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ABSTRACT Software developers’ knowledge of integrated development environment (IDE) directly
impacts on their productivity. IDE command recommender systems aim at identifying and convincingly
presenting to software developers functionality that can help them to accomplish their daily tasks, without
overloading them with well known or useless information. Command recommendation requires the estima-
tion of both the utility of commands and the acceptance of the user for new command recommendations.
In this paper, we focus on how and when such recommendations should be presented. We performed a
long-term user study and our results show that IDE command recommendation must be presented with
adequate descriptions of the commands and good usage examples. It seems that a higher frequency of
recommendation notifications could be useful, but it should not be too intrusive, especially while developers
are focusing on more demanding tasks. To improve recommendation acceptance rate, researchers should
also focus on context-aware algorithms and tailor command recommendation timing.

INDEX TERMS Command, delivery, integrated development environment, presentation, recommender
system, software development.

I. INTRODUCTION
Software developers often perform their tasks in integrated
development environments (IDEs), which integrate multiple
tools, such as, advanced source code editors, testing tools,
automatic compilers, and debuggers. It is well known that
development tools affect software development efficiency
and quality [1], by speeding up repetitive tasks and allowing
programmers to focus on the more critical aspects of the
process [2].

IDE commands are shortcuts and menu buttons that exe-
cute different functions, such as Save, Run, Open Resource,
and many others. To improve command knowledge, IDE ven-
dors and researchers devised different types of recommender
systems (RSs). In software engineering, RSs are defined as
software applications that provide information estimated to
be valuable for a software engineering task in a given con-
text [3]. For example, the provided information can be the
suggestion to use a (not yet used) command.

In fact, very often, in high-functionality applications, such
as IDEs, the simple lack of adequate tool knowledge is the
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main reason for potentially useful functionality not being
used [4]. Additionally, as already mentioned, the tool knowl-
edge directly impacts on the productivity gain that the tool
is supposed to bring [1]. Moreover, since IDEs are complex
systems serving the needs of a large and diverse user popu-
lation, it is not required that a generic user masters the entire
provided functionality. For example, an average Eclipse user
uses 42 different commands, out of more than 1100 that are
available [5], which is probably not enough for an effective
IDE use, but clearly not all these thousand commands are
needed by all.

Therefore, what will be recommended is an important
question to answer when building an IDE command RS
(ICRS). Nonetheless, an additional aspect to consider, after
having identified useful command recommendations for a
specific user, is how andwhen these recommendations should
be presented to the user. This aspect is often neglected and it
is instead among the key analysis conducted in this paper.

At the moment, two general types of help systems, for
proactively improving the knowledge of available functional-
ity, can be found in IDEs. We call them tips and quick assists.
The first one is often implemented as a ‘‘Tip of the Day’’
window, at the launch of the application. This is not limited
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to IDEs, actually, it is used in diverse high-functionality
applications. However, users often get annoyed by such rec-
ommendations, especially when they are not able to identify
any really relevant information or when the recommendations
refer to already known commands [6].

In the second type of help solutions, suggestions are intro-
duced with a light-bulb icon that lets the programmer to open
a drop-down list of recommendations that help to fix the
issue. This approach is frequently used to support software
developers when they are editing source code that does not
compile or has some other errors.While items in these recom-
mendation lists are not limited to IDE commands, they often
include some. This type of functionality is called Quick Fix
and Quick Assist in Eclipse, Quick Action in Visual Studio,
and Intention Action Suggestions in IntelliJ IDEA. It could
have the side effect to inform the user about new editing
commands.

ICRS research community has designed, implemented,
and tested several algorithms (see [7]–[12]), graphical user
interfaces (GUIs) (see [13]–[15]), and even complete sys-
tems for recommending IDE commands in different settings
(see [14]–[16]). However, these RSs have not been integrated
in popular IDEs, yet; arguably because the accuracy and
acceptance of the recommendations are still too low to enable
practical usage.

There have been several attempts to apply techniques
developed for RSs in other domains, but they failed to effec-
tively tackle the substantially novel issues of IDE command
recommendation problem specificity. We argue that algo-
rithms, guidelines for user interaction, or results of evalua-
tions, which have been developed in other fields, cannot be
directly applied in ICRS.

The overall goal of our research is to advance the state
of the art in the design of effective ICRS. This is a gen-
eral objective that requires addressing some specific research
questions. First, it is important to understand whether the
quality of the algorithmically generated recommendations
should be improved and how this can be achieved (research
question RQ1, in the reminder). Then, we would like to know
how ICRS users, in general, learn new commands and if
they are aware of how they have learned them (RQ2). Then,
we are interested in understanding why users reject certain
recommendations (RQ3). And finally, because ICRS user
interfaces have not been produced and analysed extensively,
we want to explore this subject further: we want to know
which parts of theGUI are useful (RQ4) andwhen ICRS users
interact with the system (RQ5).

In this paper, we first analyse the IDE command rec-
ommendation problem (Sec. II) and relevant related work
(Sec. III). We continue by presenting the protocol, validity
threats, and results of a study that lasted 40 weeks; during
which we observed 697,485 executions of 282 distinct IDE
commands and delivered 508 recommendations, out of which
93 were accepted (Sec. IV). Finally, we provide a discussion
of not yet published results and potential improvements in
ICRS GUIs (Sec. V), before we conclude (Sec. VI).

We note that some of the results of this study were already
published at the International Conference on Software Engi-
neering (ICSE), which is the premier software engineering
conference. They are presented in [16], which is focused on
IDE command knowledge improvement. Hence, there is a
partial overlap between [16] and this paper, related to RQ1.
We include here a summary of relevant results shown in [16]
because we believe that RQ1 is crucial for understanding the
context in which the other four questions were answered.

II. PROBLEM STATEMENT
ICRSs aim at identifying and convincingly presenting to IDE
users the right functionality that can help them to accom-
plish their daily tasks, without proposing well known or use-
less information. The number of recommended commands
that a user can learn from an ICRS is not limited. In this
sense, accepting one recommendation does not exclude the
acceptance of another, which is typical in other RSs where
the user is supposed to choose from a set of alternative
items (e.g. a movie to watch). For example, the accep-
tance of a recommended Navigate Back command does not
affect the relevance of another command recommendation,
such as Debug or Organize Imports, which are also worth
learning.

In IDE command recommendation, the cost of making
a wrong decision is low: the rejection of a good recom-
mendation preserves status quo in the development process,
while the acceptance, i.e., execution, of a bad recommenda-
tion sometimes results in an undesired modification of the
artefacts under development, which fortunately can be often
reverted with minimal effort. If command recommendations
are presented adequately, the time needed to take a decision
can be short. In our study, as we will present also in Sec. IV,
the median time spent for reading command recommenda-
tions was less than 11 seconds.

On the other hand, fully understanding complex commands
may require a considerable cognitive effort, which may be
higher than what the developer is willing to invest. In case
of a bad recommendation, this effort may even exceed the
utility of the recommended command. And, on top of this,
the acceptance of recommendations requires also recipients’
awareness and acknowledgement of a deficit in IDE usage,
which may be unpleasant for certain developers [13].

As our results show, it is necessary, and likely sufficient,
to provide a good command description and usage example
for every recommendation. Then, if the recipients do not for-
get about the command, do not consider it useless, or are not
already using some other commands for the same purpose,
the command will probably be executed in the future.

Furthermore, popular IDEs typically include a few hun-
dred commands and command RSs have to rely exclusively
on implicit feedback (i.e., user actions) to infer the users’
opinions about the commands. RSs in other domains, such
as book or movie, are different, since they operate on much
larger datasets with thousands or even millions of items in
the catalogue, and they still collect explicit feedback, such
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as star-ratings or thumbs up/down.1 It is unlikely that minor
adaptations to mainstream algorithms may suffice; in fact,
existing research indicates that this is not the case [8], [9].

Once the command recommendations are identified, they
also have to be presented with a proper GUI that allows the
recipients to decide whether to accept them or not [17]. The
twomajor issues related to a RS’s user interface are: what will
be visualised and when. One could think that the holy grail of
ICRSs research is being able to recommend a command that
automates an action when the developer is trying to perform
the same task manually or in some other suboptimal way.
However, this could as well be a myth, because an instant
execution of a recommended (unknown) command would
require currently unattainable levels of the system’s accuracy
and users’ trust. For example, best performing neural net-
works achieve 64% accuracy in predicting what command a
user will execute next [18]. Besides, if the recipient decides
to consider such a recommendation, she has to interrupt her
work, which is rarely desired.

In practice, two main strategies for offering command rec-
ommendations can be implemented, namely: global sugges-
tions, where the system provides general recommendations,
not necessarily justified by the precise current state of the
user-system interaction or user activity; and opportunistic
suggestions, where the systemmainly takes into account what
the user is doing at a particularmoment and it provides recom-
mendations that are highly relevant in that context [19]. A typ-
ical example of global suggestions, already implemented in
many IDEs, are tips visualised at the launch of the application.
Conversely, a typical example of opportunistic suggestions
are commands in a drop-down list of quick assist recom-
mendations that can fix a source code error. If compared
with the help systems implemented by industry, regardless
of the adopted recommendation strategy, ICRSs suggested
by researchers should aim for a higher acceptance rate than
tips and should be able to recommend a wider spectrum of
commands than quick assists.
We used CoRe ICRS [16] in the study reported in this

paper, which is focused on global suggestions. Even though
we have not tested an opportunistic system that would gen-
uinely adapt recommendations to a specific context, the right
timing for recommendations must be determined and from
our results it seems clear that recommendation recipients
prefer to interact with the system when they are not working.
Interestingly, this was the case also in the computer-aided
design domain, where command recommendations complied
with the opportunistic strategy [19].

Finally, the recommendation presentation content plays an
important role in the usage of any RS. The GUI can affect
user’s trust and loyalty, it can change the user decision to
interact with the RS, and it can also influence user’s final
decision about the recommendation [20]. Moreover, based
on our experience, different GUI elements require different

1Implicit feedback is getting more important also in these domains but
they are usually combined with reviews and ratings.

levels of effort to be produced. For instance, videos of usage
examples are much more costly, in terms of required effort,
than command description. Thus, it is necessary to conduct
more research to better understand which information should
be included in the command recommendation presentation.
As already mentioned, we provide some new findings below.

It is also important to select a proper approach to notify
the user about the existence of recommendations. We assume
that every ICRS should be (somewhat) proactive, i.e., it will
not generate and present recommendations only at an explicit
user request. Consequently, there is a trade-off between the
level of potential distraction and decreased value due to a
delay [17]. A common balancing approach is the implemen-
tation of a negotiated interruption [21], which informs the
user about available recommendations, but does not force
any specific action. Obviously, there are alternatives, such as:
present a blocking dialogue with a recommendation, present
a dialogue with a notification and link, force the user to take
a tutorial, change focus, etc.

Combined with a selected notification approach, there are
many possibilities on when should a command be visualised
or when should ICRS users be informed about the exis-
tence of new recommendations, such as: notify about the
recommendation when it is most useful, when the devel-
oper is stuck, when there is a high chance of interaction
with the ICRS, on Monday morning, on Friday afternoon,
when IDE starts, etc. Up to date, the systems are simply
showing recommendations when they are generated or at
regular intervals, which is simple, but tends to cause unjus-
tified interruptions and may indirectly reduce the acceptance
rate.

In our study, we generated recommendations for six con-
secutive weeks, and on every Thursday, with a notification
dialogue and a change of color of the menu icon, we informed
the students that new recommendations are available. Our
results show that a higher frequency of recommendation noti-
fications could be rewarding.

III. RELATED WORK
ICRSs typically consist of three components, namely: a data
collectionmodule, which automatically accumulates required
data, such as executed commands, time, project artifacts’
metadata, etc.; an algorithm that generates command recom-
mendations, using the collected data; and a graphical user
interface, which is used for presenting recommendations to
the recipients. Most of the previous research focused on the
algorithmic component, while the importance of the com-
mand presentation and the quality of the collected data have
been largely neglected.

A. IDE COMMAND RECOMMENDER SYSTEMS
We are aware of three fully implemented ICRSs that have
been developed in the past. Spyglass [15] observes and ana-
lyzes user behavior to check whether certain steps could
be replaced by IDE commands. The input data is the IDE
command execution history.
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Vignelli [14] detects potential design flaws in the source
code, such as bad smells, and guides the developer through
the refactoring process. If an action in the refactoring process
can be automated, Vignelli recommends suitable commands.
The input data is the source code of the project.

CoRe [16] observes development contexts in which devel-
opers work and execute commands. It suggests commands
that could be relevant for the recommendation recipient’s
work, but are never used. Additionally, CoRe can use alterna-
tive algorithms, such as those based on command popularity
or collaborative filtering.

The input data for CoRe ICRS consists of IDE command
execution histories belonging to different users and contex-
tual information according to the context model suggested
by Gasparic et al. [22]. The model consists of 13 factors
that describe the situations in which developers interact with
the IDE, including: development activities, characteristics of
the source code under development, and state of the IDE
instance, described with visible and active GUI elements.
The inclusion of the model in CNTX algorithm [8], which
is the main recommendation algorithm in CoRe, is supported
by the model evaluation results, which show that developers
execute different commands in different contexts [22].

Regarding the ICRSs utility, Spyglass evaluation showed
that an ICRS can make developers aware of available tools
to a similar degree to a tutorial, but with less effort [15].
Murphy-Hill et al. showed that it is feasible to automati-
cally recommend useful IDE commands to software devel-
opers [9]. And CoRe evaluation showed that IDE command
recommendations successfully promote the exploration of
the IDE functionality, no matter whether they are based on
complex or simple algorithms, while the actual acceptance
rate is low in a real-life setting [16].

B. ALGORITHMS FOR IDE COMMAND
RECOMMENDER SYSTEMS
There is a wide spectrum of command recommendation
algorithms. Murphy-Hill et al. [9] used six algorithms based
on command popularity and collaborative filtering, by tak-
ing into account command executions histories. Zolaktaf
and Murphy [12] suggested CoDis, which is based on
command discovery patterns and co-occurrence of execu-
tions in sessions. Silva et al. [11] performed static source
code analysis to identify and rank opportunities for refac-
toring command executions. Gasparic et al. [8] suggested
CNTX, an algorithm that observes which commands are
executed in which development contexts and trains a regres-
sionmodel to generate recommendations. Damevski et al. [7]
used IDE-interaction data and applied topic modelling to
predict future behaviour of developers, which was ulti-
mately used for command recommendation generation.
Schmidmaier et al. [10] applied user modelling on tasks that
were extracted from the IDE-interaction data, to recommend
commands associated with a task that has the maximum pay-
off, according to a multi-armed bandit problem optimization.

C. USER INTERFACES FOR COMMAND
RECOMMENDER SYSTEMS
When it comes to IDE command recommendation presen-
tation, a few papers focus on this issue. Gasparic et al. [13]
designed and evaluated an ICRS GUI mock-up, which
was updated, based on the user evaluation, and imple-
mented for the purposes of another study reported by
Gasparic et al. [16] and also in the study reported in this
paper.2 Schmidmaier et al. [10] presented a set of ideas on
possible ICRS GUIs, but did not provide a comprehensive
description that could lead to implementation. Gasparic and
Ricci [23] published a discussion on whether context-aware
recommendations should always be provided ‘‘in context’’,
to which the answer is: ‘‘Not necessarily’’.

Essentially, we are left with the GUIs implemented in pre-
viously mentioned complete ICRSs, however, the assessment
of the GUI or detailed analysis of the user interaction are not
provided in the related evaluations.

Despite the fact that Spyglass [15] presents opportunistic
recommendations and CoRe [16] presents global recommen-
dations, these two GUIs are similar. They both change the
color of the menu icon and present a pop-up to inform the
developer about new recommendations. They present recom-
mendations in a list and when a command is selected, they
open a dialogue with the command explanation including a
recommendation rationale, shortcut, and a brief description
of the automated function. They differ in that CoRe includes
usage examples and Spyglass includes menu navigation
path.

The GUI in Vignelli [14] shows command recommen-
dations in the text describing the required refactoring pro-
cess. It notifies the developer about recommendations by
highlighting the parts of the source code that should be
refactored.

We would also like to mention some other GUIs, which
have been designed for command RSs in other domains, but
they may be related to ICRS applications. In OWL [24], a list
of Microsoft Word command recommendations is displayed
in a view that can be opened by clicking on a button in the
application toolbar; clicking on the name of the command in
the list results in a presentation of a short description and the
RS’s score, i.e. predicted utility for the user. In Community-
Commands [25], AutoCAD command recommendations are
presented in a palette, with a visible name and relevance to the
user’s current workflow, and a short description of the com-
mand in a tooltip. In QFRecs [26], two different user inter-
faces for presenting GIMP command recommendations are
implemented: in the ‘‘combined’’ interface, in the application
menu, recommendations for familiar commands are high-
lighted with blue and for unfamiliar with pink color, and in
‘‘separated’’ interface, unfamiliar commands are presented in
a palette, with full menu paths presented in the tooltips. And
finally, Wiebe et al. [27] suggested two command RSs for

2We provide a detailed description of the updated GUI in the next section.
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GIMP, both presenting recommendation lists, where clicking
on a command results in the visualization of the command
description and system’s confidence of the appropriateness
of the recommendation, together with the percentage of
all and similar users using the command in the ‘‘social’’
RS and a list of tasks related to this command in the
‘‘task-based’’ RS.

D. RECOMMENDER SYSTEMS IN OTHER DOMAINS
In the conclusion of this section, we would like to stress that
RSs for software engineering and command RSs represent
two relatively new domains of application, which evolved
from broader RSs research. More traditional RSs are defined
as personalized information search and filtering tools that
suggest useful items [28]. People encounter them daily, when
they are shopping on Amazon, selecting a movie on Netflix,
or building a network on LinkedIn.

The main differences between traditional RSs and ICRSs
are that ICRSs do not rely on explicit feedback, such as
ratings; the catalogue size of recommended items is much
smaller for ICRSs, but item complexity is typically higher;
and traditional RSs usually suggest a list of items, so that the
users may select (choose) one of them, mainly according to
their taste, and be satisfied with the selection. On the other
hand, ICRSs aim to convince the users that their interaction
with an IDE has to change, since all the recommended items
are worth being used during their work.

IV. LONG-TERM USER STUDY
We evaluated CoRe ICRS in a real-life setting, with first year
bachelor students. For 40 weeks, which is the entire school
year, we collected IDE-interaction events, such as, command
executions, editing actions, opening and closing of different
IDE views and other IDE GUI elements, etc. Altogether,
we detected 148 different user identifiers.

The time window of interest is from the beginning of the
recommendation generation, which started in week 26, until
the end of the study, i.e., the last 14 weeks. There were
19 users, out of previously mentioned 148, who received
command recommendations.

The research questions addressed in this paper, which we
already mentioned in the Introduction, are:

• RQ1: What is the perceived recommendation quality?
• RQ2: How users learn new commands and how much
they are aware of how they learn them?

• RQ3: What are the reasons for rejections of
recommendations?

• RQ4: Which GUI parts are important and useful?
• RQ5: When are users interacting with the ICRS?

A. RESEARCH METHOD
To evaluate the quality of CoRe ICRS, assess its effect
on user behaviour, and study user interaction with the
ICRS, we invited the students of the Introduction to Pro-
gramming and Advanced Programming courses, at the Free
University of Bozen–Bolzano, to participate to our study.

The majority of the study participants installed the monitor-
ing tools, listed below, in October 2016; others were invited
to join the study at the beginning of March 2017, when
the Advanced Programming course began. Data collection
started on October 12th 2016 and stopped on July 19th 2017.
The main milestones are visualized in Fig. 1.

FIGURE 1. Study milestones on a timeline.

To participate in the study, the students were requested
to install a custom version of Eclipse IDE, which already
included the necessary monitoring tools, namely, Eclipse
UDC3 and a special version of Mylyn, suggested by Kersten
andMurphy [29], which we call Lema.4 When Eclipse is run-
ning, these twomonitoring tools automatically log interaction
events and relevant context information, which is periodically
uploaded to our database.

On April 13th 2017, we asked the students to install
the GUI plugin for recommendations visualisation. Dur-
ing the next 6 weeks, on every Thursday morning, each
of 19 volunteers who installed the GUI plugin received top-
5 recommendations. Thus, every volunteer received 30 com-
mand recommendations, in total. Recommendations were
generated by three different algorithms:

• Most Popular5: baseline algorithm, often used for com-
parison of RSs also in other domains;

• CoDis6: the algorithm that performed best in the offline
study reported by Zolaktaf and Murphy [12]; and

• CNTX7: a context-aware algorithm, which was devel-
oped by us and it is described in [8].

Each user received recommendations from each algorithm
for two consecutive weeks. The sequence of the algorithms
was random, on the individual level, but we assured that there
were only small differences between the overall numbers
of participants who received recommendations in a certain

3https://www.eclipse.org/epp/usagedata/
4https://sites.google.com/site/mgasparic/eclipse
5We used the implementation available at https://github.com/ubc-cs-spl.
6We used the implementation provided by the authors.
7We used the implementation available at https://gitlab.inf.unibz.it/tural-

gurbanov/ide_rs.
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chronological order.8 Users had no information on how rec-
ommendations were generated.

The first set of recommendations was available on
April 13th 2017, which is 26 weeks after the beginning of
the data collection process, when also the Eclipse plugin for
visualising recommendations was published and the students
were invited to install it. The recommendation algorithms
require to be trained, hence, we used as training set all the
data collected between October 12th 2016 and Friday evening
before the Thursday on which recommendations were avail-
able. The delay of six days was necessary because the exe-
cution of training and command recommendation generation
required some time and we also had to manually prepare the
descriptions of the recommendations, which was very time-
consuming, particularly in the first two weeks.

FIGURE 2. ICRS toolbar icon (1), Recommendation List view (2), and
Notification dialogue (3).

When new recommendations were available, the GUI
showed a dialogue in Eclipse, as shown in Fig. 2. If the
Recommendation List viewwas closed, the user could open it
by selecting the ‘‘Show’’ button in the dialogue or by clicking
on the ICRS toolbar icon. Next to the command, in the
Recommendation List view, an icon also showed whether the
recommendation was already opened. When a user clicked
on a recommendation in the list, the selected command was
presented in the Command Recommendation view, which
included the command name, shortcut, description, usage
example, link to a step-by-step video guide published on
YouTube, and the explanation of the recommendation ratio-
nale, which had to be selected, before it was visualized, as can
be seen in Fig. 3.

8The number of users who received recommendations according to a
certain algorithm sequence is quite similar to others. For example, 4 users,
which is the size of the three largest groups, received recommendations in
the following order: ‘‘weeks 1 and 2: Most Popular, weeks 3 and 4: CNTX,
weeks 5 and 6: CoDis’’, and 2 users, which is the size of two smallest groups,
received recommendations in the following order: ‘‘weeks 1 and 2: CNTX,
weeks 3 and 4: Most Popular, weeks 5 and 6: CoDis’’.

We continuously monitored the usage of the IDE com-
mands and the interaction with the ICRS. We logged every
visualization and every click on the interactive GUI elements,
i.e., buttons, video link, and explanation. Beside the 19 vol-
unteers who installed all the required plugins and were able
to receive recommendations, we detected 129 other users.

Altogether, during the 40 weeks of data collection,
we detected 697,485 executions of 282 distinct commands.
An average user identifier is associated with 4,713 executions
of 32 distinct commands.9 If we only look at the sample
of 19 volunteers, we see that an average user identifier is
associated with 16,529 executions of 80 distinct commands.
Hence, it is evident that this sample of users, who installed
the GUI, is not representative of the entire population of study
participants.

Since we generated 30 recommendations for each of the
19 users, 570 recommendations were supposed to be deliv-
ered. But, because we were able to monitor when the content
of the Recommendation List views was visible on the screen,
we could check that only 525 commands were actually visu-
alized, i.e., at least the names of the recommended commands
could be seen in Eclipse IDEs used by different participants.
170 of these commands were recommended by the Most
Popular algorithm, 175 by CoDis, and 180 by CNTX.

To obtain additional information, we asked the recommen-
dation recipients to answer short questionnaires. The details
of the questionnaires are presented in Tab. 1. Remember that
the participants did not know that we used different algo-
rithms to generate recommendations, hence, they evaluated
the system as a whole.

In the first questionnaire, we asked the participants how
familiar are they with the recommended commands. The set
of possible answers was based on the taxonomy proposed
by Anderson-Meger [30]. The question was delivered via
Eclipse dialogue every time the Command Recommendation
view (see Fig. 3) was closed, until the participant answered
the question related to the specific command. We received
290 answers from 17 different participants. The analysis of
this data is out of the scope of this paper, but we mention
this questionnaire on the sake of completeness and for better
understanding of the full study execution protocol.

In the second questionnaire, the participants were asked
four questions. Firstly, we asked them how they learned about
the command and we provided a set of possible answers,
which is similar to the one used by Murphy-Hill et al. [31].
The answers to this question were used to answer RQ2.
We also asked the participants to mark on a five-point Likert
scale how strongly they agree with three UTAUT [32] state-
ments, however, as for the first questionnaire, the second part

9As expected, the distribution of the command executions has a long
tail: 11 most active users contributed almost 50% of command executions,
25 most active contributed more than 80%, and 64 most active users con-
tributed more than 99% of command executions. Overall, the most used
command is Undo, with 118,520 executions; it is closely followed by the
Paste command, with 117,646 executions. On the other side, 20 commands
were executed only once.
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FIGURE 3. Recommended command name (1), shortcut (2), description (3), usage example (4), link to the video guide (5), and recommendation
explanation (6).

of the second questionnaire is also out of the scope of this
study.

The second questionnaire was delivered via Eclipse dia-
logue after a new command discovery was detected. The
command was considered discovered only if it was executed
at least five times and was not executed before 7th April.
To find newly discovered commands, we analysed the
IDE-interaction history logs every week, for 6 weeks, which
is the duration of the recommendation generation period, but
we started with a delay of two weeks, to give time to the
users to adopt the recommendations. We stress that we asked
the user to fill the second questionnaire even if the command
was never recommended. We detected 103 newly discovered
commands, but we only showed one questionnaire at a time
and some users eventually stopped answering. Consequently,
the number of shown questionnaires is 69 and the number of
answered questionnaires is 53. The answers were provided by
12 different participants.

The third questionnaire contained 8 different questions.
Firstly, we asked what the participants think about the quality
of the recommendations, using three statements suggested
by Knijnenburg et al. [33] and a five-point Likert scale. The
answers to these questions were used to answer to RQ1.
We collected 13 answers from 13 different users.

Afterwards, we provided a personalised list of randomly
selected commands that were never used, even though they
were recommended. For each command, we asked the par-
ticipants why they did not use it. We note that we limited
the size of the list to maximum three commands, in order
to achieve higher response rate, by not making the ques-
tionnaire too long. Not all participants received three ques-
tions in this part, either because they accepted a lot of
recommendations or because they did not interact with the
CoRe ICRS enough. Altogether, we collected 31 answers
from 12 respondents. The answers were used to answer
to RQ3.

The last part of the third questionnaire contained four
questions that we already used in the mock-up evaluation
study [13]. These questions are: which parts of the GUI are
necessary and which are useful for evaluating the quality of
the command recommendation; and whether some informa-
tion is missing in the command recommendation presentation
and which. For each question we received 13 replies from
13 different users. They are all related to RQ4.

The third questionnaire was available on a web page,
to which the link was provided in the IDE. It was deliv-
ered one week after the last set of recommendations was
available.
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TABLE 1. Questionnaire details.
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B. VALIDITY THREATS
A number of threats affect the results of our evaluation.

1) CONCLUSION VALIDITY
Conclusion validity is related to the correctness of the con-
clusions about the relations between the treatment and the
outcomes of the study [34]. In our case, the main threat to the
conclusion validity is the fact that only 19 students partici-
pated. Hence, the ability to reveal correct patterns in the data
is decreased. Furthermore, our study is exposed to the threats
of the ‘‘reliability of the treatment implementation’’ [34].
In fact, we observed that the recommendation acceptance
decreases over the weeks. Consequently, the application of
the same treatment, which in our case refers to providing
recommendations generated by a specific algorithm, is not
the same for different persons who received the treatment in
different weeks.

In other words, if the set of participants was larger and
different from the one we had, e.g., if the participants were
less eager to use the ICRS or maybe less skilled than our
volunteers, and if the algorithms used had generated different
recommendations, leading to either higher or lower accep-
tance rates, also the interaction with the ICRS could change.
Consequently, it is safe to assume that the collected data could
be different, just as our conclusions. We partially decreased
the potential impact of the two threats by using three different
algorithms and randomly selecting the sequence of the treat-
ments for the participants.

The third relevant conclusion validity threat in our study
is ‘‘reliability of measures’’ [34]. It is possible that when
the same phenomenon is measured twice, the outcome is
different. That could happen, for example, because of poor
question wording or bad instrumentation. To mitigate this
threat, we used well tested software to collect the data and
standard questionnaires suggested in the literature. When we
could, we combined different techniques to measure the same
phenomenon and compared the results. For example, we used
questionnaires and compared the results with the observations
of the user behaviour, which were based on automatically
collected data.

2) INTERNAL VALIDITY
Internal validity is related to the correctness of the
causal influences that affect the observed variables, with-
out researcher’s knowledge [34]. In our case, because the
algorithms were used at different times and in a differ-
ent sequence, it is possible that the history and the mat-
uration of the subjects affected the results; for example,
by demoralising some participants with initial bad recom-
mendations. To mitigate this threat, we randomly selected the
sequence of the algorithms for each participant. We believe
that different effects could average out, however, our sam-
ple was rather small and we were not able to control
or measure the effect of history and maturation on the
results.

The second internal validity threat is related to the selec-
tion of the participants, which was based on the voluntary
participation. Since volunteers are generally more moti-
vated than the whole population, they are not represen-
tative. This was the case also in our study. We noticed
that the students who installed the GUI have much bet-
ter knowledge of IDE functionality than other students,
who were also invited to participate, but rejected the
invitation.

3) CONSTRUCT VALIDITY
Construct validity is related to the correctness of the results
generalisation to the theory behind the study [34]. In our
case, a potential threat is ‘‘mono-method bias’’ [34], which
is similar to ‘‘reliability of measures’’. If we used only one
measurement method and this method is biased, the results
would be wrong. For example, in our study, we observed
that the perceived usefulness of recommendation expla-
nation was high for those participants who did not look
often to these explanations and low for those partici-
pants who opened explanations regularly. This contradic-
tory behaviour of the participants also poses the question
whether the perceived usefulness of a certain GUI element
can be artificially high in an unreal setting. To decrease
this threat, we used automatically collected data to assess
the actual effect of the explanation on recommendation
acceptance.

4) EXTERNAL VALIDITY
External validity is related to the correctness of the
results generalisation to the industrial practice [34].
In our case, the student volunteers who installed the
GUI show certain similarities, according to the command
knowledge, with the experienced IDE users working in
academia and industry, who participated in the case study
reported by Gasparic et al. [22]. Nevertheless, the setting
in which the study took place was not similar to indus-
trial settings, hence, the generalisability of the results is
questionable.

C. RESULTS
In this section, we present the results of our study related to
the previously introduced research questions.

1) RQ1: WHAT IS THE PERCEIVED
RECOMMENDATION QUALITY?
Out of 525 delivered command recommendations, 17 were
executed at least once before they appeared in the recipi-
ents IDE and we do not take them into account. From the
remaining 508 recommendations, 93 were executed at least
once and 415 were never executed by the recommendation
recipient. Consequently, the recommendation acceptance rate
is a bit larger than 18%. This is almost the same as the
proportion of the recommended IDE commands, generated
by the best performing algorithms, which were rated as useful
and novel, as reported by Murphy-Hill et al. [9]. It is also
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considerably less than in the study reported by Li et al. [19],
with AutoCAD recommendations.10

Despite a relatively low recommendation acceptance rate,
we observed a considerable increase in the number of newly
executed commands, which followed the introduction of
the ICRS GUI. Before our system started recommending
commands, an average student from the experimental group
(see [16]) executed around 56 distinct commands. By the
end of the study, this number increased to 80. Conversely,
the number of executed distinct commands by the students
who were using only data collection tools, and did not receive
recommendations, i.e., control group, remained almost the
same in the second half of the study, which means that they
basically stopped executing new commands, after less than
20 weeks. We can conclude that by providing recommenda-
tions, even if the acceptance rate may be low, the discovery
rates increase considerably, when our ICRS is introduced.

The answers to the questions at the beginning of the third
questionnaire show that our study participants had a positive
opinion of the CoRe ICRS. As can be seen in Fig. 4, all
participants liked the commands recommended by the system
and 54% consider them relevant for their tasks, while others
were undecided. Furthermore, as shown in Fig. 5, only 8% of
the participants think that the system recommended too many
bad commands, 15% are undecided, 69% disagree with the
statement, and 8% strongly disagree.

FIGURE 4. Agreement with the ‘‘I liked the commands recommended by
the system’’ and ‘‘The recommended commands were relevant for my
tasks’’ statements.

2) RQ2: HOW USERS LEARN NEW COMMANDS AND HOW
MUCH THEY ARE AWARE OF HOW THEY LEARN THEM?
As already mentioned, we collected 53 answers to the first
question in the second questionnaire, which is about the learn-
ing source for the commands that have been newly discovered
and regularly used. However, five replies were: ‘‘Actually,
I am not using this command’’. We excluded these answers

10To allow the comparison of the results obtained by Murphy-Hill et al.
and Li et al., we had to calculate how many of all recommended commands
were identified as useful and novel by recommendation recipients. In [9],
the best performing algorithms were Most Popular and User-based Collabo-
rative Filtering, which recommended 19.2% of such commands.We note that
those recommendations were not delivered in a real-life setting, instead, they
were presented orally by the researchers. In [19], Item-based Collaborative
Filtering recommended 30.9% of commands rated as useful and novel.

FIGURE 5. Agreement with the ‘‘The system recommended too many bad
commands’’ statement.

from the analysis, since we only want to consider commands
that the users did use, and they were also aware of the fact.

Amongst the remaining 48 replies, in 23 of them, which
is 48%, the users state that the ICRS recommended the com-
mand. However, after reviewing automatically collected data
about IDE-interaction, we could see that only 12 commands
of those were actually recommended. The other 11 replies,
which are wrong, were provided by 5 different participants.
Consequently, we can conclude that at least some study
participants are either unaware or oblivious to the source
from which they learned new commands. The users seem to
overestimate the influence of the ICRS and assume that they
learn from ICRS even more than they actually do.

When it comes to other learning sources, 29% of the com-
mands were recommended to the ICRS users by another per-
son; 13% of the commands were discovered autonomously,
when the users explored the Eclipse interface; 6% were dis-
covered when a user noticed that someone else is using it;
and 4% were discovered in a way that was not listed amongst
possible answers. These proportions are visualised in Fig. 6.

FIGURE 6. Learning sources for newly discovered and regularly used
commands.
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We would like to add that during the study we detected
103 newly discovered and regularly used commands,
amongst which 59 were not recommended, 35 were recom-
mended by Most Popular, 8 by CoDis, and 1 by CNTX.
This clearly shows that the commands that are used most
frequently, after they are discovered, are either recommended
by the Most Popular algorithm or they are discovered without
the ICRS.

We assume that this is due to the fact that in IDEs there
are commands that are often executed several times in a very
short time period, in order to achieve the desired result, such
as, Resume, Toggle Breakpoint, Step Into, Step Over, Select
Next Word, Select Previous Word, Refresh, etc.; and there
are others, which are usually executed only once, such as,
Generate Getters and Setters, Build All, Toggle Breadcrumb,
and Add Javadoc Comment. Consequently, even though all
the listed commands were discovered during our study, it is
clear that our requirement somewhat biased the data collec-
tion in a way that favoured the commands recommended by
the algorithm that is based on the execution frequency.

3) RQ3: WHAT ARE THE REASONS FOR REJECTIONS
OF RECOMMENDATIONS?
In the third questionnaire, we asked the participants why they
did not use certain recommended commands. We received
answers for 31 recommendations, but we excluded 6 answers,
because the participants said that they actually think that they
are using this command.

As can be seen in Fig. 7, most of the recommended
commands have not been used because the recommendation
recipient forgot about the command. This was the answer for
40% of the questions. In 28% of the cases, the recipients think
that the command is not useful for their work. In 16% of
the cases, the recipients do not know exact reasons for not
using the command. In 12% of the cases, the recipients are
already using other commands to do the same thing as the
recommended command would do. And only in 4% of the
cases, which represent one relevant answer in this survey,
the recipient thinks that the recommended command is too
hard to use. This particular command is Force Return, which
is considered quite complex also by us.

It seems that the number of rejected recommendations
could be decreased with some improvement of the GUI
and the recommendation algorithm. As already mentioned,
almost 82% of the recommended commands were never
executed and we observe that each component is related
to around 40% of these implicit rejections. Our hypothesis
is that the acceptance rate could be enhanced considerably,
by improving the quality of ICRSs, however, the theoretical
limit is likely below 100%, since a notable part of the rejec-
tions remains unexplained.

4) RQ4: WHICH GUI PARTS ARE IMPORTANT AND USEFUL?
Fig. 8 shows which parts of the GUI are considered necessary
and which useful for the evaluation of the quality of the
command recommendation, by 13 participants who answered

FIGURE 7. Reasons for recommendation rejection.

FIGURE 8. Results of the questions about the usefulness of the GUI parts.

the third questionnaire. The participants selected the usage
example as the most useful GUI part. The part that contains
command name and description is considered necessary by
69% of the participants and useful by 77% of the participants.
Finally, the explanation of the recommendation is considered
the least important GUI part: only 8% consider it necessary
and 31% consider it useful.

Additionally, when we look at the answers related to the
very last question, which is about the missing information
in the GUI, we can see that 12 out of 13 respondents to
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the questionnaire think that all the necessary information is
already provided. And one participant who thinks that some
information is missing did not tell us which information
that is. Since the results are in agreement with the findings of
Gasparic et al. [13], it is safe to assume that providing com-
mand name, description, and usage example should suffice.

Furthermore, we studied the interaction with the GUI, as it
was detected by our monitoring tools. In the last 14 weeks
of the study, we detected 355 events that denote the opening of
the recommendation presentation and 107 opening events of
the recommendation explanation. Step-by-step video guides
remained almost completely unused. We detected only
15 clicks on the link, by 6 users. If this number was higher,
we could question the quality of the videos, however, based
on the information we have, we can only conclude that after
reading the command presentation the users were not willing
to spendmore time interactingwith the system, apropos of the
specific command. This is also confirmed by the observation
that most of the videos were longer than a minute, but the
median time spent for reading the content of one command
recommendation presentation was less than 11 seconds.

107 recommendation explanation opening events refer to
87 distinct commands, which means that the users rarely
look at the same recommendation explanation twice. This is
yet another indicator that the attention span available to the
ICRSs is very short.

Interestingly, the users who often open the explanation of
the recommendation rationale consider it unnecessary and
not useful for evaluating the recommendation quality. Con-
versely, the users who consider it useful are reading it very
rarely: amongst 4 participants (i.e., 31%) who marked the
explanation as useful, one opened 3 explanations, one opened
1 explanation, and two did not open any explanation. We can
see from the logs of IDE-interaction events also that when
the recommendation recipient opens the presentation, there
is a higher chance that she will execute the command in the
future than if the presentation was not opened. Moreover,
if the recommendation explanation was opened, this chance
is even higher. More precisely, if the recommendation presen-
tation was opened, the chance of acceptance is 34% and only
10% otherwise. If the explanation was opened, the chance
of acceptance is 42% and 19% otherwise. All that is in the
agreement with one of the previous observations that the users
are not the most reliable source of information. Still, we can
conclude that providing recommendation explanation should
not be considered as mandatory.

5) RQ5: WHEN ARE USERS INTERACTING WITH THE ICRS?
When we studied ICRS-interaction history logs, we noticed
that the users tend to check several recommendations in a
short time period. We treated the sequences of recommen-
dation openings where two consecutive events were less
than three minutes apart as one session. And we observed
that 355 recommendation presentation openings occurred in
only 83 such sessions. Hence, on average, more than 4 rec-
ommendations are opened in one ICRS-interaction session.

There are 20 session when only one recommendation was
opened and there are 16 sessions when more than 5 recom-
mendations were opened.

We also analysed whether the users interact with the
ICRS before, during, or after the work. We combined the
IDE-interaction logs with the ICRS-interaction logs. We con-
sidered ICRS-interaction sessions that happened at least three
minutes after the previous IDE-interaction event as sessions
that are detached from the previous work, i.e., they could only
occur before the student started working. ICRS-interaction
sessions that happened at least three minutes before the fol-
lowing IDE-interaction event were considered as sessions that
are detached from the following work, i.e., they could only
occur after the student started working. Sessions for which
both conditions were satisfied were considered as sessions
that occurred in isolation. And the sessions for which none
of the conditions was satisfied were considered as sessions
that occurred during the work. Our results show that 37% of
the sessions occur before the work, 17% occur during, and
8% after. 37% of the sessions occur in isolation.

These results indicate that only a small proportion of com-
mand recommendations had a potential to be executed soon
after they were recommended. In our opinion, this means
that even in a case of well-tailored opportunistic suggestions,
the effect of the contextual relevance of the recommended
commands on the recommendation acceptance rate would be
small. Instead of focusing on the timing of actual recom-
mendations from the perspective of their applicability in the
given context, it would be worth considering improving their
memorability.

Furthermore, as our results show, out of 1025 commands
used by 19 volunteers for the first time after the introduction
of the GUI, i.e., after April 13th 2017, 230 were executed
within the first hour since the notification of newly avail-
able recommendations.11 This is more than 22% of all new
executions. On the other hand, only 35 of those commands
were executed in the first three minutes. Because only one
user received more than 6 such notifications,12 in the period
of 14 weeks, it is safe to assume that a higher frequency of
notifications could lead to additional exploration of the IDE
and evenmore executions of new (recommended) commands.

V. DISCUSSION AND FUTURE WORK
Knijnenburg andWillemsen [35] define user studies as small,
observational, and used to iteratively improve the usabil-
ity of RSs. In general, such studies offer a possibility to
gather important evidence about a certain real-life phe-
nomenon, which can be studied in-depth, within a setting that
does not separate the phenomenon from its natural context,

11We excluded from the analysis 95 commands that were executed before
the first notification was shown.

12The notifications were supposed to be visualised altogether six times,
on the first IDE launch after a new set of recommendations was available.
However, apparently, one user did not always close the notification dialogue,
so it reappeared at the next IDE launch. We detected 10 dialogue openings
for this particular user.
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as laboratory experiments do [36]. Consequently, user stud-
ies, such as the one reported in this paper, provide valuable
insights that can complement more quantitative empirical
evidence originating from other types of research.

As our results show, the perceived recommendation quality
of commands suggested by three different algorithms is high,
despite the fact that the actual acceptance rates are relatively
low. Students who installed our CoRe ICRS explored the IDE
functionality autonomously and their command discovery
rates increased considerably compared to the students who
did not receive recommendations. ICRS users assigned credit
to the system for learning more commands from it than they
actually did, which also indicates that the users are not well
aware of the learning sources for new IDE commands.

It seems that the acceptance rates could be considerably
improved by better algorithms and also by a different GUI.
As we found out, more than 80% of the recommended com-
mands were never executed because the users forgot about
them, the commands were not useful for the users’ work,
the users were using other commands to achieve the same
result, or the commands were too hard to use.

Furthermore, our results show that opening of com-
mand recommendation presentation significantly increases
the chance of recommendation acceptance and that more
than 90% of the users think that it contains all the required
information. It is also obvious that the users rarely test rec-
ommendations by executing commands. If that was not the
case, the recommendation acceptance rate would be higher
and the number of interactions with ICRS that happened in
isolation or after the work would be lower.

We had a chance to analyse which parts of the recommen-
dation presentation are to be included in the future ICRSs
and we could compare the results of an online evaluation
with the mock-up based prototype evaluation reported by
Gasparic et al. [13]. Usage examples are considered the most
important. They were marked as useful and as necessary
by even a larger proportion of the participants than in the
previous study. Since step-by-step video guides were viewed
very rarely, it is safe to assume that only a picture of usage
example is necessary to be included in the presentation.

Command name and description of its function are also
important, but less than what we would expect, according to
the previous research results. On the other hand, our results
suggest that the explanation of the recommendation can be
omitted. While it is anecdotal knowledge that recommen-
dation explanations are important in RSs, in our live user
study we found that it is not required; a similar conclusion
applies for video guides. The fact that ICRSs do not need to be
transparent, opens the door to a whole set of machine learning
models and algorithms that perform well in other domains,
but depend on a large number of parameters, which makes
it hard to explain why certain commands are recommended.
Examples would include deep-learning algorithms, which are
very popular nowadays [37].

Furthermore, our analysis of the observed interactions
with the GUI confirmed that the users prefer to assess

recommendations when they are not working. Moreover, they
generally open more than one command recommendation
presentation in a single session. Hence, it seems that global
recommendations are more suitable for software developers
than opportunistic ones, even when the recommendations are
context-aware (as it was in our experiment). It also shows that
frequently forced interruptions may not fit ICRSs. However,
when we asked our students why they did not execute certain
recommended commands, the most common answer was that
they forgot about them, which indicates that there is room for
developing new methods for improving the user’s awareness
of available recommendations. Maybe, it is worth recom-
mending the same command more than once, if the system is
confident that this is a useful recommendation. Hence, digital
nudges for encouraging developer actions may offer a viable
solution [38].

To summarise our findings, researchers and IDE vendors
should create command recommendation presentations that
include the description of the command and a good usage
example, while they focus on new algorithms and tailoring
of command recommendation timing to further explore the
domain of ICRSs. We are confident that these two aspects are
strongly related to contextual information, which may play
even a more crucial role in the future.

Context is any information that can be used to characterise
the situation of an entity that is considered relevant to the
interaction between a user and an application [39]. We distin-
guish between two types of context, namely, the context of the
past IDE command executions and the context of the software
developers in which they work and execute (recommended)
commands. The first type is the most natural contextual infor-
mation in ICRSs. It is the history of executed commands,
often including the information about the timing13 of these
executions. This information is required in order to build the
catalogue and avoid recommendations of known commands.
Despite the simplicity of such data, it is powerful enough in
certain situations. For example, in our study, the algorithm
that only counts command executions and recommends the
most popular unknown commands achieves much higher
acceptance rate than the more sophisticated solutions: CoDis
and CNTX [16]. If one wants to quickly deploy a system that
generates recommendations, while collecting additional con-
textual data, or one is targeting unskilled IDE users, starting
with a history of command executions is worthwhile. Addi-
tionally, there are publicly available data sets of command
executions that can bootstrap such a process.

When it comes to additional contextual data, their accu-
mulation is rather expensive and developers may be reluc-
tant to share it [13]. Still, we believe that there is a lot of
potential in advanced context modelling and in recommen-
dation algorithms that can handle such information better
than simple collaborative filtering, which generally suffices

13The timing of command executions can either refer to a raw timestamp,
command’s position in a sequence of executions, session-related association,
or time of the day.
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in other domains. In ICRSs, it seems that developers’ activ-
ities represent the most meaningful information. In fact,
a developer would use different commands when editing or
debugging, for example. Damevski et al. [7] and our research
group [8] dug into this problem and some promising results
were obtained: in offline settings, new context-based algo-
rithms performed better than existing algorithms, according
to the selected metrics. Conversely, the usage of other IDE
usage data and development contexts, such as, developers’
knowledge, information about opened projects and screen
content, or reports on unsuccessful executions, is still largely
unexplored.

We also think that context would be highly useful for cor-
rectly timing when the recommendations should be offered
to the user. Damevski et al. [7] already showed that it is
possible to predict future behaviour, using context, hence,
we see a great potential in this relatively unexplored domain.
In fact, by tailoring the list of recommendations to activities
that are predicted to happen in the near future, one can gain
some benefits of the opportunistic recommendation strategy,
in particular, a higher relevance of recommendations in the
given situation, which may lead to better memorisation of
recommendations, even when providing global suggestions.

VI. CONCLUSION
Software developers learn about available tools in different
ways. For instance, during interactions with peers, which is
an effective, but infrequently used technique [31]; or from
paper newsletters posted in Google restrooms, where the
effectiveness of learning depends on different factors, such
as tool applicability and name memorability [40]. They can
also learn new tools from software applications, in particular,
IDE command recommender systems [16].

In this paper, we have introduced and discussed the con-
cept of IDE command recommendation and the results of a
long-term study where our recommender was used by a group
of students. We believe that the presented analysis can help
to better tackle this problem in the future.

To the best of our knowledge, this is the largest deployment
of an ICRS that is not integrated in IDEs available on the
market. We studied the interactions with the IDE and ICRS
GUI, using automatically collected data, and we used ques-
tionnaires to obtain additional information about ICRS users’
opinions and reasoning. We answered five research ques-
tions related to the IDE command recommendation delivery,
an aspect that is often neglected in this domain.

We plan to further explore the timing of command recom-
mendations and we hope that the research community will
continue with ICRS research as well. We believe that this
interesting functionality will someday be widely accepted
and put into practice.
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