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Abstract: Large-amplitude motion in the nuclear shape degrees of freedom are described by superfluidity 
within a finite-basis model space. The technique allows an inertial parameter to be constructed for 
arbitrary shape changes. Application is made to alpha- and heavy-particle radioactivity. 

1. In trod u c t i o n  

Paradoxically, the theory of  large-amplitude collective motion in nuclei is both 
well-developed and poorly understood. Potential energy surfaces describing the 

nuclear shape degrees of  freedom can be constructed using Hartree-Fock theory 1) 

or simplifications thereof, such as the Strutinsky method 2-4). To calculate dynamics, 

one also needs inertial parameters corresponding to these degrees of  freedom. The 

standard technique, cranked mean field theory, is straightforwad in principle, but 

the use of  continuous collective coordinates obscures the essential discreteness of 

the Hartree-Fock basis of wave functions. Doubt about the continuum treatment 
is raised by the behavior of the inertia function, which has large fluctuations 

associated with specific Hartree-Fock configurations 2). Furthermore, the obvious 

choice of  the constraining field may lead to too large a value for the cranked 

inertia s.6). Another technique, based on the continuation of time-dependent mean 

field theory to imagnary time, resolves this problem in principle, but in practice 
may be too difficult to apply numerically to realistic cases 6.7). 
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This paper  is an at tempt to construct a model of  large-amplitude motions closer 
to the actual physics of  configurational changes. We do not claim that the approach 

is fundamental ly superior to the above methods. Rather, we believe that it is easier 
to apply effectively to a wide variety of  problems 8-11), because it deals with the 

relevant aspects of  the many-particle wave functions. 
In the next section we describe, in general terms, how a model with a discrete 

basis is applied to situations normally described with a collective coordinate. It is 
necessary to understand the level density as a function of the coordinate, and the 
hamiltonian matrix connecting different levels. These topics are discussed in sects. 
3 and 4, respectively. The main application of  the model is to particle emission. We 

describe calculations of  alpha- and heavy-particle radioactivity in sect. 5. Finally, 
in sect. 6 we discuss the reliability of  the model and the prospects for further 

applications. 

2. Discrete models for large-amplitude motion 

We want to describe the wave functions of  the nucleus as a linear combination 
of  Har t ree-Fock  determinants. The details of  the Har t ree-Fock states will not be 

discussed; we are interested in the relationships between them that can be established 
to hold on the average. We consider collective motion along a path in the space of 

deformations,  and describe it in terms of  a single coordinate, with the determinants 
ordered according to the value of  that coordinate. To pass from one determinant 
to another, one must make particle-hole excitations in the starting determinant and 
alter the single-particle wave function slightly in order to correspond to the new 
Har t ree-Fock  field. This picture was introduced by Hill and Wheeler ~2) in an 

attempt to describe the fission process. We say that two configurations are "neighbor- 
ing" if there is a high overlap between one and a 2p2h excitation of  the other. We 

assume that the hamiltonian can only connect neighboring configurations. Also, it 
is clear that configurations of  quite different shapes cannot be neighbors. 

The simplest model to describe collective motion between two shapes would be 
to link configurations near these shapes by a chain of  neighboring configurations 13). 

The chains with lowest energy intermediate states would be particularly favored, 

and would give the most primitive basis for the active states. Then the equation 
describing the shape evolution is 

°.o 
E i  - I v 

o E~ 

u 

I ai'-t f l 
Here Ei is the Har t ree-Fock  energy of configuration i, and v, taken to be constant, 
is the off-diagonal matrix element connecting neighboring configurations. The sol- 
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ution of the hamiltonian problem yields eigenfunctions which are linear combina- 
tions of the basis determinantal states ~bk 

~ = Y. a~.dpa. (2.2) 
k = l  

The energetics of the process described by (2.2) is sketched in fig. 1, which depicts 
energy levels as a function of  some deformation coordinate. Each energy level is a 
parabola. The bottom is a Hartree-Fock state of some definite energy E ,  and the 
other points show how the energy changes when the state is deformed. It is 
energetically very unfavorable to move any distance along the same state. The 
large-scale shape changes must then come from the jumps from one state to another. 

The determinant ~bo describes the configuration associated with the absolute 
minimum corresponding to the equilibrium shape of the parent nucleus, while ~b, 
is the Slater determinant associated with the touching configuration of the daughter 
nuclei (cf. fig. 2). 

Before filling in details of  the picture, we show how a collective hamiltonian may 
be derived from a discrete model. A collective hamiltonian would have a SchrSdinger 
equation of  the form 

( lt12 d2t~(~:) ) 

2D ds c--------T- 4- V(s ~) ~ ( ~ : ) =  E ~ ( ~ : ) .  (2.3) 

Discretizing this equation on a mesh in ~:, the second derivative operator is replaced 

~sp 

v(~) 

Y 

I I 

Fig. 1. Schematic representation of the occupancy of the single-particle levels and of the local Hartree- 
Fock potential energies as a function of the deformation parameter ~. At ~ = 0 the parent nucleus is 
assumed to be in the spherical ground state. When the nucleus goes away from equilibrium, the 
single-particle levels split gaining or losing binding energy according to whether the associated orbit is 

along the deformation or perpendicular to it. 
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Fig. 2. We illustrate with an example relevant to heavy-particle radioactivity, specifically 232U--, 
21Ne+2°Spb. The initial shape (dashed curve) is that of the uranium nucleus, which is taken to be an 
ellipsoid with deformation/3, = 0.225. The final shape (continuous curve) is that of two spheres corre- 
sponding to Z4Ne and 2°spb. The separation of the spheres is such that the two half density radii touch. 
The transformation described in the text carries the initial shape to the one shown by the thin solid line. 

by  a second  difference 

d 2 ~ ( ~  :) ~ ( ~ : , _ , ) +  , i ~ ( s ~ , + , ) - 2 ~ ( ~ , )  
d-- - - -  7 -  - (A~:)2 (2.4) 

The  mat r ix  for  H is t r id i agona l ,  and  f rom c o m p a r i s o n  with (2.1) we ident i fy  

h-" 
D =  -~--~v (A~:)-2, E , =  V(~:) + 2v ,  (2.5) 

where  A~ is the mesh spac ing .  

3. State counting 

Our  first task  in the d iscre te  state m o d e l l i n g  o f  col lec t ive  mot ion  is to de t e rmine  

the average  d i s tance  be tween  ne ighbor ing  conf igura t ions .  This will de t e rmine  A~ 

and  the d i s tance  scale in l a rge - amp l i t ude  mot ion .  We find the d i s tance  be tween  

states by  de fo rming  the nucleus  accord ing  to the r equ i red  shape  change ,  mak ing  a 

cr i te r ion  to de t e rmine  when  the nucleus  has r eached  a new H a r t r e e - F o c k  configur-  

a t ion.  

We first de fo rm the wave  funct ion  with a s ing le -par t ic le  field, F ( r ) .  The wave 

func t ion  will be t r a n s f o r m e d  to ~4) 

t ~ ( r )  = e vF'v ~bk(r) ~ ~bk(r-l-V F ) . (3.1) 

In o r d e r  to make  the new state as low in energy as poss ib le ,  we shall  restr ict  ourse lves  

to i ncompres s ib l e  fields, V2F = 0. Then F may  be expressed  as 

F ( r )  =~.  c~r~Y~(~) .  (3.2) 
A 
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The transformation (3.1) alters the momentum distribution in the nucleus. This 
may be readily seen by examining the Wigner function of  the transformed state, 

f e 'p" rk*(r+½s+VF(r+½s))rkk(r-½s+VF(r-½s)) d3s f ' (r ,p) 

f e~P"dP*(r+VF+½s(1 + VVF))C~k(r+ VF-½s(~+ VVF)) das 

~ f ( r+VF,  p(1 +V x F ) - ' ) .  (3.3) 

Here V x F is a second-order tensor in the cartesian variable, and ~ the 3 x 3 unit 
matrix in the same space. The new shape of  the system has been achieved at the 
cost of  a deformed Fermi surface. This gives the system a higher kinetic energy. 

A state of  lower energy can be constructed by moving the particles above the 
spherical Fermi surface below. In the classical limit, moving particles in momentum 
space will not change the density distribution, as long as the volume in momentum 
space remains constant. Of  course, the single-particle basis in the wave function 
first has to be transformed to a representation with particles above and below the 
Fermi sphere. This is not always possible. A given particle wave function might be 
distributed partly above and partly below the Fermi sphere. If there is a nonintegral 
number of  particles above, there is no way a spherical Fermi surface could be 
restored. Such a necessary condition for restoring a spherical Fermi surface is that 
the integral of the Wigner function outside the Fermi sphere equals an integer. We 
assume that this is sufficient, also for the existence of  a single-particle representation 
that allows a new Hartree-Fock minimum to be reached by moving particles between 

the orbitals. 
Since the local density is approximately preserved in the second transformation, 

the potential energy of  the system associated with a short-range interaction will be 
the same. The kinetic energy is also preserved, because the Fermi surface has been 
restored to a spherical shape. Thus, the new state will have essentially the same 
energy as the original state. 

Of course, effects associated with the finite range of the interaction and the 
quantum mechanics of the surface energy remain, which will ultimately produce a 
liquid drop behavior of  the energy function. In addition, there will be shell fluctuation 
effects associated with imperfections in the sphericity of the Fermi surface. 

The general formula for the criterion is that the following integral be equal to an 

integer, 

f d3p d3r . . . .  
g Jl,l>,~ ~--w-~" J [r,p)=n. (3.4) 

Here g represents the spin, and possibly isospin, degeneracy of  the single-particle 
levels. Thus, to deform a heavy nucleus to get to a neighboring configuration with 
two neutrons moved to a different orbital, we would apply the criterion given by 
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eq. (3.4) with n = 2 and g = 2. On  the other  hand,  for light nuclei like 4°Ca, or even 

more  so ~60, spin and isospin symmetry  imply that changes in the deformat ion  

come about  by moving a round  alpha clusters, requiring g = 4 and n = 4 for the 

nearest low state. 
We simplify the integral in eq. (3.4) cont inuing in the semiclassical spirit. The 

initial Wigner  funct ion is assumed to be sharp-edged,  with value 0 or  1. To evaluate 

the integral over momen tum,  we need the eigenvalues o f  the 3 x 3  matrix V x V F .  
Calling the eigenvalues F~, the cons tant -volume condi t ion is F~ + F2 + F3 = 0. Also, 

we assume F2 = F3. Then  the m o m e n t u m  integral is reduced using 

f d3P O([p ( l+VxVF) -~ l_p~)O(p_p)  

~ (--~)3 P~ d cos v O(Fi COS 2 z , - F 2  sin 2 v)O(--Fi cos 2 ~, - / :2  sin 2 v) 

4~r ~ / 7 3 r  
-- (2r  r)3 ~ ~p F r~  • (3.5a) 

Now,  one can convenient ly  re-express eq. (3.4) using the semiclassical relation 

between volume and particle number ,  g ~rrp~/(2rr) 3 V = A, where V is the spatial 

volume of  the system. This is, 

I d3r F,l(r) q~A(F,,(r)). (3.5b) n = A g x/3 

The formula  is very simple for pure quadrupo le  deformat ion.  Writing F = f12 r2 Y2o, 

we have 

V V F  = f12 - 1  , (3.6) 

0 - 

and F~ ,=  2f12x/~/4"n'. Since F~ is constant  the spatial integration is trivial in eq. 

(3.4), and we obtain 

For  heavy nuclei, this formula  has been demons t ra ted  to be accurate to about  10% 

count ing the level crossing over large intervals o f  deformat ion.  It is also surprisingly 

accurate for  finding the deformat ion  o f  low deformed  states in light nuclei*. 

For  more  general F, reduct ion o f  the integral is not  so simple and it has to be 
evaluated numerically.  For  reference we quote  in appendix  A the matrix V x V F  
for  mult ipoles up to L = 4. 

* The gravity between n and fl has been found to hold in light nuclei for values up to n = 8 [ref. ~s)]. 
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A technical problem that arises is how to choose the field F to move a system 
from one deformation to another, when only the shapes at the endpoints are known 
ahead of  time. We will handle this in several steps. In the first step, we describe the 
two shapes by fitting their multipole moments up to a certain order. Thus we calculate 
(cf. fig. 2) 

Q ~ = )  p~(r)Y^ d3r ( u = i ,  f ) .  (3.8) 

Expanding the density to first order in the deformation parameters flA one can write 

Q~ = flAgo / dp( r )  r2 dr .  (3.9) 
3 dr  

The deformation parameters of the limiting shapes are given in table 1 for several 
cases. We assume that the path between the two shapes goes through shapes with 
linearly interpolated values of  QA. In practice we divide the path into finite segments 
with shapes 

/1 
Q ~ -  (Q~-Q~)+Q~.  (3.10) 

N + I  

For each small path segment n we require a field Fn(r )=~A " A car YA, that maps 
points on the periphery of  the starting shape onto the periphery of the transformed 
shape. The c~'s are determined iteratively starting from a guess, based on the behavior 

cA-~ AB,,/ARo . The periphery is mapped when the system is close to spherical, " A-2 
with the trial field, the new Q~ is calculated, and the difference with respect to the 
desired value is used to make a new estimate of  c~. In our calculations, we divided 
the path into 10 segments. The number of  steps here has no physical significance; 
it is only necessary that the step size be small enough so that the individual 
displacements are small compared to a characteristic dimension of the distortions. 
The components of  the fields cA for the decay 232U~ 24Ne+2°apb are shown in fig. 

3 for each step. We display values starting from both spherical and the deformed 
initial shape of the 232U. Note that with a deformed uranium, very little quadrupole 
field is required to transform to the final shape. The transformed initial surface is 
in fig. 2 shown as a thin continuous curve. There where curvatures are small it 
matches the desired shape very well, but the neck region is not so well described 
by the muitipole expansion with our truncation at L = 8. We believe that fine details 
in the shape evolution will occur without a cost in terms of  the number of  orbital 
jumps, provided the overall density evolution is correctly described. 

Once we have obtained the field, we use the equations in appendix A to determine 
the distortion of  the Fermi surface. The particle density outside the Fermi sphere 
is integrated for each step in order to get a total number of particles that moved 
across the Fermi surface. For example we described, 232U ~ 24Ne + 2°spb, where the 

number of  particles that crossed the Fermi surface is 38. Recognizing that level 
crossings come in pairs, this means that the shape evolution can take place along 
a path with 19 level crossings, and a pair of particles changing orbit at each crossing. 
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232 U ._~24Ne .,. 2oapb 
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Fig. 3. The coefficient c L of  the multipole expansion (3.2) for the decay Z3Zu--) 14C"~  2°sPb (cL fig. 2) as 
a function of  the number of  steps i. The values displayed with closed dots are associated with an initial 
spherical configuration of  232U. Those shown with open dots correspond to a quadrupole deformed 

(/32 = 0.160, s ~ = 0) initial configuration. 
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TABLE i 

Deformation parameters /3  ̂ associated with the initial and final configurations of the different exotic 
decay processes indicated in the first row 

222Ra .., 14 C + 2°spb 232 U .~ 24Ne + 2°spb 234 U .., 2SMg + 2°6p b 24tAm _~ 34Si + 207pb 

/3i /3f /3i /3f ~i /3f /3i /3f 

2 0.160 a) 0.100 0.225 b) 0.169 0.225 b) 0.200 0.250 ~) 0.241 
3 0 0.107 0 0.172 0 0.197 0 0.228 
4 " 0 0.109 0 0.169 0 0.191 0 0.218 
5 0 0.111 0 0.161 0 0.178 0 0.193 
6 0 0.101 0 0.138 0 0.149 0 0.157 
7 0 0.097 0 0.117 0 0.121 0 0.115 
8 0 0.077 0 0.085 0 0.083 0 0.072 

") Ref..,9). 
b) Ref. 30). 
c) Ref. Jr) assuming the same/32 as used for 24°Pu. 

For the alpha decay, the number  of  level crossings comes out to about 4, 

corresponding to 8 particles that moved across the Fermi surface. For the heavier 
particles, the number  of  level crossings is also nearly equal to the mass number  of  

the daughter  nucleus. With a rough argument we can explain this equality as follows. 
The displacement field acts on the single-particle phase density without compression. 
When particles are moved through a surface along one direction, say the z-direction, 
there is a compensat ion shift in the distribution in p= to preserve the phase space 
density. Thus we could expect that the total number  of  particles moved through the 

Fermi surface would equal the number  moved through some initial spatial surface. 
Note that to preserve the center-of-mass position, when particles are moved outside 

the surface on one side, there have to be other particles moved through the surface 
on the other side. Thus, 2A particles moved through the spatial surface of  the initial 
nuclear shape. 

4. The off-diagonal interaction 

We now develop a more realistic treatment of  the off-diagonal interaction connect- 

ing neighboring states at different deformations. In our view, the pairing interaction 
is largely responsible for mixing these states. We define the pairing hamiltonian in 
the usual way, 

H = - G  ~ a+ a~,a~,av.. (4.1) 
t,,v' 

Here a~ + and a ,  are the fermion creation and annihilation operators,  and the time 
reversal of  the state ~, is denoted ~. The sum in (4.1) is restricted to include each 
pair of  states (u, ~) only once. Note that because there is no restriction on the 
quantum numbers;  all single-particle states are connected by (4.1). This contrasts 
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with the behavior  of  single-particle fields, which have severe restrictions on allowed 
single-particle transitions. 

The pairing interaction is important in a different way as well; pair-correlated 
states have greatly enhanced pair field matrix elements, compared to the pure 

configurations. So we will apply the results of  sect. 2, not using individual configur- 

ations but, rather, pair-correlated states as the discrete wave functions on the 
collective path. We shall evaluate the effective u between such states starting from 
the BCS approximation.  

Heavy nuclei are, as a rule, superfluid in their ground state. In the BCS approxima- 
tion the state is described by the wave function 

I¢'Bcs) = l-I ( U,, + V~a~a+~]) . (4.2) 
1, 

The single-particle energies of  the states ~ are functions of  the collective coordinate 

s ~. Very generally, one can divide these levels according to whether the energies 
increase or decrease with s ~. Ar each level crossing, a Cooper  pair will be moved 
from an upsloping to a downsloping level under the influence of the pairing force, 
without being excited from the condensate. Thus, the matrix element we have to 
calculate is 

u = - G ( O _ ( N  - n)~,+(n)lHol~_( N - n + a)~+(n - a)) 

= - G ( l , l , _ ( N - n ) l y . a ~ a ~ l , l , _ ( N - n + l ) ) ( , l , + ( n ) l y . a ~ . . a , , . l ~ + ( n - 1 ) ) ,  (4.3) 
i,  p '  

where O+(n) and ~ _ ( N - n )  are the wave functions associated with the upsloping 

and downsloping orbitals filled with n and N - n pairs respectively, the total number  
of  nucleons being 2N. 

Recognizing that the BCS wave function can be expressed as 

where bn. and b,, are normalized amplitudes which vary smoothly with the particle 

number,  one can approximate  the matrix elements appearing in (4.3) in terms of  
the BCS matrix element. We write 

(Oacsl~ a+,. a+ I~bBCS) =- ~ b..+,b.2(O+(n2 + 1)1 ~ a +a+ IO+(n2)) 
v n 2 v 

+ Y. b',+lbn,(qJ_(n, + 1)1 Y~ a+~a'~ IO-(nO) .  
n t u 

Assuming now that (qJ±(n + 1)]Y.. a+a~]qJ±(n)) are independent of  n and equal to 
each other, and that* 

~ b,+~bn = ~ b '+ib"  ~ l (4.5) 

* This  will over  es t imate  the  mat r ix  e lement ,  s in ~, ,  b,,+~ b,, will be s o m e w h a t  less than  one.  
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we obtain 

+ + + + 1 + + ( ~ + ( n + l ) l X a , , a ~ l O ÷ ( n ) ) ~ - ( O _ ( n - 1 ) l Z a , a ~ , l ~ _ ( n ) ) ~ _ ( ~ B c s l a ~ a o l ~ B c s ) .  (4.6) 

Using the relation 

A 
(~'Bcs I E + + = -  (4.7) a .a~lOacs)=Y. U.V~ G '  

u v 

the matrix element v can now be written as 

G ( ~  2 zl-' 
v =  ~ - \ ~ ]  = 4 G '  (4.8) 

A being the pairing gap. Because in heavy nuclei, both protons and neutrons are 
superfluid, there will be contributions from both collectivities. We find 

v ~ (4.9) 
4G ' 

where Ai (i = ~, v) are the pairing gaps associated with each type of particles. 
From eq. (2.5), the inertial mass can be written as 

O = h 2  2 G  (dn'~ 2 
A ~, + A - - ~  \d~:J " (4.1 O) 

The result (4.8) is very natural, viewing the shift of a Cooper pair as a "pickup" 
of  a pair of  particles from the upsloping levels in the condensate, and a stripping 
onto the downsloping orbitals of the same condensate, without exciting any quasipar- 
ticle. In the BCS approximation, each of these processes is associated with an 
amplitude of  the type of  (4.7). The factor ~ in (4.8) arises because of the four possible 
types of  jumps of pairs between up- and downsioping levels, only one (up to down) 
leads to level crossings. 

It is interesting to compare eq. (4.10) with the cranking inertia, as obtained in 
eq. (9.48) of ref. 2), or eq. (4.47) of ref. ,6). In agreement with (4.10), the cranked 
inertia depends on pairing gap as D -  A-2. The crucial role of pairing is clear from 
this functional dependence. The larger the pairing gap, the smaller the inertia for 
collective motion, i.e. the easier it is for the system to move collectively. This is just 
a physical statement of  superfluidity. 

The coefficient of  A -2 is different in our approach and the cranking model. In 
our model the coefficient depends on G, the pairing interaction, while in the cranking 
model it depends only on the slope of  single-particle energies with respect to 
deformation. The validity of the two approaches has been examined in various 
models. In the model discussed in ref. 5), the present approach was found to be 
accurate while the cranking model could be quite misleading, depending on the 
choice of  the cranking field. In another model discussed in ref. tT), the cranking 
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model was found to be correct in the adiabatic limit, as expected. This limit requires 
that the frequency of  the motion satisfy to .~ A In the opposite limit, to ~, A, our 
expression (4.10) becomes more accurate. Perhaps coincidentally, the two inertias 
agree in practice to about a factor of two. We conclude from this discussion that 
the theoretical inertia is probably uncertain to about a factor of  two, and thus we 
cannot hope for high accuracy in the predictions of  the theory. 

In the systematic study we make in the next sections, we adopt for the pairing 
strength ,8) 

25 
G = -~- MeV. 

For A, we believe it is best to take a systematic average value rather than an empirical 
value that would be valid only at one fixed shape. We adopt the usual systematic 
formula 19), 

12 
A = ~ MeV. 

With these prescriptions, the effective interaction connecting neighboring shapes is 
given by 

v ~ -2 .9  MeV. 

Note that the A-dependence has dropped out completely. 
This magnitude of the off-diagonal interaction is consistent even with what is 

required in light nuclei such as '60 or 4°Ca to understand the mixing of  multiparticle- 
multihole states 2o). 

5. Explicit treatment of protons and neutrons 

Because the pairing gap and pairing coupling constants, as well as the number 
of  level crossings can be quite different for protons and neutrons, it is in some cases 
necessary to treat both degrees of freedom explicitly. 

We start defining a center-of-mass and relative motion collective coordinates 

z = z , ~ - z , ,  (5.1) 

D . z .  + D,,z., 
z - ( 5 . 2 )  

D ,  + Dv ' 

D = D .  + D . ,  (5.3) 

where z~ and D~ (i =T r, v) are the collective coordinates and the inertial masses 
associated with particles of type i. 

The collective kinetic energy 

h 2 d 2 h 2 d 2 
" 9 T =  2D.  dz~ 2D~ dzT, (5.4) 
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expressed in terms of the variables (5.1) and (5.2) becomes 

T =  T¢.r,.+ Try,, (5.5) 

where 

~12 d 2 

T¢.m.= 2D d Z  2 '  (5.6) 

h 2 d 2 

Trel = 2 d  d z  2" ( 5 . 7 )  

The quantity 

DrrDv 
d (5.8) 

D ~ + D ,  ' 

is the reduced mass of the system. 
Contrary to standard quantal problems, here it is the center-of-mass motion which 

is interesting, the relative degree of freedom being essentially trivial. Because of the 
very strong repulsive isovector potential I/i, it is energetically very unfavorable to 
deform the neutron- and proton-densities separately. Collective isovector oscillations 
all lie at high frequency. Thus the motion in the z-coordinate will adiabatically 
follow the Z-coordinate for the large-amplitude processes we consider here. 

One can thus identify Z with the collective coordinate ~: used in previous sections, 
or if protons and neutrons are treated explicitly Z,  -* ~, and Z,, --> ~:~. 

Different approximations to the corresponding equations can be used in the case 
where 

dn dn 
A = A  ~ A ;  G - ~ G , , ~ - G ,  dz,,---dz~" (5.9) 

In this case D,, = D,, and 

dn dn dZ  1 dn 

d z i - d Z  d z  i 2 d Z "  
(5.10) 

Consequently 

2C 
(5.11) 

as obtained before in eq. (4.10). 

6. Connection to the external region 

Having specified the dynamics from the parent shape to the touching daughter 
shapes, we must still propagate the nuclei under the external Coulomb barrier. In 
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this region the wave function is described by the relative coordinate between the 
two daughter nuclei, multiplied by the internal wave functions of  the daughters. On 
the other hand, up to the touching point the wave function is expressed in terms 
of single-particle orbitals, without well-defined positions for the daughter nuclei. 

There are two ways these representations can be connected to make a theory of  the 
decay rate, using the G a m o w  formula or Fermi's Golden Rule. 

In the Gamow theory, the rate is expressed as 

A = S f T ,  (6.1) 

where S is the probability of  forming the daughter nuclei, f is a barrier assault 
frequency, and T is the transmission factor of  the barrier. If  we were to use this 

formula, S would be calculated as S = a~,. Calculating combination f T  is more 
problematic,  because the formula requires the external potential to produce a 

resonance at the appropriate  energy and spatial position. In general the external 
potentials do not produce resonances whose wave functions peak around the 
touching distance Ro. 

For this reason we calculate the decay rate by the Golden Rule, which does not 
make any demands on the final-state wave function. The formula requires the matrix 

element of  the hamiitonian between an initial state and a final state. We take the 
initial state to be the eigenfunction of the hamiitonian discussed in sects. 2 and 4, 
omitting however the final configuration of  touching spheres. The final wave function 

is the continuum wave function of the daughter nuclei treated as particles, in which 
the relative wave function is calculated by solving the Schr6dinger equation. The 
matrix element connecting these is v, the matrix element to the touching daughter 

configuration, multiplied by the probability of  that configuration in the continuum 
final state. The formula is 

o ~ , d N  
A = 2~r(a ,_ , ) -v-~-~ (4~, 14tE) -" • (6.2) 

Here a°_l is the amplitude of  the ( n - l )  configuration in the eigenstate of  the 
internal hamiltonian, obtained by diagonalizing eq. (2.1). The continuum wave 
function qJE will be calculated from a one-body potential as mentioned above. 

To take the overlap we have to write the q~, configuration as a product of  two 
internal wave functions and a wave function describing the relative motion. In light 
nuclei, this cluster decomposit ion can be carried out with harmonic oscillator wave 

functions and yields some harmonic-oscillator function for the relative coordinate. 
However,  most of the wave function in the inside is unphysical because the wave 
function is antisymmetrized overall. We thus consider that a reasonable approxima- 
tion to the cluster wave function would be just the first peak in the harmonic-oscillator 
relative wave function. For the accuracy of the calculations we are doing here, we 

consider it adequate to make a further approximation,  taking the wave function as 
a gaussian centered at the separation distance R, of  the two nuclei in the touching 
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configuration. We take the touching distance as Rt = 1.2 (At/3+ a ~/3). The appropri- 
ate gaussian wave function would have a size parameter which is the same as the 
harmonic-oscillator wave function of  the lighter daughter nucleus, ~bn-- 
e-~r-R'~"/2g/~bA, with v = ( 4 5 a - ~ / 3 - 2 5 a - 2 / 3 ) a / 4 1 . 5 f m  -2. In keeping.with this 

ansatz, we obtain 

/ _ \  i/4 

Th'e density of  final states d N / d E  in eq. (6.2) is connected with the normalization 
of  the continuum wave function. We use the asymptotic normalization xe(r)--" 

YLM ( O ) sin ( kr + ~ ) / r which implies d N / d E  = 2tz / Trk. 
The continuum wave function ~bE should be calculated from a proximity potential 

consistent with the known heavy-ion interaction systematics, since the particles are 
in the external region. We have used a potential with the nuclear part taken from 
eqs. (III.1.40)-(III.1.43) of  ref. 27), giving 

-- V 0 ZaZA e2 
V(r)  = 1 d-e cr-R°)/a -~ - - r  ' (6.3) 

where 

Vo = 16zr3'/~aAa. 

The surface tension 3' is given by 

/N.--Zo\/N,,--ZA\I 
3'=0.95 1 - 1 . 8 ~ } ~  ~AA "}J M e V ' f m - 2  

while the reduced radius 

gaA RaRA 
R~ + R A 

is defined in terms of  the radii Ri = 1.233 A~/3-0.98 A~ -~/3 fm. The diffusivity para- 
meter and well radius in the potential are given by a =0.63 fm and R =  
R~ + RA+0.29 fm. We integrate the Schr6dinger equation in an outward direction, 
starting the wave function zero at 1-2 fm inside R. The wave function of  course 
grows exponentially in the forbidden region and turns into an oscillating function 
in the outer allowed region. We integrate to the second peak in the allowed region, 
which occurs at a radius R'. Then the normalized wave function is determined as 

/ d n \  n/2 u ( R )  2p, ~1/2 

where V(R ' )  is the potential at R'  and p, is the reduced mass of  the a + A  system. 
An example of a wave function is shown in fig. 4. 
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Fig. 4. The po ten t ia l  energy  of  the sys tem 2S2U---)24Ne+2°aPb is shown  wi th  a c o n t i n u o u s  line. The  
o a m p l i t u d e s  a ,  as a funct ion  of  the s tep  i are d i sp l ayed  in the inset  wi th  a d a s h e d - d o t t e d  curve.  The  

p roduc t  of  the con t inuous  wave  func t ion  and  of  the squa re  root  o f  the dens i ty  of  s ta tes  is p lo t ted  as a 

func t ion  of  the relat ive d i s t ance  with a d a s h e d  curve. 

7. Results and discussion 

The diagonal interaction for the hamiltonian in the internal region is still to be 
specified. In principle this requires Hartree-Fock or Strutinsky calculations, and 
the result would be a potential energy surface with shell fluctuations. We shall 
however assume, as others do, that the shell fluctuations are not too violent and 
the potential may be smoothly interpolated between the endpoints. We assume the 
potential energy varies quadratically about the minimum point, Q - 2 v  (cf. e.g. eq. 
(2.5)), and passes through the energy of the touching configuration as determined 
above with the heavy-ion potential. An example is displayed in fig. 4. 

The results of the model applied to representative alpha decays and the heavy- 
particle radioactivity are shown in tables 2 and 3. 

The effective preformation factors o )2 (a,,-i are of  the order of  a few percent for 
alpha radioactivity. For heavy-particle radioactivity this quantity is very small, 
ranging from 10 -I° to 10 -2°. The nucleus can fluctuate to make the alpha particle 
on the surface relatively easily, but not so to produce a C- or a Ne-particle. The 
amplitudes which we have calculated with the formalism discussed above, a °, can 
be parameterized according to a°-exp[-(i/n)2n(AE/v)l/2], where AE= 
U~+ UN --Q+2v is the energy needed for the system to get to the emission point. 

The theoretical a decay rates are generally within an order of  magnitude of the 
experimental. An exception is 223Ra, which is predicted too fast by a factor of 22. 
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TABLE 2 

The calculated decay constants for a-decay from the parent nucleus listed in column i are compared 
with the experimental data in columns 6 and 7. In column 2, the Q-value of the decay is given. In column 
3 we give the value of the constant ½C of the harmonic oscillator potential V(~:)=½c~ 2 between the 
initial configuration (~ = 0), touching sphere configuration (~: = 1 ). The value ofthe pairing rqatrix element 
between neighbor configurations used in the calculation is the standard one vim = 2.9 MeV. In columns 
4 and 5 we give respectively the amplitude of the internal wave function at the pre-formation point and 
the amplitude of the Coulomb wave function at the formation point. We have calculated the number of  
steps ns,cp needed to reach the final configuration using the phase-space method, obtaining in all cases 

ns,cp---4. The density of states in the continuum is p = 0.14 MeV -I fm -t 

~ ( R ) ( d n / d E )  I/2 
Decay Q (MeV) ½c (MeV) a,,_ t ,~ (s - ' )  Ac~ p (s -I)  

(MeV- fro) -I/z 

-'Z3Ra--) a 5.980 1.49 0.203 4.1 x 10 -14 1.6x 10 -5 7.0x 10 -~ 
2Z4Ra~ ~ 5.789 1.64 0.198 1.4x 10 -14 l.Tx 10 -6 2.2x 10 -6 
ZZ6Ra--) a 4.871 2.47 0.174 3.1 x 10 -17 6.5 x 10 -12 1.4x 10 -II 
Za~Pa~ a 5.148 2.92 0.162 4.0x 10 -17 9 . 0 x  10 -12 6.7x 10 -13 
23ZU ~ a 5.413 2.93 0.162 1.4 x I0 -16 1.1 x 10 -II  3.2 x 10 - l°  
-'33U ~ a 4.909 3.39 0.152 3.5 x 10 -18 6.2 × 10 -14 1.4x 10 -13 

234U"~ a 4.860 3.39 0.152 2.4x 10 -16 2.9x 10 -14 9.0x 10 -14 

Z41Am~ a 5.638 3.25 0.155 1.3x 10 -I~ 8.2x 10 -I1 5.1x10 -H 

On the average, the logarithm of  transition rates differs from the experimental by 
+0.1, showing that the model would not be much improved by refining its parameters. 

For the heavy-particle radioactivity, the predicted rates tend to be too fast for 
~4C decays and too slow for the heaviest emitted nuclei, such as 2SMg and 32Si. In 

view of  the extreme sensitivity of  the rates to the inertial parameter, this is perhaps 
to be expected. However, we find the situation satisfactory that the overall systematics 
of  the rates are reproduced by a microscopic model with no adjustable parameters. 

We now briefly discuss the relationship to other theories of  heavy-particle radio- 
activity. There are a number of macroscopic models 21-23), in which no connection 
is made to the underlying nucleon structure of  the wave function. A collective 
coordinate is postulated for an internal degree of  freedom which smoothly joins 
onto the separation coordinate between the final state daughter nuclei. In refs. 22,24), 

the inertia is assumed to have the classical liquid drop value. In view of  the fact 
that our inertia reproduces the overall systematics, we find it surprising that the 
calculations with a classical inertia do not consistently overpredict the transition 
rates. It is known from the dynamics of quadrupolar  motion that the microscopic 
inertia is an order of magnitude larger than the liquid drop inertia. One would 
anticipate that to be the case also for the more complex motions described here. 

Besides our own model, there was another study based on nucleon wave functions 
reported in ref. 24). In this microscopic theory, the authors calculate a spectroscopic 
factor for the cluster formation simply by projecting the daughter configuration out 
of  the initial parent wave function. Thus, all the fluctuations to the final shape are 
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already contained in the ground-state wave function. It seems surprising that a large 
enough spectroscopic factor is obtained in this way. At the level of  Hartree-Fock 
wave functions, conservation of the K quantum number makes the spectroscopic 
factor identically zero in many cases. However, the wave functions used in ref. z4) 
include pairing, and so some of the physics on which we rely is also'implicit in 
their treatment. Also, their joining point is at a smaller separation than the touching 
daughter configuration, so the required spectroscopic factor is not as large as in 
our treatment. These authors further developed a systematics 25) with the spectro- 
scopic factor proportional to a power of the number of particles in the daughter, 
S(A) = S(a)tA-'~/3. In our treatment, the probability is exponential in n and n ~ A -  

1 suggests a similar scaling. However, the potential function varies from case to 
case so we did not find a universal scaling behavior. 

Finally, we mention the work of Buck and Merchant 26), who use a cluster 
description with unit spectroscopic factor and get good agreement for both oL and 
heavy-particle radioactivity. It is only possible to have S = 1 with a more repulsive 
potential in the external region; their analytic potential does not have the characteris- 
tics just outside the touching point required to describe heavy ion fusion and 
scattering data. These authors also use a spin-dependent prefactor in their ( fT)  
formula for which we cannot find a justification. 

One last point relates to the pairing, which is seen to be an essential part of 
microscopic theory. Since pairing is reduced by odd nucleons, the decay rates should 
show a pronounced odd-even effect. While the data show the effect in a qualitative 
way, the magnitude is smaller than would be expected for a rate depending exponen- 
tially on the pairing gap. 

G.B. acknowledges support by the National Science Foundation under grant PHY 
87-14432. 

Appendix 

In order to characterize the shape of the nuclear surface, one can express the 
radius as a function of  the angle by 

R( O)= R( I + ~, flL YL( O)) (A.I) 

where R is the radius of  the undeformed sphere and YL(O) is the spherical harmonic 
YLM(O) with M = 0. (We only consider axially symmetric deformations here.) 

Then the density distribution of the deformed nucleus is 

p~(r, O) ~-p(r) -~, flLR dp(r) YL(O). (A.2) 
L d r  
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Multiplying this equation by YL(O) and integrating, one obtains 

21r f po(r,O)YL(O)dOdr 27r f po(r,O)YL(O)dOdr 

R f (Op/Or)dr Rp(r=O) 
(A.3) 

Note that while (A.2) is valid only for small deformations, (A.3) is valid in general. 
Calling [flo] the set of  deformation parameters of  the two touching spheres configur- 
ation, one can characterize an intermediate configuration [ilL] using a collective 
coordinate ~:, defined as 

fl L = ~ fl ° , 0~<Sr~<I, (A.4) 

which means that we consider a one-dimensional problem. 
The change from one value of  ~: to sC+ds c implies the flow of the Fermi liquid, 

that we characterize by the field of displacements u(r, so) ds c. We assume that there 
is no compression of  the liquid, that is, V • u = 0; then the field of  displacements 
can be written 

u(r,  ~)=~ CL(~)V[ rLYL(O) ] .  (A.5) 
L 

In the following the dependence on s c will be understood, and not written explicitly. 
The CL parameters can be determined from the /3L requiring (see fig. 3) 

Re(O) cos 0+  u.( R~( O), O) dE = Re÷d~( O') cos 0 ' ,  

Re(O) sin 0+  u~(R~(O), O) ds c=  R~+o~(0') sin 0 ' ,  

where 0' is given by 

sin 0 '=  R~( O) sin O+ ux( R~( O), O) dE 
[R~(0) + u2(Re(O), O) dsC+2u(R~(0), 0 ) .  RE(O) dsr] 1/2 

ux and u~ can be related to the CL parameters noting that 

(A.6a) 

(A.6b) 

ux=uocosO+ursinO, u:=-uosinO+u~cosO, 

where 

X" ( r L - I  dYL(O) Ur(r,O)=~,CLLrL-IyL(O), uo(r,O)=/_, L 
L t dO 

Writing the same equations at different points on the surface one obtains a system 
of equations that is linear in the cL, except for the dependence of  0' in CL. This 
system can be solved following an iterative procedure and using the least square 
method. 
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Due to deformation, the kinetic energy of  the nucleons increases as long as there 
is no change in the single-particle configuration. The increase in the kinetic energy 
is due to a deformation of  the Fermi surface, which is given by the transformation t3) 

p-* (1 + d~:(V x u) )p .  (A.7) 

where V x u is a tensor that can be written as 

V ® u  =Y. cL(V® u)L 
L 

with 

(v®u)L = V®(VrLYL(0)) 

The increase in kinetic energy continues until a level crossing occurs, that is, until 
there is a change in the quasiparticle configuration. This, on average, happens each 
time the volume of the phase space outside the Fermi sphere is equal to the phase 
space occupied by the panicles jumping from one orbital to another at the level 
crossing. With the change of configuration the Fermi surface becomes again 
spherical, diminishing in this way the kinetic energy and leading to a new minimum 
in energy, which we can identify with a locally stable HF configuration. 

In order to calculate the number of crossings along the trajectory in deformation 
space towards the scission point, one can simply count the number of times the 
phase space volume outside the Fermi sphere reaches the value corresponding to 
two panicles. We have performed this procedure dividing the path into I0 steps, 
and calculating at each step how much of  the phase space volume (Vex) is outside 
the Fermi sphere. We consider that at each of  these steps the initial Fermi surface 
is spherical, using the expression 

I:fo Io g¢~ = d~b sin 0 dO r2p(r) dr 

x d•. sin Op dO. dp (A.8) 
L( O.r,@ v ) .I PF 

where ps(O. r. 0,. ~b,) is the limiting momentum of the Fermi surface for a given 
direction in momentum space. The integration over 0p is performed in the domain 
L(O. r. 4~,) corresponding to the points that satisfy the condition 

ps( O, r, Op, ~b,) > pF. 

In the expression (A.8) for Vex the integration over ~ gives immediately 2~r due 
to the axial symmetry in spatial deformation. The integration overp  is also immediate 
since the limits of integration have been already calculated as explained above. For 
the integration over the momentum angular coordinates 0p and ~.  we use as 
coordinate system the principal axes o fV x u. Then the integration over the momen- 
tum coordinate is just the calculation of  the volume of  the paraboloid, that is not 



274 F.. Barranco et al. / Large-ampl i tude  mot ion 

within a sphere of radius PF- The paraboloid is not exactly axially symmetric, but 
in order to simplify the integration over ~b, we approximate it with another para- 
boloid, axially symmetric and with the same volume. In this way we end up with 
a three-dimensional integral that we calculate numerically [cf. eq. (3.5a, b)]. 
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