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Abstract

Neural network algorithms are applied to the problem of option pricing and adopted to simulate
the nonlinear behavior of such !nancial derivatives. Two di/erent kinds of neural networks, i.e.
multi-layer perceptrons and radial basis functions, are used and their performances compared
in detail. The analysis is carried out both for standard European options and American ones,
including evaluation of the Greek letters, necessary for hedging purposes. Detailed numerical
investigation show that, after a careful phase of training, neural networks are able to predict the
value of options and Greek letters with high accuracy and competitive computational time.
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1. Introduction

A classical problem in !nancial engineering and econophysics is the development
of e9cient computational algorithms to price !nancial derivatives, and, in particu-
lar, options. There is a well developed framework, the Black–Scholes–Merton (BSM)
stochastic model [1], for option pricing. In this model, which is a standard for the
activity of !nancial practitioners, the price of a !nancial derivative is given by a de-
terministic partial di/erential equation. In principle, by solving this equation with the
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appropriate boundary conditions, the value of any derivative of interest can be obtained.
In practice, the BSM equation can be analytically solved only in the simple case of a
so-called European option. Actually, if we consider other !nancial derivatives, which
are commonly traded in the !nancial market and allow anticipated exercise or depend
on the details of the stochastic dynamics of the underlying asset (such as American,
Asian and Barrier options), analytical solutions do not exist and numerical techniques
are necessary. As discussed in literature [2], the standard numerical procedures are bi-
nomial trees, the method of !nite di/erences and the Monte Carlo simulation of random
walks. Very recently, alternative ideas have been proposed, especially in the econo-
physics literature, in order to develop novel e9cient and precise pricing algorithms
[3,4]. In the present study, we make use of the fast path integral approach developed
in Refs. [4,5], in order to generate large samples of precise option values.
With these samples at our disposal, we exploit the features of neural network al-

gorithms to capture the nonlinear behavior of option prices and Greek letters (i.e. the
derivatives of option values), with the goal of developing a neural network tool for
option pricing and hedging with a degree of accuracy and computational costs to be
of practical use. It turns out that neural networks are a suitable tool for this task, be-
cause of their Iexibility, reliability and the capacity of handling the multi-parametric
dependence of the solutions.

2. Neural networks: multi-layer perceptrons and radial basis functions

Neural networks (NN) are known as universal approximators, since they can inter-
polate a large variety of unknown mappings, once a training sample (̃xt ; ŷ t) is given.
Many types of NN, characterized by di/erent topologies, are available in literature [6,7],
but for our purposes layered networks perform better and we will therefore concentrate
only on them.
Tackling the issue from a formal point of view, the interpolation problem can be

put in the form of minimizing the following functional:

H (f̂) ≡
T∑
t=1

(‖ŷ t − f̂(̃xt)‖2 + 	‖∇f(̃xt)‖2) ; (1)

where ∇ is the gradient operator and 	 is a parameter accounting for the smoothness
of the required solution. This reduces to minimize the distance between a given set
of points ŷt and the answer of the unknown function f̂(̃xt). To this end, we have
critically compared two di/erent NN classes: the multi-layer perceptron (MLP) and
the radial basis function (RBF).
The chosen MLP is a single layer back-propagation network which employs the

scaled conjugate gradient (SCG) technique to update the parameters of the network.
This network can be summarized as follows:

f̂(̃xt) = h

{
k∑
i=1

cih(�0i + �̃′
1i x̃t) + c0

}
; (2)
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where x̃t are the input of the sample, h(x) is a smooth, monotonic, increasing function,
called activation function, which is in our case the sigmoid function 1=(1 + e−x), {c}
and �i are the parameters tuned by the SCG technique to minimize the error and k is
the number of hidden units or neurons.
On the other hand, the RBF can be cast in the following form:

f̂(̃xt) =
k∑
i=1

cihi(‖̃xt − z̃i‖) + p(̃xt) ; (3)

where z̃i are the centers of the various activation functions, ci are the parameters to
be optimized, p(̃x) is a polynomial, h is the activation function (a radially symmetric
Gaussian with variance �RBF) and k is the number of neurons, which is in our case
equal to the size of the sample t.
It is important to stress that in both cases the free parameters c and � are managed by

the supervised learning technique which is peculiar to the architecture, while for other
parameters, such as the number of neurons in MLP and the variance of the Gaussian
in the RBF, there is not a universal and well established procedure to optimize the
performance and the accuracy of the results.

3. Numerical results

When dealing with NN modeling, the numerical analysis follows two phases: the
training phase and the generalization phase.
In the !rst phase we used a variable size sample of the option prices, as calculated

by means of the path-integral method described in Ref. [4] and applied to European and
American options. The method gives predictions for option prices and Greek letters.
Although the investigation has been carried out for European and American options,
here we show results for European options only, for brevity.
With this path-integral sample the two networks are trained, in order to search for

their optimal con!guration, which is achieved when the error of the NN prediction is
lower than a desired level of accuracy. For RBF this amounts to tune the Gaussian
variance �RBF, while for MLP the training procedure has to be repeated for a number
of times, known as epochs. However, as discussed in literature [7], this strategy has a
drawback: if we exceed in the number of epochs, once we have stopped the training
phase, i.e. we have “frozen” all the parameters, the network typically performs very
well on the training sample, but the error is large when the network predicts new points
not present in the training sample. This is the so called over=tting phenomenon. In
order to minimize it, we take a sample wider than the training one, on which to test
the performance of the network and to start the generalization phase. Once the number
of neurons in the MLP architecture has been !xed, a minimum in the generalization
error is reached for a particular epoch.

3.1. Two-dimensional case

The price of options is completely speci!ed in terms of !ve parameters: the spot price
S, the strike price X , the risk-free interest rate r, the volatility � and the maturity (or
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Fig. 1. Price of an European call option, as a function of the spot price and maturity and corresponding to
r=0:1, X =10, �=0:05, simulated by a RBF Network (left) and the associated generalization error (right).
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Fig. 2. Price of an European call option, as a function of the spot price and maturity and corresponding to
r=0:1, X =10, �=0:05, simulated by a MLP network (left) and the associated generalization error (right).

expiration date) T . The preliminary studies about the networks’ performances refer to
a section of the price function O(S; X; r; �; T ) and, speci!cally, to the two-dimensional
domain de!ned by the parameters (S; T ), keeping !xed the other three variables.
This allows to provide a visual con!rmation of the networks’ behavior, as shown in
Figs. 1 and 2 for the RBF and MLP, respectively.
In the two-dimensional case we used a training sample of 400 option values and the

error obtained with the MLP is comparable with that of the RBF, being the average
error at the level of a few 10−3. The main di/erence between the two networks is
in the CPU time required for training: on a standard PC, the MLP equipped with 12
neurons takes about 15 min to perform a training over 105 epochs, while the RBF,
with a variance �RBF of 0.2, are trained very quickly in less than 1 min. Concerning
RBF, we observe a steep rise of the generalization error close to the boundaries of
the sample used in the training phase, as can be seen from Fig. 1. The reason for
this e/ect, not present in the case of MLP, is the following: every RBF neuron has a
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Table 1
Comparison between the NN multi-dimensional predictions for option price and Greek letters, as obtained
by RBF with �RBF = 0:2 and MLP with 50 neurons and 5 × 105 epochs

5D Price error � error � error

RBF 9:7 × 10−3 5:7 × 10−3 7:4 × 10−3

MLP 1:4 × 10−3 3:1 × 10−4 8:2 × 10−4

Gaussian as activation function, which gives an accurate output only if the input lies
within three standard deviations from the center. These “hats” overlap extensively, so
that every part of the function is shared by many neurons. Close to the boundaries, a
smaller number of Gaussians can cover the points, resulting in a poorer interpolation.
Besides the option price, other fundamental quantities of !nancial interest are the

so-called Greek letters, which are the derivatives of the price with respect to one
of the !ve parameters S; X; r; �; T and are useful for hedging purposes. For the sake
of simplicity, here we consider the Greek letters � and �, de!ned as � = @O=@S
and � = @O=@t. Since the path integral approach can give results also for the Greek
letters, NN predictions for the Greek letters can be obtained according to two di/erent
procedures: we can set up a new MLP or RBF and perform the two phases of training
and generalization directly on the values of the Greek letters, or we can keep the
network trained on the option price and compute the derivatives numerically, treating
the network itself as a function. We chose the second way, in order to evaluate the
smoothness of the network interpolation and develop a unique NN tool for pricing and
hedging. In this case the performance of the two classes di/er dramatically: the RBF
can catch the smoothness much better than the MLP architecture with 12 neurons.
However, as hinted in Ref. [8], the MLP performances can be improved by increasing
the number of neurons in order to let the SCG technique work in a wider space of
parameters. Actually, it has been checked that almost doubling the number of neurons
the MLP performance in the simulation of the Greek letters improved up to the RBF
ones, provided the number of epochs is increased together with the computational e/ort.

3.2. Multidimensional case

To simulate the multidimensional dependence of option prices and Greek letters
from the parameters S; X; r; �; T , the size of the training sample has to be considerably
increased in order to cover most of the regions in the whole set of !ve parameters and
obtain, in turn, accurate predictions.
Starting from a sample of 4000 events, the performances of the two architecture

signi!cantly di/er in the price prediction, being the price error at the 10−2 level for
the RBF and at the 10−3 level for the MLP, as shown in Table 1. When considering
the RBF, the only way to further reduce the error is to tune the �RBF parameter, even
if this procedure turns out to be useless whenever the size of the sample is insu9cient.
This is not the case of the MLP, where it is enough to increase the number of neurons,
and consequently the epochs, in order to reach the minimum in the generalization error.
As it can be noticed from Table 1, the RBF shows its weak side in the predictions for
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the Greek letters, being its generalization error one order of magnitude larger than the
one of the optimized MLP, obtained with 50 neurons and 5 × 105 epochs. To obtain
the results discussed above, the computational e/ort required by the training phase is
of the order of some minutes for the RBF and of more than 4 h for the MLP.
It is important to stress that, once the network is properly trained, the prediction

phase takes only a few seconds both for MLP and RBF, since the networks execute
only simple operations and the signal has only to be propagated forward once. All
these observations led us to turn our attention to the MLP architecture for further
optimization strategies (such as evolutionary algorithms), being the MLP the most
versatile NN, even if not so fast in the training phase.

4. Conclusions

We applied NN to the problem of option pricing, in order to capture the nonlinear
behavior of option prices and Greek letters with a high degree of accuracy and com-
petitive computational time. It has been shown that NN are a suitable tool for such a
task, being able to handle the complete multi-parametric dependence of the !nancial
derivatives. More speci!cally, RBF networks proved to work with more limited perfor-
mances, but they can be trained very quickly and can be used for preliminary checks,
while MLP, which require a longer phase of training, turn out to be at the end a rather
robust tool, especially in the modeling of the Greek letters.
Future developments concern the use of more sophisticated algorithms, in particular

evolutionary strategies, for the optimization of the MLP architecture and search for
optimal con!guration. The application of NN algorithms to pricing exotic options, as
well as to pricing options within non-Gaussian models of !nancial dynamics, is also
under inspection.
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