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Abstract

The free electron laser and collective atomic recoil laser (CARL) are examples of collective recoil lasing, where expo-

nential amplification of a radiation field occurs simultaneously with self-bunching of an ensemble of particles (electrons

in the case of the FEL and atoms in the case of the CARL). In this paper, we discuss quantum and propagation effects

using a model where the particle dynamics are described quantum-mechanically in terms of a matter-wave field, which

evolves self-consistently with the radiation field. The model shows that the scattered radiation evolves superradiantly

both in the case where the particle ensemble is short compared to the cooperation length of the system, and where

the ensemble is long compared to the cooperation length. In both short and long pulse cases there exist a classical

and quantum regime of superradiant emission. For short samples in both quantum and classical regimes the superra-

diant pulse has a low peak intensity and is said to exhibit �weak� superradiance. For long pulses in both quantum and

classical regimes of evolution, the dynamics at the rear edge of the sample is dominated by propagation. This produces a

�strong� superradiant pulse with much higher peak intensity than that predicted by �mean-field� or �steady-state� models

in which propagation effects are neglected.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The high-gain free electron laser (FEL) [1] and
collective atomic recoil laser (CARL) [2–4] are at
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first sight very different systems, but they exhibit

similar behaviors, showing self-bunching and expo-

nential enhancement of the emitted radiation. Both
systems were originally conceived in a classical

framework, where the discrete nature of the recoil

due to scattering of a photon by the particle was ig-

nored, usually being masked by temperature effects

in a typical experimental situation. In particular,
ed.
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CARLwas originally observed in hot atomic vapors

[5,6] and recently also in the presence of a friction

force due to optical molasses fields [7–9]. In these

experiments, the particle motion can be described

classically. However, new experiments using Bose–
Einstein condensates (BEC) [10–13] have made it

necessary to describe the center-of mass motion of

the atoms in CARL quantum mechanically [14–

20]. The model has shown the existence of new

quantumdynamical regimes ofCARL [17], inwhich

themomentum changes by discrete units of the pho-

ton recoil momentum 2�hk, where k is the wave num-

ber of the photon. The CARL experiments with
BECs have been performed in the superradiant re-

gime to date [10–13], where, in the absence of an

optical cavity, the radiation escapes rapidly from

the atomic sample. This regime has been described

using a �mean field� model, in which a phenomeno-

logical damping term inversely proportional to the

length of the atomic sample is added to the field

equation. However, a rigorous description of the
superradiant regime requires the solution of the ex-

act propagation equation of the radiation field.

Propagation effects may also be important for

CARL when the radiation is stored in an optical

ring cavity [21].

Propagation effects are known to be of great

importance in single-pass high-gain FELs [22,23].

In fact, different superradiant regimes have been
predicted, with peak intensity proportional to N2

(where N is the number of particles) both for elec-

tron bunches shorter (�weak superradiance�) or

longer (�strong superradiance�) than the coopera-

tion length Lc of the system. Moreover, propaga-

tion effects are fundamental in the self-amplified

spontaneous emission (SASE) regime, where the

initial incoherent shot-noise in the electron bunch
is amplified to generate a random superposition

of high-intensity superradiant spikes [24]. Hence,

a quantum description of the superradiant and

SASE regimes is timely and of great interest for

the current experimental realization of a future

X-ray coherent source [25,26].

In this work we give a quantum description of

the propagation effects both for FELs and
CARLs, described by the same system of partial

differential equations for dimensionless variables

[27]. The particle dynamics are described quan-
tum-mechanically in terms of a matter-wave field

obeying a Schrödinger equation coupled self-

consistently with the Maxwell equation for the

radiation field amplitude [28]. The model is based

on multiple-scaling perturbation theory, in which
the particle distribution evolves on the scale of

the radiation wavelength, whereas the radiation

amplitude evolves on a spatial scale much slower

than the radiation wavelength [29]. The model de-

pends on a single collective parameter �q which

rules the transition between the quantum and clas-

sical regimes, and which represents the amount of

recoil momentum transferred to the particle sam-
ple. The classical regime is recovered for large val-

ues of �q when the change of particle momentum is

much larger than the single-photon recoil �hk. We

demonstrate that in this limit the quantum model

reduces to the classical model, in which the equa-

tion for the Wigner function of the particle sample

reduces to the Vlasov equation for the classical

phase-space distribution. Conversely, in the quan-
tum regime (small value of �q), the model reduces

to the well-known Maxwell–Bloch equations [32]

for a two-state system, where the two states are

the initial momentum state and the state with

momentum displaced by the photon recoil

momentum.

The model predicts that, both in the case where

the particle sample is short or long compared to
the cooperation length of the system, there exists

a classical and a quantum regime of superradiance,

with peak intensity proportional to N2, where N is

the number of particles. In the case of classical

superradiance, many momentum states participate

in the emission and the particle momentum

changes by an amount much larger than �hk. Con-
versely, in the case of quantum superradiance,
only two momentum states participate in the inter-

action and each particle may scatters only a single

photon. For short samples in both the quantum

and classical regimes, the particle emits a �weak�
superradiant pulse with a main peak followed by

several peaks of smaller intensity (ringing). For

long samples, an initially �weak� superradiant

pulse develops near the rear edge of the sample
and is amplified when it propagates toward the

front edge of the sample (�strong superradiance�).
We show that our model admits two different
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self-similar solutions both for the classical and

quantum superradiant regimes, in which the peak

of the radiation intensity is proportional to N2 in

both the classical and quantum regimes, and the

scattered pulse width is inversely proportional toffiffiffiffi
N

p
in the classical regime and to N in the quan-

tum regime.

The paper is organized as follows. In Section 2,

we introduce the quantum model for collective re-

coil lasing with equations written in a universal

form appropriate to describe both FEL and

CARL systems. In Section 3, we present the quan-

tum propagation model introducing two different
spatial scales and we discuss the classical and

quantum limits of this model. In Section 4, we

show the existence of soliton-like solutions of the

propagation equations, describing the classical

and quantum superradiant regimes. In Section 5,

we present numerical results obtained by integrat-

ing the propagation equations and we discuss the

quantum and classical regimes of superradiance
in the short and long sample cases. Conclusions

are summarized in Section 6.
2. A unified model for CARL and FEL

The physics of FEL and CARL appear at first

to be quite different. The first describes a relativis-
tic high current electron beam with energy mc2c0,
injected in a magnet (�wiggler�) with a transverse,

static magnetic field Bw and periodicity kw, which
radiates in the forward direction at the wavelength

k � kwð1þ a2wÞ=2c20, where aw = eBw/mc2kw is the

wiggler parameter and kw = 2p/kw [23]. Instead,

CARL consists of a collection of two-level atoms,

driven by a far-detuned pump laser of frequency
xp, which radiates at the frequency x � xp in

the direction opposite to the pump [2]. In both

cases the radiation process arises from a collective

instability which originates a symmetry breaking

in the spatial distribution of the particles, i.e. a

self-bunching of particles which group in regions

smaller than the wavelength.

The quantum-mechanical dynamics of both
FELs and CARLs can be described by a Schrö-

dinger equation for the �matter-wave� field W [28],
coupled self-consistently with the equation for

the radiation field amplitude A:

i
oWðh;�tÞ

o�t
¼ � 1

�q
o2Wðh;�tÞ

oh2
� i�q

2
Aðh;�tÞeih � c.c.
� �

Wðh;�tÞ;

ð1Þ

o

o�t
þ 1

�

o

oh

� �
Aðh;�tÞ ¼ jWðh;�tÞj2e�ih þ i

d
�q
Aðh;�tÞ;

ð2Þ

where h is the phase of the particle, �t is the dimen-

sionless time, jAj2 ¼ ð2=N�qÞjaj2, where jaj2 is the

average number of photons in the volume V, and

jWðh;�tÞj2 is the space-time dependent particle den-
sity, normalized to unity. Notice that the dynamics

described by Eqs. (1) and (2) depend only on the

parameter �q and on the detuning d. The meaning

of the variables in Eqs. (1) and (2) is described sep-

arately for FELs and CARLs as follows.
2.0.1. FEL variables

For FELs �q ¼ 2�qF, where

�qF ¼ mccr
�hk

� �
qF ð3Þ

is the quantum FEL parameter,

qF ¼ 1

cr

aw
4ckw

� �2=3
e2n
m�0

� �1=3

ð4Þ

is the BPN parameter [1] and n = N/V is the aver-

age electron density. Typical values of qF are

10�2–10�3 in the high-gain regime, whereas usually
�q � 1 due to the large value of the quantum
parameter mccr/�hk. The other parameters are

d ¼ 2mcðc0 � crÞ
�hk

; ð5Þ

h ¼ ðk þ kwÞz� ckt ¼ ðk þ kwÞðz� vrtÞ; ð6Þ

�t ¼ z
Lg

; z1 ¼ �h ¼ z� vrt
brLc

; ð7Þ

� ¼ 2qF ¼ k
2pLc

; ð8Þ
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where vr = cbr = ck/(k + kw) is the electron resonant

velocity and cr ¼ ð1� b2
r Þ

�1=2
is the resonant energy

in mc2 units. The wiggler length z is expressed in

units of the gain length Lg = (2kwqF)
�1 = kw/4pqF,

whereas the coordinate along the electron bunch
z � vrt is expressed in units of the cooperation

length Lc = (2kqF)
�1 = k/4pqF.
2.0.2. CARL variables

For CARLs �q ¼ �qC, where

�qC ¼ S0g
ffiffiffi
n

p

xR

� �2=3

ð9Þ

is the CARL parameter [2–4]. The other parame-

ters are

d ¼ xp � x
xR

; ð10Þ

h ¼ 2kz; ð11Þ

�t ¼ ct
Lc

; z1 ¼ �h ¼ z
Lc

; ð12Þ

� ¼ xR

2x

� �
�qC ¼ k

4pLc

; ð13Þ
where n is the average atomic density, xR = 2�hk2/m
is the recoil frequency, Lc ¼ c=xR�qC is the cooper-

ation length,

g ¼

ffiffiffiffiffiffiffiffiffi
xd2

2�h�0

s
; ð14Þ
is the coupling constant, d is the dipole matrix

element, S0 = DX/[2(C2 + D2 + X2)], X is the

pump Rabi frequency, D is the pump-atom

detuning and C is the natural decay constant

of the atomic transition [4]. In CARL experi-

ments, usually D � C, X, so that S0 � X/
2D � 1. However, assuming D � C, S0 may be
maximized to 1/4 for D � X. In the CARL

experiments, atoms have a zero average velocity,

so there is not a distinction between the gain and

cooperation lengths as occurs in the FEL and

typically, �qC � 1 [10–12].
Notice that both in FELs and CARLs, �q scales

as n1/3, i.e. as the reciprocal of the inter-particle

distance.
3. Propagation model for quantum collective recoil

lasing

3.1. Basic equations

For typical values of the parameters, for

CARLs � � 10�8, whereas for FELs � � 10�3. Fur-

thermore, because of the rapidly oscillating factor
eih in Eqs. (1) and (2) it is not convenient to solve

these equations as they stand. Instead, we use a

multi-scaling approach [33] developing a perturba-

tion expansion of Eqs. (1) and (2) in the limit of

small �. This technique allows us to separate the

short spatial evolution of the system on the scale

of the optical wavelength as described by h, from
the much longer evolution of the system on the
scale of the cooperation length as described

by z1 = �h, treating h and z1 as independent

variables. A similar treatment has been applied

to describe light propagation in the classical FEL

model [29].

Applying the multiple scaling argument to Eqs.

(1) and (2) (see Appendix A for details) one ob-

tains the following propagation equations:

i
oWðh; z1;�tÞ

o�t
¼ � 1

�q
o
2

oh2
Wðh; z1;�tÞ �

i�q
2

Aðz1;�tÞeih
�

�c.c.�Wðh; z1;�tÞ; ð15Þ

oAðz1;�tÞ
o�t

þ oAðz1;�tÞ
oz1

¼ 1

2p

Z 2p

0

dh jWðh; z1;�tÞj2e�ih

þ i
d
�q
Aðz1;�tÞ; ð16Þ

Eqs. (15) and (16) form the desired set of equations

describing light propagation in the quantum collec-

tive recoil lasing model, i.e. yield the spatio-tempo-

ral evolution of the radiation field amplitude Aðz1;�tÞ
and the matter wave fieldWðh; z1;�tÞ. Notice that the
wavefunction W depends only parametrically on z1
as a consequence of the spatial dependence of the

field amplitude Aðz1;�tÞ. The model previously used

to describe the quantum regime of the FEL and
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CARL [15,17,27] is recovered from Eqs. (15) and

(16) neglecting the derivative with respect to z1
and the dependence on z1 in the field amplitude,

i.e. the variation of the field amplitude on the sample

of particles. This is appropriate for FELs when the
slippage (due to the difference between the light

and electron velocities) is negligible, and forCARLs

when the atoms are enclosed in a high-finesse ring

cavity, as in the experiments of [5–7].

The recent experiments on superradiant

Rayleigh scattering from a BEC [10,12] have been

previously described using the �mean-field model�,
in which the partial derivative oAðz1;�tÞ=oz1 in Eq.
(16) is approximated by a damping term �jAð�tÞ,
where Að�tÞ is the spatially averaged field and j is

the radiation loss, inversely proportional to the

photon escape time from the atomic sample. The

�mean field� model correctly describes the field

evolution in a high-finesse ring cavity, where

j � cT/Lcav, T is the mirror transmission

coefficient and Lcav is the cavity length. In free
space, the �mean field� model provides only an

approximate description of the field evolution. In

particular, it does not describe the ringing oscilla-

tion of the scattered field intensity after the first

peak. Instead, this feature is described by the exact

propagation model of Eqs. (15) and (16) as will be

discussed in the following sections. On the other

hand, Eqs. (15) and (16) provide a quantum exten-
sion of the classical model with propagation for

FELs [29,22,23], used to describe superradiant

and SASE regimes. The solution of Eqs. (15) and

(16) depends on the dimensionless length

L ¼ L=Lc, where L is the length of the particle

sample.

Eqs. (15) and (16) describe the pulsed regime of

CARLs andFELs for a particle sample that initially
is unbunched on the scale of the radiation wave-

length, i.e. such that Wðh; z1;�t ¼ 0Þ is independent
of h. Since h enters Eq. (15) only through the peri-

odic function eih, Wðh; z1;�tÞ is a periodic function

of h. It can be shown that Eq. (15) implies:

o

o�t

Z 2p

0

dh jWðh; z1;�tÞj2 ¼ 0. ð17Þ

Hence, the dimensionless density profile

I0ðz1Þ ¼
R 2p
0

dh jWj2 is independent on �t. This

means that the spatial distribution of the particles
does not change appreciably on the slow scale z1
during the interaction with the radiation.

3.2. Wigner description and classical limit

In general, the classical limit for CARLs and

FELs is obtained when the change of momentum

of the particles is much larger than the quantum

photon recoil �hk. This can be seen more easily

introducing the Wigner function of the particle

distribution.

Let us consider the standard definition of the

Wigner function associated with the wave function
Wðh; z1;�tÞ:

W ðh;p;z1;�tÞ¼
1

2p

Z þ1

�1
dne�inpW�

� h�n
2
;z1;�t

� �
W hþn

2
;z1;�t

� �
; ð18Þ

where p is the canonical momentum conjugate to h
(i.e. p = mc(c � c0)/�hk for FEL and p = pz/(2�hk) for
CARL, where pz is the linear momentum along the

z-axis). Note thatZ þ1

�1
dpW ðh; p; z1;�tÞ ¼ jWðh; z1;�tÞj2. ð19Þ

It has been shown [27] that Eqs. (15) and (16)

are equivalent to the following equations for the

quasi-probability distribution W ðh; �p; z1;�tÞ and

the field A:

oW ðh;�p;z1;�tÞ
o�t

þ�p
oW ðh;�p;z1;�tÞ

oh
��q
2

AeihþA�e�ih
� 	

� W h;�pþ1

�q
;z1;�t

� �
�W h;�p�1

�q
;z1;�t

� �
 �
¼0; ð20Þ

oA
o�t

þ oA
oz1

¼ 1

2p

Z þ1

�1
d�p

Z þ1

�1
dhW ðh;�p;z1;�tÞe�ihþ i

d
�q
A; ð21Þ

where �p ¼ ð2=�qÞp. On the right hand side of Eq.

(20), the incremental ratio

½W ðh; �p þ 1=�q; z1;�tÞ � W ðh; �p � 1=�q; z1;�tÞ�=ð2=�qÞ
! oW ðh; �p; z1;�tÞ=o�p

when �q ! 1. Hence, for large values of �q, Eq.
(20) becomes the Vlasov equation:
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oW ðh; �p; z1;�tÞ
o�t

þ �p
oW ðh; �p; z1;�tÞ

oh
� Aeih þ A�e�ih
� 	

� oW ðh; �p; z1;�tÞ
o�p

¼ 0. ð22Þ

Eqs. (21) and (22) form the classical CARL-

FEL model extended to include propagation

[29]. More precisely, Eq. (22) holds for
�p � 1=�q. Since the momentum in units of the

photon recoil momentum is p ¼ ð�q=2Þ�p, the con-

dition �p � 1=�q implies that in the classical limit
the momentum transferred to the particles is

much larger than the photon recoil momentum.

For CARL, it means pz � 2�hk, for FEL,

mc(c � c0)� �hk. In this limit, the quantum recoil

effect due to the single photon scattering process

is negligible.
-10 -5 0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

(f)
(e)

(d)

(c)

(b)(a)

|Im
λ |

δ/ρ

Fig. 1. Imaginary part of the unstable root of the cubic

equation (28) vs. d=�q, for 1=�q ¼ 0 (a), 0.5 (b), 3 (c), 5 (d), 7 (e)

and 10 (f).
3.3. Momentum expansion and collective recoil

instability

Assuming that Wðh; z1;�tÞ is a periodic function

of h, it can be expanded in a Fourier series:

Wðh; z1;�tÞ ¼
X1
n¼�1

cnðz1;�tÞeinh. ð23Þ

By inserting Eq. (23) into Eqs. (15) and (16), we

obtain

ocn
o�t

¼ � in2

�q
cn �

�q
2

Acn�1 � A�cnþ1ð Þ; ð24Þ

oA
o�t

þ oA
oz1

¼
X1
n¼�1

cnc�n�1 þ i
d
�q
A; ð25Þ

Eqs. (24) and (25) are our working equations and

their numerical analysis will be discussed in the

next section. Note that from Eq. (23) it follows
that jcnj2 is the probability that a particle has a

momentum p = n in units of the photon recoil

momentum,

b ¼
X1
n¼�1

cnc�n�1 ð26Þ

is the bunching parameter and

hpi ¼
X1
n¼�1

njcnj2 ð27Þ
is the average momentum. The stability analysis of

Eqs. (24) and (25) has been carried out in

[15,17,20] for the case with no propagation. We as-

sume the equilibrium state with no field, A = 0,

and all the particles in the state n = 0, with
jc0j2 = 1 and jcmj2 = 0 for all m 6¼ 0. This is equiv-

alent to assuming that the temperature of the sys-

tem is zero and there is no momentum spread. This

equilibrium state can be unstable when the disper-

sion relation

k� d
�q

� �
k2 � 1

�q2

� �
þ 1 ¼ 0; ð28Þ

has complex roots. In Fig. 1 we plot the imaginary

part of k as a function of d=�q for different values of
�q. The classical limit is obtained for �q � 1 (see
Fig. 1(a)). In this case, the system is unstable for

dK 2�q, with maximum instability rate Imk ¼ffiffiffi
3

p
=2 at d = 0. When �q is smaller than unity

(Fig. 1(c)–(f)), the instability rate decreases and

the peak of Im(k) moves around d = 1, with peak

value Imk ¼
ffiffiffiffiffiffiffiffi
�q=2

p
and full width on d equal to

ð2�qÞ3=2. As discussed in [17,20], for �q � 1 the par-

ticles have almost the same probability of transi-
tion from the momentum state n = 0 to n = 1 or

n = �1 (i.e. jc1j2 � jc�1j2), absorbing or emitting

a photon. On the contrary, in the case �q 6 1,

jc1j2 � jc�1j2, i.e. the particles can only emit a pho-

ton without absorption.
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We now briefly discuss the meaning of the reso-

nance d = 1. For CARLs, from the definition (10),

it means x = xp � xR, i.e. the frequency of the

emitted photon is red-shifted by the recoil fre-

quency xR. For FELs, the resonance condition
d = 1 means, from the definition (5), mc2(c0 � cr) =
�hx/2, which corresponds to the center of the emis-

sion line in the FEL [30,31].

3.4. Quantum limit and two-state approximation

As shown by the linear stability analysis dis-

cussed above, the quantum regime of the CARL-
FEL system occurs for small value of �q, when a

particle scatters only a single photon. In this limit,

the dynamics is that of a system with only two

momentum states, i.e. the initially occupied state

with n = 0 and the recoiling state with n = �1. In

this limit, Eqs. (24) and (25), after defining the

�polarization� S ¼ c0c��1 exp½iðd=�qÞ�t� and the �popu-
lation difference� D = jc0j2 � jc�1j2, reduce to the
Maxwell–Bloch equations for a two-state system

[32]:

o

o�t
Sðz1;�tÞ ¼ �iDSðz1;�tÞ þ

�q
2
Aðz1;�tÞDðz1;�tÞ; ð29Þ

o

o�t
Dðz1;�tÞ ¼ ��q Aðz1;�tÞ�Sðz1;�tÞ þ c:c:

� �
; ð30Þ

oA
o�t

þ oA
oz1

¼ Sðz1;�tÞ; ð31Þ

where D ¼ ðd� 1Þ=�q and A ¼ A exp½�iðd=�qÞ�t�. No-

tice that in the quantum limit the average momen-

tum is Æpæ = �jc�1j2 = (D � 1)/2. Changing our

time variable to z2 ¼ �t � z1 ¼ ðct � zÞ=Lc, the spa-
tial and temporal derivatives become:

o

o�t
! o

oz2
;

o

o�t
þ o

oz1
! o

oz1
. ð32Þ

Assuming resonance in Eqs. (29)–(31) (i.e.

D = 0), A and S can be assumed to be real. Then,

introducing the Bloch angle /(z1,z2) such that

Sðz1; z2Þ ¼ ð1=2Þ sin/ðz1; z2Þ and Dðz1; z2Þ ¼
cos/ðz1; z2Þ, Eqs. (29)–(31) can be combined to give
the so-called sine-Gordon equation [34],

o
2/ðz1; z2Þ
oz1 oz2

¼ �q
2
sin/ðz1; z2Þ; ð33Þ
and

o/
oz2

¼ �qA. ð34Þ

Notice that the parameter �q in Eqs. (29)–(31)

may be eliminated redefining the variables as
A0 ¼ ffiffiffi

�q
p �A, t0 ¼ ffiffiffi

�q
p

�t, z01 ¼
ffiffiffi
�q

p
z1 and D0 ¼ D=

ffiffiffi
�q

p
.

With this quantum universal scaling the coopera-

tion length becomes L0
c ¼ Lc=

ffiffiffi
�q

p / 1=
ffiffiffiffi
N

p
. Fur-

thermore, with this new scaling, Eq. (1) (or

equivalently Eq. (15)) can be interpreted as a

Schrödinger equation for a single particle with a

�mass� �q3=2 in a self-consistent pendulum potential.

This provides an intuitive interpretation of the
classical limit, that holds when the particle�s �mass�
is large.
4. Soliton-like solutions for the classical and

quantum regimes

We now demonstrate that both the classical
equations (21) and (22) and the quantum equa-

tions (33) and (34) admit a self-similar solution

in which the field amplitude Aðz1;�tÞ is proportional
to the spatial coordinate z1.

Assuming that the medium extends from z1 = 0

to z1 ¼ L, the appropriate boundary condition for

the field equation (21) is A(z1 = 0, z2 > 0) = 0. In

fact, the pulse propagates only forward, so it is
zero at the trailing-edge z1 = 0. The boundary con-

dition for the particle equation (22) is

W ðh; �p; z1; z2 ¼ 0Þ ¼ W 0ðh; �pÞ, since the particle

does not radiate before the arrive of the pulse. It

is already known for FELs that Eqs. (21) and

(22) admit a solution of the form

Aðz1; z2Þ ¼ z1A1ðyÞ; ð35Þ

W ðh; �p; z1; z2Þ ¼
ffiffiffiffi
z1

p
W 1ðh; p1; yÞ; ð36Þ

where

y ¼ ffiffiffiffi
z1

p
z2; p1 ¼

�pffiffiffiffi
z1

p ; ð37Þ

and A1(y) and W1(h,p1,y) are solutions of the fol-

lowing equations:

oW 1

oy
þ p1

oW 1

oh
� A1e

ih þ A�
1e

�ih
� 	 oW 1

op1
¼ 0; ð38Þ
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y
2

dA1

dy
þ A1 ¼

1

2p

Z þ1

�1
dp1

Z þ1

�1
dhW 1e

�ih; ð39Þ

which can also be expressed as particle equations

[35,23]:

dh
dy

¼ p1; ð40Þ

dp1
dy

¼ � A1e
ih þ A�

1e
�ih

� 	
; ð41Þ

y
2

dA1

dy
þ A1 ¼ he�ihi. ð42Þ

In Fig. 2(a) and (c) we plot the intensity jA1j2
and the average momentum Æp1æ, as defined in
Eqs. (35) and (37), as a function of the self-similar

coordinate y ¼ ffiffiffiffi
z1

p
z2, as obtained from the numer-

ical solution of Eqs. (40)–(42).

On the other hand, self-similarity has been dem-

onstrated also for the sine-Gordon equation (33)

[34]. We assume a small initial tipping angle, i.e.

/(z1, z2 = 0) = /0, as a boundary condition for
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Fig. 2. Classical and quantum self-similar solutions. Classical

regime: jA1j2 (a), and hp1i ¼ h�pi= ffiffiffiffi
z1

p
(c), as a function of

y ¼ ffiffiffiffi
z1

p
z2, calculated from the numerical solution of Eqs. (40)–

(42). Quantum regime: jA2j2 (b), and Æpæ (d), as a function of

x ¼ ð�q=2Þz1z2, calculated from the numerical solution of Eq.

(44).
Eq. (33). Furthermore, by integrating Eq. (34) on

z2 with Aðz1 ¼ 0; z2Þ ¼ 0, one obtains also /
(0,z2) = /(z1,0) = /0. These boundary conditions

are consistent with a solution of the form /
(z1, z2) = U(x), where

x ¼ ð�q=2Þz1z2. ð43Þ
With the change of variable (43), the partial dif-

ferential equation (33) is reduced to the ordinary

differential equation

xU00 þ U0 � sinU ¼ 0; ð44Þ

with boundary conditions U(0) = /0 and U 0(0) = 0,
whereas the field amplitude is

Aðz1; z2Þ ¼ z1A2ðxÞ ¼
z1
2
U0ðxÞ. ð45Þ

Fig. 2(b) and (d) plot the quantum self-similar

solution jA2j2 (as defined in Eq. (45)) and

hpi ¼ ðD� 1Þ=2 ¼ �sin2ðU=2Þ as a function of

the self-similar coordinate x ¼ ð�q=2Þz1z2, as

obtained from the numerical solution of Eq. (44).

It is remarkable to note that in both the classi-

cal and quantum regimes the dimensionless ampli-
tude A of the field at the front edge of the particle

beam (z1 ¼ L) is proportional to L / N 1=3, so that

the number of emitted photons jaj2 ¼
ðN�q=2ÞjAj2 / N 2, i.e. is superradiant. From the

definition of the self-similar variables x and y given

by Eqs. (43) and (37), one can see that for z1 ¼ L
the width of the radiation pulse scales as L�1=2

in

the classical regime and as 2=�qL in the quantum re-
gime. These results apply to the recent experiments

on the superradiant regime of CARL with a BEC,

where L � 1 [10,12]. Since in the classical regime

the minimum of h�pi is approximately �L1=2 at

the front edge of the sample z1 ¼ L (as can be

obtained from Eq. (37) and from Fig. 2(c)), then

the minimum momentum in units of the photon

recoil momentum is hpi � �ð�q=2ÞL1=2
. Hence, the

classical regime in CARL superradiance occurs

for �qL
1=2 � 1, i.e., using the definition (9), for

GSR � xR, where GSR ¼ S2
0g

2nðL=cÞ is the superra-
diant gain [17].

The classical self-similar solution (35) has al-

ready been predicted for single-pass high-gainFELs

in the long-pulse limit (L � Lc), yielding the �strong
superradiant� regime [22,23] and the �self amplified
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spontaneous emission� (SASE) regime [24] when the

emission starts from shot noise. In the following, we

will show numerically the existence of a quantum

limit of the strong superradiant regime, provided

that the initial energy spread is below the photon re-
coil limit, i.e. mc(dc)0 < �hk.
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Fig. 3. (a) jAj2, (b) jbj and (c) Æpæ as a function of �t at z1 ¼ L
when L ¼ 0.1, �q ¼ 10 and d = 0.
5. Numerical analysis

5.1. Short samples – weak superradiance

We now investigate the collective recoil instabil-
ity in short samples, where by �short� we mean that

the particle sample length, L, is much shorter than

the cooperation length of the system, Lc, so that

L � 1. Mean field models have previously been

used [4,17,37] to describe the collective recoil insta-

bility in such short samples phenomenologically.

These models demonstrate that the collective recoil

instability results in the generation of a superradi-
ant pulse, with peak intensity � N2. Recent exper-

iments involving Superradiant Rayleigh scattering

from a BEC [10–12] are examples of this short

sample regime, as they can be described in term

of a CARL instability [19,36] in a short atomic

sample where L � 1.

We now investigate the evolution of the collec-

tive recoil instability in a short sample L � 1
including the full spatio-temporal evolution of

the particle and optical fields using the momentum

eigenstate amplitude equations (24) and (25) both

in the classical and quantum regimes. In the

simulations which follow, the interaction is initi-

ated by a small initial bunching in the sample.

The initial conditions for all the simulations are

Aðz1;�t ¼ 0Þ ¼ 0, c�1ðz1;�t ¼ 0Þ ¼ b0 and c0ðz1;�t ¼
0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b20

q
, where b0 = 0.01 so that from Eq.

(26) bðz1;�t ¼ 0Þ � b0.

5.1.1. Classical limit

Fig. 3 shows the evolution of the scattered

field intensity jAj2, the bunching parameter b

(26) and the average momentum Æpæ (27) as a

function of �t at the front edge of the particle

sample (z1 ¼ L) for the case where L ¼ 0.1,
�q ¼ 10 and d = 0. It can be seen that the scat-
tered field is emitted as a large pulse followed

by smaller pulses and that there is a strong den-

sity modulation or bunching at the front of the

sample. Although mean field models also predict

the appearance of the first pulse, the additional

pulses, or �ringing�, appear only when the effects

of propagation are fully described. The behavior
of the field intensity jAj2 and the mean momen-

tum Æpæ in Fig. 3 is in agreement with that pre-

dicted by the self-similar solution (35) shown in

Fig. 2(a) and (c).

Fig. 4 shows the momentum distribution at the

front edge of the particle sample (z1 ¼ L) at times

well before the first maximum of the scattered field

intensity (Fig. 4(a)), close to the intensity maxi-
mum (Fig. 4(b)) and well after the first maximum

of the scattered intensity (Fig. 4(c)) for the same



Fig. 5. (a) jAj2, (b) jbj and (c) Æpæ as a function of �t at z1 ¼ L
when L ¼ 0.1, �q ¼ 0.2 and d = 1.

Fig. 4. Momentum distribution jcnj2 at z1 ¼ L when (a) �t ¼ 10,

(b) �t ¼ 25, (c) �t ¼ 60 and L ¼ 0.1, �q ¼ 10 and d = 0.
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parameters as those used in Fig. 3. It shows that in

the early stages of the instability both n = 1 and

n = �1 are populated, and that several momentum

states are occupied during the course of the insta-

bility, with the mean particle momentum becom-

ing progressively more negative.

5.1.2. Quantum limit

We now consider situations in the quantum

limit where �qL
1=2

is sufficiently small that the quan-

tum nature of the particle-field interaction be-

comes significant.

In the case of a short particle sample such

that L � 1, the evolution of the field intensity,

the bunching parameter b, and the average
momentum Æpæ as a function of �t at the front

edge of the particle sample (z1 ¼ L) is shown in

Fig. 5 for the case where L ¼ 0.1, �q ¼ 0.2 and
d = 1. It can be seen that, similar to the case

of a short sample in the classical regime (Fig.

3), the particle sample emits a superradiant

pulse, followed by a succession of smaller pulses.

There is very close correspondence between the
full numerical simulation of Eqs. (24) and (25)

shown in Fig. 5 and the solutions of the self-

similar equations (44) and (45) shown in Fig. 2(b)

and (d). The different time scales of Figs. 3

and 5 for the quantum and the classical regime,

respectively, is notable. In fact, in agreement

with the definition of the quantum and classical

self-similar variables x (43) and y (37), the ratio
between the quantum and the classical time

scales is �q
ffiffiffi
L

p
=2 � 30 for �q ¼ 0.2 and L ¼ 0.1.

In addition, inspection of Fig. 5(b) and (c) shows

that in the quantum case the bunching factor b

is zero when Æpæ = �1, since in the two-state

approximation b � c0c��1 is zero when the parti-

cles are all in the state n = �1.
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The main difference between the classical and

quantum cases is the distribution of particle mo-

menta (see Figs. 4 and 6): in the quantum regime

shown in Fig. 6, the momentum states n = 0 and

n = �1 are the only ones populated throughout
the interaction, whereas in the classical regime,

many momentum states with both n > 0 and

n < 0 are occupied. Consequently, although the

evolution of the scattered radiation is similar in

both the quantum and classical regimes, the

evolution of the particle dynamics is very

different.

5.2. Long samples – strong superradiance

We now investigate the collective recoil instabil-

ity in long samples such that the particle sample is
Fig. 6. Momentum distribution jcnj2 at z1 ¼ L when (a) �t ¼ 90,

(b) �t ¼ 1260 and (c) �t ¼ 2100 and L ¼ 0.1, �q ¼ 0.2 and d = 1.

Inspection of Fig. 5 shows that these times correspond to points

well before, close to and after the first scattered intensity

maximum respectively.
much greater than the cooperation length i.e.

L � Lc or L � 1. In such cases, propagation ef-

fects are highly significant as radiation emitted at

the rear of the sample does not escape rapidly into

free space, but undergoes further interaction with
parts of the sample towards the front of the parti-

cle sample. This regime is most relevant to the

FEL, particularly when operating at short wave-

lengths e.g. X-rays, as typically L � 1.
5.2.1. Classical case

Fig. 7 shows the evolution of the scattered field

at different times for the case where L ¼ 30, �q ¼ 10
and d = 0. The particle sample occupies the region

0 < z1 < L, whereas in the region z1 > L the radia-

tion propagates into free space, escaping from the

front edge of the sample z1 ¼ L. It can be seen that

inside the particle sample there are two distinct re-

gions in which the evolution of the field differs con-

siderably. In the region where �t < z1 < L, the field

evolution is spatially uniform and can be described
by the mean field model [17,19] or �steady-state�
FEL theory [23]. In this region, the peak scaled

intensity jAj2 is independent of �q, which implies

that the real peak intensity scales as �N4/3. In con-

trast, in the region where 0 < z1 < �t, effects of

propagation are significant. This region contains

a high intensity, narrow pulse or �spike� of radia-
tion which evolves self-similarly as it travels
through the particle sample, increasing in intensity

and decreasing in width as it propagates. It can be

shown that this pulse is superradiant in character,

its peak intensity scaling as �N2. A physical expla-

nation for the emergence of this intense superradi-

ant pulse is as follows: At the rear of the pulse

z1 ! 0, the particle-field interaction evolves simi-

larly to the case of a short particle sample consid-
ered in the previous section. The particles emit a

small amplitude superradiant pulse. The emitted

field propagates away from these particles towards

the front of the sample, but instead of propagating

into free space as was the case for a short sample,

the pulse propagates forward through the remain-

der of the sample, being amplified as it propagates.

We distinguish this high-intensity superradiant
pulse generation from the (much lower intensity)

superradiant pulse generation from short samples



Fig. 7. jAj2 as a function of z1 at (a) �t ¼ 8, (b) �t ¼ 17 and (c)
�t ¼ 34 when L ¼ 30, �q ¼ 10 and d = 0.

Fig. 8. jAj2 as a function of z1 at (a) �t ¼ 11, (b) �t ¼ 21 and (c)
�t ¼ 34 when L ¼ 30, �q ¼ 10 and d ¼ 2�q ¼ 20.
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by referring to them as �strong� and �weak� superra-
diance respectively.

An interesting feature of the strong superradi-

ant pulses observed here is that they are not sensi-

tive to the pump-probe detuning, d. This can be

explained by the fact that the origin of these pulses

is spontaneous scattering by the rear part of the
sample, which then stimulates further scattering

as it propagates and is amplified during its passage

forward through the sample. This insensitivity to

pump-probe detuning is demonstrated in Fig. 8,

which has been obtained using the same parame-

ters as Fig. 7 with the exception that now

d ¼ 2�q ¼ 20. For this value of d, mean field theory

predicts no instability [17,20] as shown by Fig. 1,
and it can be seen from Fig. 7 that in the region

where z1 > �t the field intensity is not amplified.

In contrast, in the region in which the effects of
propagation are significant, 0 < z1 < �t, the growth
of strong superradiant pulses is not significantly
affected by the change in d. In fact, the growth

of the superradiant pulse is enhanced as it propa-

gates through �fresh� particles which have not been

perturbed or heated by any significant previous

interaction.

Fig. 9 shows the momentum distribution at the

front of the sample (z1 ¼ L) at different times. The

parameters used are the same as those for Fig. 8. It
can be seen that the superradiant pulse causes pop-

ulation of a large number of momentum states,

with both n > 0 and n < 0. The effect of the nar-

row, intense superradiant �spike� of radiation on

the momentum distribution of the particles at the

front of the sample as it propagates through them

is dramatically illustrated in Fig. 9(b) and (c). Fig.

9(b) shows the momentum distribution at the time



Fig. 9. Momentum distribution jcnj2 at z1 ¼ L when (a) �t ¼ 24,

(b) �t ¼ 31.7 and (c) �t ¼ 32.4 and L ¼ 30, �q ¼ 10 and

d ¼ 2�q ¼ 20.
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Fig. 10. jAj2 as a function of z1 at (a) �t ¼ 19, (b) �t ¼ 30 and (c)
�t ¼ 50 when L ¼ 30, �q ¼ 0.2 and d = 1.
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immediately after the arrival of the front edge

of the spike at z1 ¼ L (�t ¼ 31.7) and Fig. 9(c) shows

the momentum distribution after the passage of
the spike at z1 ¼ L (�t ¼ 32.4). The width of the

momentum distribution at z1 ¼ L can be seen to

increase by approximately an order of magnitude

during the short transit time of the superradiant

spike.
5.2.2. Quantum limit

As for the case of the classical regime, we now
consider the effects of propagation in a long sam-

ple where L � 1. Fig. 10 shows the scattered field

at the front edge of the sample (z1 ¼ L) at different
times. For regions of the sample such that
�t < z1 < L, the scattered field evolves uniformly

in space, as predicted by mean field theory [17],

which eventually is emitted from the front of the
sample as a hyperbolic secant pulse with area 2p
(see Fig. 10(b) for z1 > 30). However just as for

the case of classical dynamics (see Fig. 7) for

0 < z1 < �t the radiation emitted spontaneously

from the back of the sample propagates through

the sample to the front, and the evolution of the
field changes in character to a large amplitude

superradiant pulse.

As in the classical case (see Fig. 8), the superra-

diant pulse is not sensitive to the detuning d. This
is demonstrated by Fig. 11, which shows the scat-

tered field evolution for different times for an off-

resonant case where the parameters used are the

same as for Fig. 10 with the exception that now
d ¼ 3�q ¼ 0.6, for which mean field theory predicts

that the system is stable, as shown by Fig. 1. In

fact, it can be seen from Fig. 11 that in regions

where �t < z1 < L, no spatially uniform amplifica-

tion of the field occurs. In contrast, the slippage
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Fig. 11. jAj2 as a function of z1 at (a) �t ¼ 24, (b) �t ¼ 34 and (c)
�t ¼ 50 when L ¼ 30, �q ¼ 0.2 and d ¼ 3�q ¼ 0.6.

Fig. 12. Momentum distribution jcnj2 at z1 ¼ L when (a)�t ¼ 24,

(b) �t ¼ 38.5 and (c) �t ¼ 50 and L ¼ 30, �q ¼ 0.2 and

d ¼ 3�q ¼ 0.6.
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region 0 < z1 < �t still gives rise to a strong superra-

diant pulse.

Fig. 12 shows the momentum distribution at the
front of the sample (z1 ¼ L) at different times

which have been chosen to show occasions when

the atoms at z1 ¼ L are almost entirely in momen-

tum state n = 0 (Fig. 12(a)), almost entirely in

momentum state n = �1 (Fig. 12(b)) and in a

coherent superposition of the momentum states

n = 0 and n = �1 (Fig. 12(c)). The parameters used

are the same as those for Fig. 11. It can be seen
that in contrast to the case of classical evolution

in a long sample (see Fig. 9) only two momentum

states, n = 0 and n = �1, are populated during the

interaction. Note that in the case of Fig. 12(c),

where there is a coherent superposition of two

momentum states, then the atomic system is

bunched according to Eq. (26).
6. Conclusions

We have presented a quantum model for collec-

tive recoil lasing including the effects of propaga-

tion, where the temporal and spatial evolution of

the collective recoil lasing process is described.

The treatment is based on multiple-scaling pertur-
bation theory, in which the radiation amplitude

evolves on a spatial scale much slower than the

radiation wavelength. The model depends on a

single collective parameter �q which represents the

maximum number of photons emitted per particle

and rules the transition between the quantum (for
�q 6 1) and classical (for �q � 1) regimes. Our

results predict that the radiation produced during
collective recoil lasing evolves superradiantly with

peak intensity proportional to N2 both in the case

where the particle sample is short compared to
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the cooperation length of the system, and where the

sample is long compared to the cooperation length.

In both short and long pulse cases, it is found that

there is a classical and quantum regime of superra-

diant emission. In the case of classical superradiant
emission, many momentum states participate in the

interaction whereas during quantum superradiant

emission only two momentum states participate

in the interaction. For short samples in both quan-

tum and classical regimes of evolution, the superra-

diant pulse is low-intensity �weak� superradiance.
For long pulses in both quantum and classical re-

gimes of evolution the initially weak superradiant
pulse emitted in the region near the rear edge of

the ensemble evolves with a self-similar profile

due to propagation and is strongly amplified as it

propagates toward the front edge of the sample.

This �strong� superradiant pulse is shown to have

a much higher peak intensity than that predicted

by �mean-field� or �steady-state� models in which

propagation effects are neglected.
The results presented here are relevant both to

CARL experiments and FEL experiments. In typi-

cal CARL experiments, the sample length is much

shorter than the cooperation length (L � 1), the

system evolves in the weak superradiant regime,

and the superradiant pulses produced have low

intensity. It may also be possible to access the long

pulse regime and produce high-intensity strong
superradiance by using an optical cavity to increase

the effective length of the atomic sample. In FEL

experiments operating at short wavelengths, typi-

cally the electron bunch length is much longer than

the cooperation length so that L � 1. Short wave-

lengths FELs which amplify incoherent shot noise

via SASE (self-amplified spontaneous emission)

are of great current interest worldwide as potential
sources of ultra bright coherent X-ray radiation.

Propagation effects and self-similar superradiant

spikes are known to be fundamental to SASE

[24]. A detailed study of SASE in FELs using a

quantum-mechanical description of the electron

dynamics will be the subject of a future publication.

The present work neglects transverse propaga-

tion effects, which could be relevant in the long-
pulse case, as it occurs in the classical regime of

FEL [38]. We expect that these effects should be

negligible when the Rayleigh range of the radiation
pulse is much longer than the gain length. However,

a definitive answer to this problem can be provided

only by numerically solving the 3D equations,

which can be easily obtained generalizing equations

(15) and (16). This will be the subject of a future
investigation.
Appendix A. Derivation of the multiple-scaling

equations (15) and (16)

We now describe the derivation Eqs. (15) and

(16). Regarding Aðh; z1;�tÞ and Wðh; z1;�tÞ as
depending on z1 = �h as an extra independent var-

iable and using the chain rule

o

oh
! o

oh
þ �

o

oz1
; ðA:1Þ

Eqs. (1) and (2) become

i
oW
o�t

¼ � 1

�q
o2

oh2
þ 2�

o2

ohoz1
þ �2

o2

oz21

� �
W

� i�q
2

Aeih � c.c.
� 	

W; ðA:2Þ

�
oA
o�t

þ oA
oh

þ �
oA
oz1

¼ �jWj2e�ih þ i��dA; ðA:3Þ

where �d ¼ d=�q. Now we insert the perturbation

expansion

W ¼ Wð0Þ þ �Wð1Þ þ 	 	 	 ; ðA:4Þ

A ¼ Að0Þ þ �Að1Þ þ 	 	 	 ðA:5Þ
into Eqs. (A.2) and (A.3) and obtain equations

relating the coefficients of the various power of �.
In the limit � ! 0 we are only interested in W(0)

and A(0).

The zeroth-order of Eq. (A.2) is

i
oWð0Þðh;z1;�tÞ

o�t
¼�1

�q
o2

oh2
Wð0Þðh;z1;�tÞ

� i�q
2

�
Að0Þðz1;�tÞeih�c.c.

	
Wð0Þðh;z1;�tÞ; ðA:6Þ

which corresponds to Eq. (15), whereas the zeroth-

and first-order of Eq. (A.3) are, respectively,

oAð0Þ

oh
¼ 0; ðA:7Þ
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oAð1Þ

oh
¼ jWð0Þj2e�ih þ i�dAð0Þ � oAð0Þ

o�t
þ oAð0Þ

oz1

� �
.

ðA:8Þ
Hence, Að0Þðz1;�tÞ is a slowly varying function of z1.

Integrating both sides of Eq. (A.8) over h between

0 and 2p and assuming that A(1) is a periodic func-

tion of h, we obtain

oAð0Þðz1;�tÞ
o�t

þ oAð0Þðz1;�tÞ
oz1

¼ 1

2p

Z 2p

0

dh jWð0Þðh; z1;�tÞj2e�ih þ i�dAð0Þðz1;�tÞ;

ðA:9Þ

which corresponds to Eq. (16).
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