see Fig. 13(a)] and the 45 selected bands
for the Junggar dataset [see Fig. 13(b)] by the proposed LSBS
method. It also depicts the channels selected by the EDAP, the
AAP, the E-FDPC, and the SBS methods, as well as the VNIR
(400–1000 nm) and partial SWIR (2000–2500 nm) spectral
channels. It is obvious that the adjacent spectral channels present

in VNIR can only contain fewer special absorption features, and
thus they cannot discriminate many types of rocks effectively.
For the partial SWIR spectral channels, most rocks have specific
different absorption features in this region. Nevertheless, the
SWIR spectral channels belong to a continuous portion of the
spectrum from the 2000–2500 nm (see Fig. 13), and thus they do
not include the absorption features for some specific rocks and
contain redundant information. On the contrary, the proposed
LSBS, the EDAP, the AAP, the E-FDPC, and the SBS methods
have a more dispersed distribution throughout the spectral range.

For the Cuprite dataset, one can see that the bands selected by
the EDAP and the AAP are nearly evenly distributed in the full
range of spectral channels and do not choose some discriminate
bands in strong absorption spectral channels. A similar situation
occurred in the E-FDPC, which neglects bands from 2.0 to
2.5 μm (partial SWIR spectral channels). Some bands selected
by the proposed LSBS and the SBS methods are distributed
similarly, but most of the bands selected by the proposed LSBS
are located around 570 nm, 1400 nm, and 1880 nm, where the
spectral absorption is strong.

For the Junggar dataset, bands selected by the EDAP and the
AAP methods are distributed similarly and mostly concentrated
in 0.4 to 1 μm (VNIR spectral channels). The distribution of
bands selected by the E-FDPC concentrates from 1 to 1.4 μm
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Fig. 13. Radiance value at the sensor for lithologic units (curves) versus the wavelength. The specific absorption channels and the selected bands (elliptical point)
with the proposed LSBS, the EDAP, the AAP, the E-FDPC and the SBS on the (a) Cuprite dataset and (b) Junggar dataset.

and from 1.5 to 1.9 μm and only two bands are selected from 2.0
to 2.5 μm (partial SWIR spectral channels). The bands selected
by the SBS method are nearly evenly distributed in the full range
of spectral channels, including low-quality bands that contains
noise around 1400 nm and 1900 nm. In contrast, the bands
selected by the proposed LSBS method have strong absorption
properties and low-noise characteristics.

2) Lithologic Discrimination and Geological Mapping Im-
ages: Figs. 14 and 15 show the lithologic discrimination and
geological mapping images on the Cuprite and the Junggar
datasets, respectively, by considering the highest accuracy per-
formance for all methods.

Combining the accuracies (see Table II) and the geological
mapping images (see Figs. 14 and 15) for a comparative analysis,
one can observe that the best geological mapping performance
from quantitative accuracy is exhibited by the proposed LSBS
when 30 and 45 spectral bands are considered on the Cuprite
and the Junggar datasets, respectively.

For Cuprite dataset, with regard to alteration rocks, i.e., opal-
ized, silicified, and argillized, the first two types of rocks are
mapped with higher producer’s and UAs by using the Baseline
and the BS methods (i.e., the EDAP, the SBS, the proposed
LSBS) than the specific spectral channels (i.e., the VNIR and
partial SWIR). The opalized is largely confused with silicified,
argillized, and tuff1 in VNIR spectral channels (only 35.26%
of opalized rocks are mapped correctly). The PAs of opalized
are good with the Baseline, the proposed LSBS, and the EDAP
method with SVM, but some opalized rocks are misclassified
with silicified rocks, resulting in relatively low UA. The silicified
are mapped with higher PAs by the proposed LSBS method and
the EDAP method, but some silicified rocks are confused with
opalized. Argillized rock is not mapped accurately and confused
with opalized and silicified rocks. By contrast, the mapping
accuracy of the proposed LSBS are the best in comparison with
other methods.

For the other lithologic units on the Cuprite dataset, we can see
that the tuffs (i.e., tuff1 and tuff2) are largely confused with each
other in the VNIR and the partial SWIR spectral channels. This is

due to the fact that tuff1 and tuff2 have similar spectra absorption
features in the full spectral range that make their discrimination
difficult. The partial SWIR spectral channels can classify tuff1
more accurately than the other methods, but they cannot classify
tuff2 appropriately with only 37.33% PAs. In this condition,
the proposed LSBS can classify tuff2 more accurately with the
highest PA and UA. Basalts cannot be correctly mapped and are
confused with alteration rocks (mainly argillized and tuff2). The
PAs of basalts with the proposed LSBS method, the Baseline, and
the SBS are higher than those obtained with other methods. The
geological mapping results of chlorite-rich-phyllite are similar
to those of the basalts, which cannot be discriminated well and
are confused with phyllite rocks, but when using the partial
SWIR spectral channels, the PAs are the highest. Almost all
the BS methods selected bands capable to recognize limestone
accurately. The PAs of phyllite with the VNIR and the partial
SWIR spectral channels are lower than those of the BS methods,
and many phyllite rocks are misclassified with limestone and
quartzite. Meanwhile, the EDAP and the AAP methods obtained
a sharply improved mapping accuracy on phyllite. For quartzite,
the PAs and UAs of the VNIR spectral channels are lower than
those of other BS methods, and there is large confusion with
phyllite and chlorite-rich-phyllite. The exposed area of felsite
rock is relatively small, and thus it is difficult to map accurately.
The felsite rock is confused with the silicified rock, especially
in the VNIR spectral channels. In contrast, the proposed LSBS
method, Baseline, and the partial SWIR spectral channels get
satisfactory mapping accuracies and images for felsite.

For the Junggar dataset (see Table II and Fig. 15), the proposed
LSBS method can classify basalt more accurately than the
other methods and achieves the highest PAs. Porphyrite is more
difficult to map than other lithologic units and is easily confused
with basalt and diabase. However, the proposed LSBS method
and the VNIR spectral channels can obtained higher mapping
accuracies than other BS methods. The geological mapping
results of tuff are similar to those of the Porphyrite, i.e., this
class cannot be discriminated well and is confused with basalt
and diabase. However, the proposed LSBS method obtained the
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Fig. 14. Lithologic discrimination and geological mapping images of the Cuprite. (a) Baseline with the all 185 bands. (b) VNIR spectral channels. (c) Partial
SWIR spectral channels. (d) EDAP. (e) AAP. (f) E-FDPC. (g) SBS. (h) Proposed LSBS.

Fig. 15. Lithologic discrimination and geological mapping images of the Junggar. (a) Baseline with the all 185 bands. (b) VNIR spectral channels. (c) Partial
SWIR spectral channels. (d) EDAP. (e) AAP. (f) E-FDPC. (g) SBS. (h) Proposed LSBS.

highest PA. For diabase, the PAs and UAs of VNIR spectral
channels are the lowest with high confusion with basalt and tuff.
The UA of VNIR spectral channels for granite is the highest, but
there is large confusion between granite and basalt (only 69.73%
of the granite pixels are classified correctly). On the contrary,

the PA and UA of the proposed LSBS for granite are relatively
high.

By analyzing the quantitative accuracies and the qualita-
tive maps, the effectiveness of the proposed LSBS method on
lithologic discrimination and geological mapping by HSIs have
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Fig. 16. Value of the BTS parameter versus the number of selected bands
for the proposed LSBS with different numbers of LSs. (a) Cuprite dataset.
(b) Junggar dataset.

been confirmed. It is worth to mention that spectral angular
information used in the improved SLIC is a common technology
for measuring spectral vectors in HSIs. Therefore, the proposed
LSBS method is also applicable in general to the classification
of HSIs, e.g., identification of land-cover classes different from
lithology and geological categories.

E. Parameter Sensitivity

There are two user-defined parameters in the proposed LSBS
method: 1) k, which determines the number of LS; and 2) BTS,
which controls the number of selected bands (i.e., lithologic
discriminating bands).

The parameter k could be any positive number. Different
values of k resulting in a different numbers of LS. A large k
value involves a large number of LS. For HSIs, the value of k
can be set between 10 and 1000. In the experiments, we set the
value of k to 50, 100, 200, 300, 400, 500, 600, 800, and 1000,
corresponding to a number of LSs equal to 175, 227, 310, 388,
433, 489, 569, and 609 on the Cuprite dataset and to 93, 147,
180, 215, 249, 258, 269, and 270 on the Junggar dataset. For
the BTS parameter, higher values lead to a smaller number of
selected bands. The BTS needs to be set to the expected number
of selected bands (see Fig. 16).

IV. CONCLUSION

In this article, we have proposed a BS method (LSBS) for
lithologic discrimination and geological mapping. Considering
the spectral and regional characteristics of rocks and minerals, a

new spectral–spatial structure (i.e., LSs) is first generated based
on an improved SLIC superpixels segmentation algorithm with
SAD. Then, a lithologic discriminating BS criterion (i.e. LDC)
is defined according to the RCA with the Fisher theory for
measuring the discriminating capability and the correlation of
spectral bands. Finally, a subset of features exhibiting the high
lithologic discriminating capabilities is selected based on the AP
clustering algorithm.

The performance of the proposed LSBS was analyzed on two
geologic sites, i.e., Cuprite, Nevada, USA, with AVIRIS data and
Junggar, Xinjiang, China, with Hyperion data. Compared with
using all bands (185 bands on the Cuprite dataset and 193 bands
on the Junggar dataset), the two widely used specific absorption
regions [i.e., the VNIR (400–1000 nm with 58 bands) and the
partial SWIR (2000–2500 nm with 48 bands) spectral channels],
three literature BS methods (i.e., the E-FDPC, the EDAP, and
the AAP) and an SBS method, the proposed LSBS achieved
the best mapping accuracy and performance with the smaller
number of bands (30 bands on the Cuprite and 45 bands on the
Junggar datasets). It is worth noting that the proposed method is
general and can be used in BS on HSI images when land cover
classes different from lithological and geological categories are
considered.

In future work, we plan to introduce discriminant constraints
between different types of rocks to learn a new feature space for
further improving the lithologic discrimination and geological
mapping results.
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