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A B S T R A C T   

Understanding, and then modelling, the effects of sowing date and cultivar on maize yield is essential to develop 
appropriate climate change adaptation strategies. Here we test the WOFOST model and a hybrid model, based on 
physiological crop conditions around flowering, against observed data collected during 4 years of field experi-
ments in a Mediterranean environment under fully irrigated conditions. We simulate sowing date and cultivar 
responses by using 45-year historical meteorological records from the experimental weather station and future 
climate conditions till 2060 as projected by a set of regional climate models. 

Both WOFOST and the hybrid approach reveal good performance in simulating average maize yield. However, 
the hybrid one outperforms WOFOST with respect to its responsiveness to changes in sowing date and cultivar. 

These findings, besides stressing the importance of crop conditions around flowering in determining maize 
yield, point to lower yields (14 %–17 %, average reduction) under future climate conditions. The estimated losses 
may only be partially offset by changes in phenology and sowing dates.   

1. Introduction 

Optimizing the planting window is among the main low-cost adap-
tation strategies, with effects on both potential grain yield and its 
components (Cirilo and Andrade, 1994). Changing sowing date can 
adapt the growing season to optimally utilize available solar radiation, 
adjust crop phenological stages according to the period when temper-
atures are more suitable for growth, and avoid harmful stress events 
related to heat and water (Tsimba et al., 2013a). 

Reductions in yield due to either late or early planting are well 
documented (Johnson and Mulvaney, 1980; Sorensen et al., 2000; 
Tsimba et al., 2013a, b; Caviglia et al., 2014; Bonelli et al., 2016; Zhou 
et al., 2017). In early sowing, the increase in growth duration may be 
offset by lower temperatures slowing canopy development and deter-
mining a lower value of mean accumulated incident photosynthetically 
active radiation intercepted by the crop (IPAR) up to silking (Otegui 
et al., 1996). Conversely, a delay in sowing date can reduce the number 
of kernels per square meter due to the less favorable photo-thermal 
conditions during the critical period for grain set and grain filling 
(Tsimba et al., 2013a; Bonelli et al., 2016). The optimal combination of 

sowing date and cultivar depends on local environmental and climate 
conditions (Olson and Sander, 1988; Shaw, 1988; Bonelli et al., 2016). 

Process-based crop models have been widely used, together with 
field experiments, to optimize sowing date not only under current 
climate conditions (Otegui et al., 1995, 1996; Hammer and Broad, 2003; 
Anapalli Saseendran et al., 2005; Yang et al., 2006; Andrade et al., 2010; 
Grassini et al., 2011) but also as an adaptation strategy for future climate 
conditions (Olesen and Bindi, 2002; Torriani et al., 2007; Tojo Soler 
et al., 2007; Giannakopoulos et al., 2009; Vučetić, 2011; Liu et al., 2013; 
Zhao et al., 2015; Ma et al., 2017; Srivastava et al., 2018; Ciscar et al., 
2018). 

Despite the widespread use of crop models’ to analyze crop responses 
to changes in sowing date and cultivar, only a few works have explored 
their effects on yield variability (Hammer and Broad, 2003; Messina 
et al., 2009). These studies showed, for example, how the stability of the 
harvest index approach for yield prediction is affected by both the 
sowing date and the cultivar choice. Bonelli et al. (2016), in their field 
experiments, observed that by delaying the sowing date the variation in 
biomass was not balanced by the variation in grain yield, highlighting 
the inconsistency of a constant-value harvest index approach. 
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Partitioning methods based on constant values (and the resulting yield 
estimates) may be affected by similar issues. 

The partitioning approach is the one currently used by the WOFOST 
crop model (De Koning and Van Diepen, 1992; Supit et al., 2010; Wolf, 
1993; Wolf and Van Diepen, 1995; Supit et al., 2012). Total dry matter 
growth is partitioned according to fixed distribution factors, defined as a 
function of development stage. After flowering, the daily net photo-
synthesis together with the duration of grain filling mainly determine 
yield. Within this approach, sowing date and cultivar may affect the 
amount of dry matter allocated to grain yield mainly through their ef-
fects on grain filling duration. Without distinguishing among yield 
components, this approach (despite being robust for simulating yield 
response to different environments) may lack sufficient details to 
describe genotypic and sowing date effects. Indeed, it does not consider 
the grain demand, i.e. the potential capacity of the kernels to use the 
available assimilates in the post-anthesis period (Echarte and Andrade, 
2003; Hammer and Broad, 2003). 

Maize grain yield is highly correlated with kernel set (Otegui et al., 
1995), which is very sensitive to environmental conditions during silk-
ing (Cirilo and Andrade, 1994). Thus, an alternative approach to the 
partitioning method can be built on crop physiological conditions during 
flowering (e.g. light interception; Otegui et al., 1995). In this way, the 
variability in crop production across different sowing dates and cultivars 
mainly depends on the variability in the amount of photosynthetically 
active radiation intercepted by the crop around flowering time. 

Resource availability per kernel around flowering also determines 
kernels’ size and the capacity to use assimilate in the post-anthesis 
phase, with an effect on the potential seed dry weight and the achiev-
able yield. Therefore, yield can be described using both potential kernels 
number and size, where the latter one can be calculated by using crop 
conditions around the period of kernel number determination (Gambín 
et al., 2006). 

On the other hand, variations in assimilates supply during grain 
filling may affect kernel weight (Andrade and Ferreiro, 1996). The 
physiological conditions of maize plants during the grain filling period 
may become as relevant as the ones around flowering, particularly when 
sowing is delayed (Bonelli et al., 2016). Variations in climatic conditions 
during grain filling, associated to varying sowing dates, have been also 
reported among the main factors influencing final yield in the temperate 
zone of China (Zhou et al., 2017). Moreover, cultivars with a longer 
growing cycle length might be able to reduce negative effects of climate 
change (Liu et al., 2013). 

The aim of this study is to explore whether, in Mediterranean cli-
mates, yield variability across sowing dates and cultivars can be entirely 
explained by the source limitation around flowering. 

Two modelling approaches are here used: one fully based on the 
WOFOST model, relying on the partitioning approach; another one 
based on a hybrid approach, developed combining WOFOST with a 
model built on physiological crop conditions around flowering. These 
two modelling approaches are here tested against observed data 
collected during 4-year field experiments in a Mediterranean environ-
ment under fully irrigated conditions. 

2. Materials and methods 

2.1. Field experiments 

Different combinations of sowing date and cultivar were tested in 
2015, 2016, 2018, 2019 (no experiments were run in 2017) at the 
experimental maize field of Santa Lucia (39.9 ◦N - 8.5 ◦E; 15 m elevation; 
Sardinia, Italy) under optimum management, i.e. in absence of nutri-
ents’ limitations and under potential water conditions. This experi-
mental site is characterized by Mediterranean climate with a long-term 
average seasonal rainfall of about 500 mm, mainly accumulating be-
tween October and April. Mean monthly temperatures range from 10 ◦C 
in January and February to 24.5 ◦C in August. The soil is clay-loam with 

plant available water holding capacity of 250 mm on a volume basis to 
the maximum rooting depth of 130 cm. The territory is characterized by 
intensive dairy and grain farming with maize growing in irrigated 
conditions mainly from April until September. Treatments during the 
experiments were randomized in a split-plot design with three replica-
tions. Sowing date treatments were assigned to the main plots and cul-
tivars to the subplots. Plots consisted of: ten rows 0.70 m apart, 4.5 m 
long in 2015 and 2016; sixteen rows 0.70 m apart, 10 m long in 2018 
and 2019. Cultivars were hybrids of various FAO maturity groups 
(Jugenheimer, 1958), having increasing anthesis and maturity re-
quirements. Each FAO group is identified with a number; the lower the 
number, the fewer heat units that are required to reach grain maturity. 
Details on the management of the experiments are shown in Table 1. 
Trials were sown on: 29 April, 20 May and 23 June in 2015; 27 April, 19 
May, and 23 June in 2016; 9 July in 2018; 6 May and 6 June in 2019. 
Plots were fertilized with 200 kg N ha− 1 and irrigated by drip irrigation. 
Scheduling was based on maize evapotranspiration (ETc) calculated 
from the actual ETo measured in a nearby Class A evaporation pan and 
the FAO crop coefficients for maize (Allen et al., 1998). The cumulative 
water applied (irrigation plus rainfall) was close to maize ETc 
throughout the growing season in all the experimental years. 

2.2. Measurements 

Crop phenological staging was assessed regularly on ten tagged 
plants. Flowering was registered when first tassels were visible on these 
plants. Crop above-ground biomass was measured at anthesis date, 
kernel dough stage and physiological maturity by hand cutting ten 
consecutive plants from the central row of each sub-plot. Dry weight was 
determined on these samples after oven drying for 48 h at 65 ◦C. Mea-
surements of leaf area index (LAI), fraction of photosynthetically active 
intercepted radiation and the correspondent radiation extinction coef-
ficient (K) were made non-destructively using a plant canopy analyzer 
(LAI-2000, LI-COR, Lincoln, NE) twice a week across all the growing 
cycle. 

Grain yield and number of plants per unit area were determined after 
physiological maturity by hand, harvesting all ears and counting the 
plants from an area of 14 m2 per plot. Kernel number and kernel weight 
were determined in years 2016, 2018, and 2019 on the ten-tagged plants 
by a manual trash of the ears. Grain yields refer to oven-dry (65 ◦C) and 
reported as 0 % grain moisture content. 

2.3. Meteorological data 

Meteorological records (daily values of incoming solar radiation, 
daily maximum and minimum temperatures, daily total rainfall, and 
mean wind speed) were retrieved from a meteorological station located 
in the field. 45 years of data (1974–2019) are available. Vapor pressure 
was estimated according to Allen et al. (1998). 

Table 1 
Field experiments conducted at Santa Lucia, Sardinia, Italy in 2015, 2016, 2018, 
and 2019.  

Year Cultivar FAO class Sowing density Sowing dates    
(Plants m− 2)  

2015 PR36B08 300 10 29 April, 20 May, 23 June 
2015 PR33M15 500 10 29 April, 20 May, 23 June 
2015 P1501 600 9 29 April, 20 May, 23 June 
2015 PR31Y43 700 8 29 April, 20 May, 23 June 
2016 PR35F38 400 10 27 April, 19 May, 23 June 
2016 PR33M15 500 10 27 April, 19 May, 23 June 
2016 P1501 600 9 27 April, 19 May, 23 June 
2016 PR31Y43 700 8 27 April, 19 May, 23 June 
2016 P2948W 800 8 27 April, 19 May, 23 June 
2018 PR31Y43 700 8 9 July 
2019 PR39F58 200 8 6 June 
2019 PR31Y43 700 8 6 May and 6 June  
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2.4. Crop model 

The first modelling approach here used is fully based on WOFOST 
(Van Diepen et al., 1989). This model computes daily biomass accu-
mulation and distribution in crop organs using a photosynthesis 
approach. WOFOST derives the daily growth rate by the availability of 
assimilates, that is obtained by simulating canopy photosynthesis. Both 
growth and maintenance respiration processes are explicitly accounted 
for in determining dry matter production. WOFOST assumes grain yield 
being source-limited and dependent on dry matter accumulation before 
and after anthesis. The model estimates grain yield by applying a set of 
partitioning factors (depending on the development stage); they corre-
spond to the fraction of assimilates assigned to the various organs. 

Crop yield is here simulated under potential conditions and is 
expressed in dry weight. Therefore, no water-stresses (e.g. drought, 
water-logging) and biotic factors are assumed to affect crop yield that is 
only determined by temperature, day length, solar radiation, and 
cultivar. 

2.5. Model calibration 

The WOFOST maize parameterization was taken from the EC-JRC 
Monitoring Agricultural ResourceS (MARS) Crop Yield Forecasting 
System (MCYFS; Micale and Genovese, 2004; Lazar and Genovese, 2004; 
Genovese and Bettio, 2004). To calibrate the model at the Sardinian 
experimental site, phenology, LAI and biomass time course, and yield 
were calibrated sequentially (Boote et al., 1999; Ceglar et al., 2011). All 
the 4-year experimental data were used for the calibration. An automatic 
python procedure, minimizing the Mean Absolute Error (MAE) via 
Truncated Newton Constrained (TNC) algorithm, was run for the 
calibration. 

The cultivar-dependent calibration of the phenological parameters 
TSUM1 and TSUM2 (accounting for the thermal time to anthesis and 
maturity, respectively) was performed as well. The obtained TSUM1 
values vary between 595 ◦C d and 804 ◦C d, while TSUM2 values range 
from 749 ◦C d to 925 ◦C d across all the cultivars (Supplementary Ma-
terial, Table S1). It is worth to note that flowering is assumed to be 
photoperiod independent (IDSL = 0). 

The extinction coefficient for diffuse visible light (KDIFF, decreased 
to 0.5 with respect to the default MCYFS value) was chosen according to 
the experimental values measured in 2016. The specific leaf area (being 
function of the development stage) and the lower threshold temperature 
for ageing leaves were, respectively, decreased and increased (with 
respect to the MCYFS settings) to minimize the MAE between the 
observed and the simulated LAI across the growing season of all the 
treatments. The initial total crop dry weight was increased (with respect 
to the MCYFS value) to get more accurate simulations of dry matter on 
the base of the MAE between observed and simulated biomass across the 
growing seasons. Finally, the developmental stage from which above- 
ground dry matter is completely allocated to storage organs was modi-
fied (DVS = 1.34 for FOTB = 1.0) to minimize the MAE of the harvest 
index. The calibrated parameters are reported in Table 2. These values 
lie inside the plausible ranges reported in previous studies (Boogaard 
et al., 1998; Boons-Prins et al., 1993; Ceglar et al., 2011), with the 
exception of the lower threshold temperature for ageing leaves (a higher 

value was estimated). The crop model input parameters are all listed in 
the Supplementary material Table S1. 

2.6. The hybrid approach: Otegui-Gambín 

The second modelling approach here evaluated is a hybrid one 
combining the WOFOST-simulated above-ground biomass, LAI, and 
anthesis date with the yield estimation method proposed by Otegui and 
Bonhomme (1998) and Gambín et al. (2006). Hereafter, the hybrid 
approach is simply named Otegui-Gambín (Fig. 1). The yield estimation, 
based on the climatic conditions around flowering, is obtained by 
multiplying the kernel number per m2 by the kernel weight. The kernel 
number per plant (KN plant− 1) is estimated by using the intercepted 
photosynthetically active radiation (IPAR) near anthesis (Otegui and 
Bonhomme, 1998):  

KN plant− 1 = 97 + 15 * IPAR plant− 1                                               (1) 

To calculate the IPAR in eq. (1), the incoming solar radiation is first 
converted into photosynthetically active radiation (PAR) using a 0.45 
multiplication factor (Monteith, 1965). Then, the IPAR is derived as 
follows:  

PAR * fIPAR                                                                                   (2) 

Where  

fIPAR = 1 - exp(− K * LAI)                                                                  (3) 

The value of the extinction coefficient K is given by the average of the 
K values derived from the fraction of intercepted radiation and the LAI 
measured in 2016. The LAI values are the ones simulated by WOFOST 
between − 227 ◦C d and 100 ◦C d (Otegui and Bonhomme, 1998) from 
the predicted anthesis at the experimental site. Thermal time values are 
calculated by using a base temperature of 8 ◦C (Ritchie and NeSmith, 
1991). Since the Otegui and Bonhomme (1998) original approach is on a 
per-plant basis, we used the population density of the 4-year experiment. 

The potential kernel weight is determined by using the approach of 
Gambín et al. (2006) with the local calibration of the required functions 
done according to the plant growth rate (as simulated by WOFOST 
around flowering) and the observed kernel weight. Simulated biomass 
accumulation from pre-silking (− 15 days) to post-silking (+15 days) is 
divided by the thermal time interval. Plant growth rate (PGR) around 
flowering (mg ◦C d− 1) is then derived from the plant growth rate (PGR) 
per kernel (mg ◦C d− 1 kernel− 1) around flowering as follows:  

PGRper kernel around flowering = 0.7 * 10− 3 * PGR around flowering + 0.3773   (4) 

where PGRper kernel around flowering is calculated as the ratio between PGR 
around flowering and the observed kernel number. The kernel weight (mg 
kernel− 1) is derived as:  

Kernel weight = 522.24 * PGRper kernel around flowering - 8.7108                (5) 

The effective kernel weight after the grain filling period is the result 
of the potential kernel growth rate, calculated from the potential grain 
size (Gambín et al., 2006), and the effective grain filling duration. The 
latter one begins with the linear phase of the grain filling period, i.e. 200 

Table 2 
WOFOST crop parameters calibrated and used for all the maize cultivars.  

Name Description Unit Value Range Literature 

KDIFF Extinction coefficient for diffuse visible light – 0.5 0.44–0.65 Ceglar et al. (2011) 
SLATB00 Specific leaf area at development stage 0 ha Kg− 1 0.00236 0.0022–0.0035 Ceglar et al. (2011) 
SLATB078 Specific leaf area at development stage 0.78 ha Kg− 1 0.0008 0.00070–0.0042 Boogaard et al. (1998) 
TBASE Lower threshold temperature for ageing leaves ◦C 12.65 − 10–10 Boogaard et al. (1998) 
TDWI Initial total crop dry weight kg ha− 1 137 0.50–300 Boogaard et al. (1998) 
DVS for FOTB = 1.0 Developmental stage from which above-ground dry  

matter is completely allocated to storage organs 
– 1.34 1.20–1.30 Ceglar et al. (2011)  
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◦C d after the anthesis, assuming the kernel weight before the linear 
phase being negligible and set to 3.9 % of the maximum kernel weight 
(Echarte et al., 2006). Daily assimilation cannot exceed the potential 
kernel growth per day. The assimilation rate is also corrected for 
sub-optimal average daytime temperatures. Finally, translocation con-
tributes to yield formation no more than 15 % of leaf biomass and 20 % 
of stem biomass at the start of grain filling. 

2.7. Model evaluation 

The accuracy of the two modelling approaches, WOFOST and Otegui- 
Gambín, is evaluated against the 4-year field experiment by using the 
root mean squared difference (RMSD) between observed and simulated 
data. Furthermore, modelling efficiency (EF; Willmott, 1982) for the 1 to 
1 (y = x) line is determined by measuring the true deviation of the es-
timates from observations (Mitchell, 1997). The modelling efficiency is 
defined as: 

EF = 1 −

∑n

i=1
(Oi − Si)

2

∑n

i=1
(Oi − Ō)

2
(6)  

Where Ō is the mean of the observed values, Oi and Si are the observed 
and simulated values, respectively. A positive EF value indicates that the 
model outperforms the simplest predicting system based on the mean of 
the observations. The maximum EF (i.e., 1) is reached when the simu-
lated values are perfectly equal to the measured data. Negative EF values 
indicate that the model perform worse than the simplest predicting 
system. 

The bias is evaluated by calculating the mean difference between 
measured and simulated data with the Mean Bias Error (MBE) that 
immediately provides information on overestimation (positive values) 
or underestimation (negative ones). Finally, the coefficient of determi-
nation (r2) of the linear regression between simulated and observed 
values provides information on the ability of the model in capturing the 
range of variation and the variability of the measured values. 

2.8. Long-term simulation experiment 

To study the effect of sowing date and cultivar on crop production 

both WOFOST and Otegui-Gambín were run for cultivars 400, 500, 600, 
700, 800 with the 45-year historical meteorological records from the 
Santa Lucia weather station. Six fixed sowing dates (15th and 30th of 
each month from April to June) were analyzed. 

2.9. Climate change projections 2021–2060 

To consider the impact of climate change on maize production, 
climate projections from 5 regional climate model/global climate model 
combinations (RCMs/GCMs) from the EURO-CORDEX Initiative (Jacob 
et al., 2014), bias-adjusted by Dosio (2016), were retrieved. These RCMs 
are: CCLM4-8-17 driven by CNRM-CERFACS-CNRM-CM5; CCLM4-8-17 
driven by ICHEC-EC-EARTH; WRF331 F driven by IPSL-IPSL-CM5A-MR; 
RCA4 driven by MOHC-HadGEM2-ES; RCA4 driven by 
MPI-M-MPI-ESM-LR. Bias-adjustment was performed on daily temper-
atures (maximum, minimum, and mean) and total precipitation (Dosio, 
2016). Concerning the other parameters, needed to run the WOFOST 
model, targeted approaches were applied (Hristov et al., 2020). Global 
radiation from each RCM/GCM was evaluated against a set of high 
quality observational data sets, and in case of poor performace replaced 
with the one derived from the bias-adjusted parameters and the simu-
lated cloud cover (Hristov et al., 2020 and references therein). Relative 
humidity was derived from the bias-adjusted daily parameters, while 
daily mean speed was used with no further post-processing (due to 
known difficulties in having high quality observational data sets 
covering large regions). The high-end emission scenario RCP8.5 was 
selected. It corresponds to a rising radiative forcing pathway leading to 
8.5 W/m2 (≈1370ppm CO2 equiv.) by 2100 (Riahi et al., 2011). Besides 
the baseline period (i.e. 1986–2005), two future time periods were 
selected: 2021–2040 and 2041–2060. 

3. Results 

3.1. Field experiments 

The weather conditions in all the analyzed years were overall similar 
and representative of the mean climate conditions of Santa Lucia 
(Fig. 2). Two exceptions are, however, well visible in Fig. 2: the 
noticeable lower global radiation from May to August 2018 and the 
lower maximum temperatures from August to October 2015. It is also 
worth to highlight the highest minimum temperature in July 2015. 

Fig. 1. Schematic representation of the Otegui-Gambín hybrid approach.  
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Concerning the measured maize yield, their values range between 
20.6 t ha− 1 (2016) and 8.3 t ha− 1 (2019). Sowing dates induced sig-
nificant variations in the observed yields, with the exception of 2016 
(Supplementary material, Table S2). Observed yields decreased by 
delaying the sowing with the exception of the increased yield observed 
delaying the sowing from April to May in 2015. Yields of the tested 
cultivars differed significantly in 2015 (P < 0.05), 2016, and 2019 (P <
0.001). Cultivar 500 was the most productive one, whereas cultivar 200 
was the least productive. 

The range of variation in the number of kernels per unit area was 
3613–5517, depending on the sowing date and the cultivar maturity 
group, with the highest values observed for the earliest sowing dates and 
the latest cultivar. Kernel weight ranged between 219 and 344 mg 
kernel− 1 with cultivar 700 showing the highest values. 

Overall, the treatments with the highest yield and kernel number per 
m2 showed the highest IPAR around anthesis, recorded (during the 
highest yielding year 2016) with cultivar 800 and the first sowing date 
among the ones tested. The largest yield variation across the sowing 
dates was observed in the year having the largest variation in IPAR 
around flowering, i.e. 2015. The highest IPAR and yield levels of 2016 
(associated with lower yield variability) suggest that a sort of saturation 
thresold for these cultivars was reached during this experimental year. 
Indeed, further increases in IPAR could only produce weaker yield 
response. 

3.2. Evaluating model performance 

3.2.1. Phenology, leaf area index, biomass 
After calibrating the phenological parameters TSUM1 and TSUM2 

for each cultivar, WOFOST is able to correctly simulate maize phenology 
with RMSD of 3.6 and 4.3 days for anthesis and maturity dates, 
respectively. The largest deviations between the simulated and the 
observed data occur for the earliest and latest sowing dates. The statis-
tical coefficients indicate high level of accuracy with EF values of 0.97 
and 0.96 for anthesis and maturity dates (Table 3). 

Comparing simulated and observed LAI along the growing seasons 
points to a good agreement with an EF value of 0.78, across all the 
different sowing dates and cultivars. The WOFOST performance during 
the whole growing cycle for each cultivar and all the sowing dates is 
summarized in Table 3. The maximum simulated LAI ranges between 
3.1 and 8.0, while the observed LAI varies between 4.8 and 10 (not 
shown). 

WOFOST is able to correctly simulate the biomass during the 
growing cycle and at harvest; the RMSD for the final biomass is 4.4 t 
ha− 1. Along the growing season, the model is also able to reproduce the 
biomass variability associated with the different sowing dates and cul-
tivars with RMSD of 3.3 t ha− 1 (Table 3). 

3.2.2. Grain yield 
WOFOST simulated yields range between 13.1 and 19.2 t ha− 1, while 

the observed values vary between 8.3 and 20.6 t ha− 1. Despite a good 
RMSD of 3.7 t ha− 1, calculated over all the cultivars and sowing dates 
(Table 4), the variability associated with the different sowing dates is 
poorly simulated as shown by the EF. The highest difference between the 
simulated and the observed yields characterizes the latest sowing date 
(7.8 t ha− 1). 

The Otegui-Gambín simulated yield ranges between 9.4 and 15.5 t 
ha− 1. The RMSD is slightly better than the one of WOFOST (3.5 t ha− 1), 
and the yield estimation is more accurate as indicated by the positive EF 
and larger r2, showing higher responsiveness of the model to changes in 
sowing date and/or cultivar. The highest difference between the simu-
lated and the observed yields is identified for the earliest sowing date 
(5.5 t ha− 1). The yield variability across the three sowing dates in 2015 
and 2016, calculated using the variation coefficient per year and 
cultivar, is on average higher in Otegui-Gambín than in WOFOST 
(Fig. 3). As for the yield components, calculated with the Otegui-Gambín 
equations, the simulated number of kernels per unit area varies from 
3441 to 5095, with the observed data being between 3613 and 5517. 
The simulated kernel weight ranges between 262 and 323 mg kernel− 1, 
while the measured values range from 219 to 341 mg kernel− 1. 

By considering the grain filling duration together with the potential 
kernel growth rate and the available assimilates (during grain filling and 
imposing that maximum kernel weight cannot exceed the weight set 

Fig. 2. Average monthly solar radiation (upper panel), maximum and mini-
mum temperatures (middle and lower panel, respectively) recorded during the 
experimental years 2015, 2016, 2018, and 2019. The mean values for the three 
parameters, estimated from 1974 to 2019 (using all the available observations 
recorded at Santa Lucia), are represented by the light gray lines. 

Table 3 
Performance of WOFOST in terms of simulated anthesis date, maturity date, LAI, 
and above-ground biomass during the growing season for all the sowing dates 
and for all the seven cultivars (tested in the field experiments during 2015, 2016, 
2018, 2019 at Santa Lucia, Sardinia, Italy). Stars represent the significance of the 
regression (***P ≤ 0.001).   

Anthesis date Maturity date LAI Biomass  
(DOY) (DOY)  (t ha− 1) 

RMSD 3.6 4.3 1.1 3.3 
EF (1:1) 0.97 0.96 0.78 0.90 
r2 0.98*** 0.97*** 0.78*** 0.90*** 
MBE 0.5 0.4 − 0.25 − 0.31 
Slope 0.85 1.06 0.80 0.86 
Intercept 30.60 − 16.41 0.95 3.21 
Mean observed 206 264 4.43 23.1 
Mean predicted 207 264 4.59 23.2 
n 31 31 960 96  
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around flowering), the estimated kernel weight at maturity (effective 
kernel weight) coincides with the one calculated around flowering. 

3.2.3. Yield response to sowing date and cultivar under current climate 
The flowering time simulated by WOFOST varies across the tested 

sowing dates and cultivars along the 45 years of historical meteorolog-
ical data, ranging between the 9th of June and the 5th of September 

(cultivar 300 and cultivar 800, respectively). 
By delaying the sowing date from April to June, comparable 

decreasing yield reductions are simulated by the two modelling ap-
proaches. Potential simulated yields vary on average from 10.9 to 23.0 t 
ha− 1 and from 7.6 t ha− 1 to 18.2 t ha− 1 in WOFOST and Otegui-Gambín, 
respectively. The lowest and the highest values are obtained for the 
latest and earliest sowing dates in both approaches. Grain yield differ-
ences between the first and the last sowing date diminish with the use of 
longer-to-reach maturity cultivar in both approaches (not shown). 

Yield variability across the six sowing dates, calculated using the 
variation coefficient per year and cultivar, is higher in Otegui-Gambín 
than in WOFOST (Fig. 3). However, in both approaches cultivar 300 
shows the highest yield variability. 

For each sowing date (starting from 1 on the 15th of April and 
continuing till 6, 30th of June, with a 15-day interval), and for both 
approaches, the differences among cultivars are lower than the differ-
ences among the sowing dates with fixed cultivar (Figs. 3 and 4). Maize 
yield variability associated with the six cultivars and for each sowing 
date is higher in Otegui-Gambín, especially for the latest cultivar 
(Fig. 4). The lowest and the highest WOFOST-simulated values are 
reached with cultivars 400 and 300, respectively; while, these records 
are reached with cultivars 300 and 700 in Otegui-Gambín. Overall, 
considering the entire 45-year period, the lowest and the highest yields 

Table 4 
Yield performance of WOFOST and Otegui-Gambín with respect to the three 
sowing dates and the seven cultivars (tested in the field experiments during 
2015, 2016, 2018, 2019 at Santa Lucia, Sardinia, Italy). Stars represent the 
significance of the estimated linear regression (*P ≤ 0.05; ***P ≤ 0.001).  

Yield WOFOST Otegui-Gambín 
(t ha− 1) (t ha− 1) (t ha− 1) 

RMSD 3.7 3.5 
EF (1:1) 0.02 0.2 
MBE 1.6 − 1.8 
r2 0.22* 0.46*** 
Slope 0.16 0.29 
Intercept 14.32 8.98 
Mean observed 15.1 15.1 
Mean predicted 16.7 13.3 
n 31 31  

Fig. 3. Box-plots of the variation coefficients estimated for the simulated (1974-2019) maize yields using all the different sowing dates for each cultivar type (300, 
400, 500, 600, 700, 800). White and grey boxplots correspond to WOFOST (W) and Otegui-Gambín (Ot), respectively. 
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are simulated on average: for cultivar 400 with the latest sowing and for 
cultivar 300 with the earliest sowing by WOFOST; for cultivar 300 with 
the latest sowing and for cultivar 700 with the earliest sowing by Otegui- 
Gambín. 

The WOFOST-simulated yield variability, associated with the six 
sowing dates, is driven by the length of the period from flowering to 
maturity (Table 5); while, in Otegui-Gambín it is mostly driven by the 
amount of IPAR per m2 around flowering (Table 6). The IPAR per m2 

variability among sowing dates is also correlated with the variability of 
biomass at flowering. However, the Otegui-Gambín simulated yield 
variability (as a response to varying sowing dates) is only partially 
explained by the maximum LAI. Variability of biomass at flowering and 
maximum LAI show lower effects on WOFOST-simulated yield 

variability (induced by varying the sowing dates). 
Final kernel weight at maturity coincides with the weight set around 

flowering. Assimilates from remobilization contribute on average 9 % to 
the final kernel weight, with the highest value (24 %) achieved by the 
latest cultivar. The traslocated part of kernel weight has minor impor-
tance in comparison with the available traslocates. 

By analyzing the yield cumulative distribution function, it emerges 
that the highest probability of the highest yield is achieved by WOFOST 
with cultivar 300 (not shown). The cumulative distribution functions 
estimated for the Otegui-Gambín simulations show less pronounced 
differences between cultivars; on the contrary, differences between the 
sowing dates are higher. 

Fig. 4. Box-plots of the variation coefficients estimated for the simulated (1974-2019) maize yields using all the cultivars for each sowing date (from 1 to 6). White 
and grey boxplots correspond to WOFOST (W) and Otegui- Gambín (Ot), respectively. 

Table 5 
Spearman correlation and associated significance estimated for the variation coefficient (CV) of the WOFOST-simulated yields and the CV of: the number of days from 
flowering to maturity; the IPAR per m2 around flowering; the biomass at flowering; the maximum LAI. CVs are all calculated among the six sowing dates.  

Variation coefficient (%) of yields simulated by WOFOST 
CV (%) CV 300 CV 400 CV 500 CV 600 CV 700 CV 800 

Days from flowering to maturity − 0.74*** − 0.68*** − 0.75*** − 0.67*** − 0.58*** − 0.52** 
IPAR m− 2 around flowering n.s. n.s. n.s. n.s. n.s. n.s. 
Biomass at flowering n.s. n.s. n.s. n.s. n.s. − 0.33* 
Maximum LAI n.s. n.s. n.s. n.s. n.s. − 0.31*  
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3.3. Yield response under future climate conditions 

Figs. 5 and 6 show the simulated maize yield variability induced by 
changes in the sowing date for all the tested cultivars during the baseline 
and in the two future time periods (2021–2040 and 2041–2060 under 
the RCP8.5 scenario). Under the projected climate conditions, increased 
maize yield variability is simulated by both modelling approaches. 
However, higher coefficient of variability (as a response to the six 
different sowing dates) is simulated by Otegui-Gambín. Cultivar 300 
exhibits the highest projected yield variability, independently from the 
considered RCM/GCM and yield modelling approach; while, cultivar 
800 (similarly 600 and 700) shows the lowest variability. 

Future maize yield is projected to decrease compared to the baseline 
period, independently from: the climate model (not shown), the yield 
modelling approach, the cultivar and the sowing date (Fig. 7). Results 
show that, with no adaption maize yield will decrease across all sowing 
dates and cultivars by on average 9 % and 17 % (2021–2040 and 
2041–2060 vs the baseline, respectively) according to WOFOST, and by 

Table 6 
Spearman correlation and associated significance estimated for the variation 
coefficient (CV) of the Otegui-Gambín simulated yields and the CV of: the 
number of days from flowering to maturity; the IPAR per m2 around flowering; 
the biomass at flowering; the maximum LAI. CVs are all calculated among the six 
sowing dates.  

Variation coefficient (%) of yields simulated by Otegui-Gambín 

CV (%) CV 300 CV 400 CV 500 CV 600 CV 700 CV 800 

Days from 
flowering 
to maturity 

n.s. n.s. n.s. n.s. n.s. n.s. 

IPAR m− 2 

around 
flowering 

0.98*** 0.98*** 0.98*** 0.95*** 0.96*** 0.97*** 

Biomass at 
flowering 

0.75*** 0.60*** 0.52** 0.44** 0.37* 0.32* 

Maximum 
LAI 

0.55*** 0.40** 0.31* n.s. n.s. n.s.  

Fig. 5. Box-plots of the variation coefficients estimated for the WOFOST-simulated maize yields using all the six sowing dates for each cultivar type (300, 400, 500, 
600, 700, 800) during the following periods: 1986-2005 (historical), 2021-2040 (RCP8.5), 2041-2060 (RCP8.5). The RCM-GCM combinations are identified with the 
short name of the driving GCM. 
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Fig. 6. Box-plots of the variation coefficients estimated for the Otegui-Gambín simulated maize yields using all six sowing dates for each cultivar type (300, 400, 500, 
600, 700, 800) during the following periods: 1986-2005 (historical), 2021-2040 (RCP8.5), 2041-2060 (RCP8.5). The RCM-GCM combinations are identified with the 
short name of the driving GCM. 

Fig. 7. Impact of the different sowing dates and cultivar on crop yield response to climate change. Bar-plots show, for both WOFOST (left panel) and Otegui-Gambín 
(right panel), the RCM/GCM ensemble mean yield change estimated for 2041-2060 (expressed in % with respect to the 1986-2005 baseline period). 
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7 % and 14 % (2021–2040 and 2041–2060 vs the baseline, respectively) 
according to Otegui-Gambín. 

Simulated yield responses differ among the five RCM/GCM combi-
nations (as also reported by, e.g., Rummukainen, 2016). Indeed, the 
projected yield reductions in 2041–2060 vary on average from 5 % to 37 
% by using WOFOST and between 2 % and 30 % by using Otegui--
Gambín. The highest projected mean yield reduction is simulated by 
both approaches with cultivar 300 and using the latest sowing date. The 
lowest projected mean yield reduction is projected with cultivars 400 
and 500 by using the earliest sowing date in, respectively, WOFOST and 
Otegui-Gambín. 

4. Discussion 

The main findings of this study reveal that WOFOST is able to 
simulate phenology, growth, and average maize yield. The simulated 
maize yields across the long-term historical period 1974–2019, covered 
by local meteorological records, are in the range of simulated maize 
potential yields in Europe (Schils et al., 2018). However, the error in the 
WOFOST-simulated grain yield increases when different sowing dates 
and cultivars are considered. 

Despite the importance of crop model responses to changes in sowing 
date and cultivar, models’ processes representations have been rarely 
explored (Hammer and Broad, 2003; Messina et al., 2009; Bonelli et al., 
2016). Our results show that Otegui-Gambín, an alternative yield 
modelling approach (based on yield components, plant growth rate, and 
intercepted light averaged over a critical period around flowering) 
outperforms WOFOST in reproducing the observed variability associ-
ated with the tested sowing dates. The significant linear relationship 
(established between the number of kernels per plant and the IPAR per 
plant during a well-defined critical period in field experiments con-
ducted in France and in Argentina; Otegui and Bonhomme, 1998) 
resulted valid for a wide range of growing conditions, including different 
sowing dates and latitudes. Independently from the environment and 
the genotype, our results confirm that the linear regression found by 
Otegui and Bonhomme (1998) is valid and achieves good yield accuracy 
also in a Mediterranean environment. Accordingly, our results further 
validate the ones of Gambín et al. (2006), confirming that a simple and 
mechanistic source-sink ratio estimation around flowering determines 
the final maize kernel weight. 

This supports the understanding that fully irrigated maize yields in 
the Mediterranean environment are mainly limited by source avail-
ability during early flowering (determining maize potential sink ca-
pacity) rather than being limited by the biomass per kernel produced 
during the effective grain filling period and by its duration (Gambín 
et al., 2006). 

Despite a varying duration of the grain filling period across the tested 
sowing dates and cultivars, this study shows that simple relationship 
established around flowering leads to an accurate estimate of the effect 
of sowing date on maize potential grain yield. Our analysis, indeed, 
reveals that crop conditions around flowering time are able to explain 
maize yield variation in response to different sowing dates and cultivars. 
This can be understood by considering that in absence of environmental 
constraints (such as water shortage, frost, and heat stress) yield is solely 
determined by radiation and temperature during the growth critical 
period (Andrade et al., 2010). For all the sowing dates, kernel growth 
during the grain filling was limited by the sink strength set around 
flowering time, independently of the temperature variation during the 
grain filling. When grain filling was also considered, and thus photo-
synthetic source capacity became a limiting factor, grain growth was 
supported by remobilization of carbohydrates. This is in agreement with 
the results of Bonelli et al. (2016) who found that grain growth with late 
sowing dates (when lower temperatures reduce assimilation) was 
limited by photosynthetic source capacity although supported by 
remobilization of carbohydrates. Similarly, other studies identified 
maize as the crop having the largest capacity to buffer changes in 

assimilates availability during grain filling (Andrade and Ferreiro, 
1996). According to Andrade and Ferreiro (1996) maize yields are 
partially dependent on crop condition during grain filling. Shorter grain 
filling, induced by higher temperatures, may not affect yield when 
compensated by higher incident daily radiation (Muchow, 1990). 

In agreement with previous results (e.g. Borrás et al., 2004), our 
simulated yield resulted mainly sink limited in all the explored growing 
conditions. The kernel weight set at flowering limits the kernel weight 
achievable with the available assimilates during grain filling (in agree-
ment with Otegui et al., 1995). If the assimilates availability from actual 
photosynthesis during grain filling plus reserve remobilization exceed 
the demand from the growing grains, yield improvement may come 
from sink strength increase around flowering (Borrás et al., 2004). 
Therefore, even if grain filling occurs under environmental conditions 
less favorable than those experienced during seed set (with assimilates 
from photosynthesis below the point saturating maximum kernel 
weight), remobilization of assimilates (temporarily stored in stems and 
leaves) for grain production is an important factor determining kernel 
weight. Our results suggest that a small source variation during the 
maize yield critical period has greater effect on potential yield than 
changes in source capacity during grain filling (Andrade and Ferreiro, 
1996). 

In terms of response to varying sowing dates, WOFOST and Otegui- 
Gambín show similar behavior, with the earliest cultivar showing the 
highest yield variability. This response is projected to be amplified by 
climate change, with the earliest cultivar still showing the highest 
variability across different sowing dates (in agreement with Torriani 
et al., 2007; Zhu et al., 2018). However, the highest variability is not 
associated with higher mean yield, which is achieved by the earliest 
sowing date independently from the cultivar. 

Our analysis shows that, in absence of other yield-reducing factors 
(such as nutrients, water, and killing frost), the effect of sowing date is 
larger than the effect of the cultivar on yield, and the highest yield can 
be achieved with early sowings (in agreement with Long et al., 2017; 
Baum et al., 2019). This implies that the cultivar choice has minor effect 
on yield, in agreement with other experimental data and studies (e.g. 
Baum et al., 2019) that attributed most of the yield variability to sowing 
dates (as long as cultivars reach maturity before harvesting). 

Under future climate conditions, maize productivity is projected to 
decrease, independently from the climate model and the crop modelling 
approach. We estimated average yield reductions up to 17 %, similarly 
to Tubiello et al. (2000) and Xu et al. (2016). 

Recommendations to cope with the impacts of global climate change 
include early sowing (Giannakopoulos et al., 2009). In our results, 
indeed, the early sowing date shows the lowest yield reduction. At the 
same time, according to Otegui-Gambín, cultivars with longer growing 
cycle show a yield-advantage. The use of longer growing cycle cultivars 
has been reported as a worthy adaptation strategy in warmer climate 
conditions, where higher temperatures increase crop development rate 
(Giannakopoulos et al., 2009; Liu et al., 2013; Ma et al., 2017; Zhu et al., 
2018). However, Zhu et al. (2018) found that the negative impacts of 
climatic warming can be only partially offset with such an adaptation 
strategy. 

5. Conclusions 

Many studies explored the impacts of changes in sowing date and 
cultivar on maize yield, without questioning the method used for the 
evaluation. Here, we investigated the yield partitioning crop formalism 
to understand its adequateness in representing crop yield variability in 
response to changing sowing dates and cultivars. Our findings show that 
the partitioning approach achieves less accurate yield estimates across 
different sowing dates; whereas, an approach based on the anthesis 
conditions and yield components performs better. 

Concerning the coming decades (up to 2060) and the responses 
under future climate conditions, both modelling approaches agree on 
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the negative yield effects of climate change being only partially allevi-
ated by changing cultivar and sowing date. Other changes in traits and/ 
or management practices will be needed. 

Our study represents an initial assessment to identifying approaches 
that may better explain yield variability in response to changes in 
environmental conditions and agro-management practices. The results, 
here discussed, would need further evaluations before being considered 
applicable outside the analyzed conditions. To this aim, the new 
modelling approach has been also integrated into the MARS Crop Yield 
Forecasting System to monitor maize yield in potential conditions across 
different environments. Additional evaluations should be also per-
formed by replacing WOFOST with other crop growth models, to sample 
the full range of uncertainties with respect to the yield responses here 
investigated. 

Declaration of Competing Interest 

The authors report no declarations of interest. 

Acknowledgements 

We thank Paola Fenu, Roberto Leri, and Paolo Manca for their 
technical assistance. We also thank Matteo Serusi for the additional year 
of field data used in the calibration of WOFOST. 

The research has been conducted at the Joint Research Centre. The 
University of Sassari contributed in part to the research. "Università di 
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phenological development in dynamic crop model: the Bayesian comparison of 
different methods. Agric. For. Meteorol. 151, 101–115. 

Cirilo, A.G., Andrade, F.H., 1994. Sowing date and maize productivity: I. Crop growth 
and dry matter partitioning. Crop Sci. 34, 1039–1043. 

Ciscar, J.C., Ibarreta, D., Soria, A., Dosio, A., Toreti, A., Ceglar, A., Fumagalli, D., 
Dentener, F., Lecerf, R., Zucchini, A., Panarello, L., Niemeyer, S., Pérez- 
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