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Abstract

Deep underground in Gran Sasso National Laboratory (Italy), at the LUNA facility, the cross section of
the 14N(p,γ )15O, the slowest process of the CNO cycle, has been measured at energies much lower than
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achieved before. Using a 400 kV accelerator, a windowless gas target and a 4π BGO summing detector,
direct cross section data has been obtained down to 70 keV, reaching a value of 0.24 picobarn, correspond-
ing to an S-factor of 1.74 ± 0.14(stat) ± 0.14(syst) keV barn. The Gamow peak has been covered by direct
experimental data for several scenarios of stable and explosive hydrogen burning. The ωγ strength of the
259 keV resonance has been re-measured obtaining 12.8 ± 0.3(stat) ± 0.4(syst) meV. The stellar reaction
rate has been calculated for temperatures 0.09 × 109 − 0.3 × 109 K. A complete description of the experi-
ment is here presented, including the impact of the present data on nucleosynthesis in AGB stars.
© 2006 Elsevier B.V. All rights reserved.

PACS: 25.40.Lw; 26.20.+f
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1. Introduction

Stars generate energy and synthesize chemical elements in thermonuclear reactions [1]. Non-
resonant reactions induced by charged particles in a star take place in a narrow energy window
called the Gamow peak, far below the Coulomb barrier.

At low energy, the cross section σ(E) of a charged particle induced reaction drops steeply
with decreasing energy due to the Coulomb barrier in the entrance channel [1]:

σ(E) = S(E)
e−2πη(E)

E
, (1)

where S(E) is the astrophysical S factor, and η is the Sommerfeld parameter with 2πη =
31.29 Z1Z2(μ/E)1/2. Here Z1 and Z2 are the charge numbers of projectile and target nucleus,
respectively, μ is the reduced mass (in amu units), and E is the center of mass energy2 (in keV
units).

Generally, σ(E) has a very low value at the Gamow peak, this preventing a direct measure-
ment in a laboratory at the Earth’s surface, where the signal to background ratio is too small
because of cosmic ray interactions with detectors. Hence, cross sections are usually measured at
high energies and expressed as the astrophysical S factor from Eq. (1). The S factor is then used
to extrapolate the data to the Gamow peak region. Although S(E) varies only slowly with energy
for the direct process, resonances and resonance tails may hinder the extrapolation, resulting in
large uncertainties [1]. Therefore, the primary goal of experimental nuclear astrophysics remains
to measure the cross section at energies inside the Gamow peak, or at least to approach it as
closely as possible.

The Laboratory for Underground Nuclear Astrophysics (LUNA) has been designed for this
purpose and is located deep underground in the Laboratori Nazionali del Gran Sasso (LNGS)3

in Italy. The Gran Sasso site is protected from cosmic rays by a rock cover (1400 m thick)
equivalent to 3800 m water, suppressing the flux of cosmic ray induced muons by six orders of
magnitude [2] and the neutron flux by three orders of magnitude [3]. Using this approach, in
combination with high current accelerators [4,5] and high efficiency detection systems, two hy-
drogen burning reactions were studied for the first time directly in their respective solar Gamow
peak: the 3He(3He, 2p)4He [6] and the 2H(p, γ )3He reaction [7].

2 In the present work, E denotes the energy in the center of mass system, and Ebeam is the projectile energy in the
laboratory system.

3 http://www.lngs.infn.it.

http://www.lngs.infn.it
http://www.lngs.infn.it


LUNA Collaboration / Nuclear Physics A 779 (2006) 297–317 299
Fig. 1. Relevant level scheme of 15O near the 14N(p, γ )15O threshold [9].

In the present work, an experimental study of the radiative capture reaction 14N(p, γ )15O
(Q = 7297 keV [8]) at low energy is presented. The relevant nuclear levels of 15O are shown in
Fig. 1. In a low metallicity star, in the temperature range of 0.02 − 0.13T9 (T9 is the temperature
in units of 109 K), the stellar hydrogen burning is dominated by the CNO cycle, and its rate is
determined by the rate of the slowest process, the 14N(p, γ )15O reaction. This temperature range
corresponds to Gamow peak energies of 30–110 keV (maximum of the Gamow peak location)
for the 14N(p, γ )15O.

There have been many experimental studies of the 14N(p, γ )15O reaction at low energies
[10–15]. Only one of the previous studies obtained data that was at the edge of the astrophys-
ically relevant energy region, with 50% statistical uncertainty for the cross section values [11].
The other studies obtained data only at energies above the astrophysical range and generally the
results are then extrapolated in the framework of the R-matrix model down to stellar energies.
The standard cross section value used in recent reaction rate compilations [16–18] is mainly
based on the data of Schröder et al. [15], with data down to E = 181 keV, and on the low energy
total cross sections from Ref. [11].

Recently, the results of Schröder et al. [15] for capture to the ground state in 15O have been
revised downward by several works, on theoretical [19] and indirect grounds [20–23].

In our first study of 14N(p, γ )15O, titanium nitride solid targets and a high purity germanium
detector were used to measure the cross sections for capture to the five most important states
in 15O (see Fig. 1), including the ground state, down to E = 119 keV [9,24] although with lim-
ited precision. This energy is much lower than has been reached in any previous study for the
ground state transition. The revised extrapolation indicates an S factor at astrophysical energies
that is half of the values adopted in reaction rate compilations [16–18], leading to considerable
astrophysical consequences [25–27]. A recent and independent experiment confirmed this revi-
sion with the lowest energy point for the ground state transition at E = 187 keV [28].
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Fig. 2. Schematic drawing of the setup with windowless gas target and BGO detector [32].

Here we describe the second phase of the 14N(p, γ )15O study, using a windowless gas target
setup and a 4π BGO summing crystal. We report on a measurement of the 14N(p, γ )15O total
cross section at energies as low as E = 70 keV and on a new measurement of the ωγ strength
of the resonance at ER = 259 keV. We give upper limits on strength of narrow resonances for
Ebeam = 80–150 keV, as well as the astrophysical reaction rates based directly on present exper-
imental data. We discuss astrophysical scenarios where the present data have a direct impact.

We present here all the details of the experiment and final data analisys previously published
in abbreviated form [29]. Additional details of the experiment can be found in Refs. [30,31].

2. The experimental setup

2.1. Accelerator and windowless gas target

The LUNAII 400 kV accelerator has been described elsewhere [5]. The machine is able to
provide up to 500 µA of proton beam in the target chamber over a continuous operating time of
about 40 days. The accelerator beam energy uncertainty has been found to be 0.1 keV statistical
and 0.3 keV systematic [5]. The long term stability is 5 eV/h [5].

In this experiment the accelerator delivered a proton beam to a differentially pumped win-
dowless gas target (Fig. 2), the γ -rays were detected by a 4π BGO summing crystal. A similar
vacuum system and the BGO detector have been described previously [32]; in the following we
summarize the main characteristics of the setup.

The beam enters the target chamber through three pumping stages separated by apertures of
increasing flow impedance (A3, A2, and A1 in Fig. 2). The collimator at the target entrance
(A1) is 40 mm long with a diameter of 7 mm. The pressure drop between the target cell and the
first pumping stage must be as high as possible (here it is larger than a factor 70) since capture
reactions occuring in this segment of the beam line produce photons that can be detected by the
BGO detector with relatively high efficiency (Fig. 2). This undesired γ -ray flux is proportional,
at a given beam energy, to the product of the beam current in the first pumping stage and the gas
pressure profile in that segment of the beam line (see Section 3.2). The target chamber has one
port for gas inlet and one extended port for pressure measurement (target reference pressure):
A Cu pipe of 30 cm length and 6 mm inner diameter connects the target chamber to a MKS
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Baratron capacitance manometer with an accuracy of 0.25%, located outside the BGO detector
(Fig. 2). The nitrogen pressure in the target chamber is kept constant within 0.5% by a needle
valve (Fig. 2) in combination with an active electronic feedback regulation system.

The BGO detector is shaped as a 28 cm long cylinder with a coaxial hole of 6 cm diameter.
The crystal is divided into 6 optically indepedent sectors (radial thickness 7 cm), each covering an
azimuthal angle of 60 degrees. Two Hamamatsu R1847-07 photomultipliers (PMs) are coupled
to the opposite faces of each sector. The target chamber and the beam calorimeter are hosted
inside the BGO hole (Fig. 2). The center of the 10 cm long target cell is at the middle of the
detector. This way the detector covers a large fraction of the solid angle (97.7%).

2.2. Beam current integration

The beam current in the target area was determined using a beam calorimeter with constant
temperature gradient [32]. The use of a Faraday cup is here prevented since in passing through
the different pumping stages of the gas target system the charge state of low energy projectiles
fluctuates [33]. The power delivered by the beam (and consequently the number of projectiles) is
calculated as the difference between heating power without beam (Wno_beam) and with ion beam
(Wbeam). Thus, the number of accelerated proton in a run is given by:

Np = (Wno_beam − Wbeam)

Ecal
× �t, (2)

where Ecal is the laboratory energy of the beam projectiles at the calorimeter surface, and �t the
measurement time. Ecal is calculated according to the stopping power tabulation of Ref. [34] and
to the effective target density discussed in the next section. The calorimeter has been designed
to measure beam powers in the range 10–140 W. It has been calibrated at the LUNAII 400 kV
accelerator with a systematic uncertainty smaller than 1% [32].

2.3. Effective target density

The gas pressure P and temperature T vary along the beam path from the accelerator to the
interaction chamber and the target density (in units of atoms/cm3) at position z is given by [1]:

ρ(z) = νP (z)

kT (z)
, (3)

where ν is the number of atoms per molecule and k is the Boltzmann constant. The pressure
profile in the first pumping stage and in the target chamber was measured with a dedicated setup
(shown in Fig. 2 of Ref. [32]) using a couple of manometers with an accuracy of 0.25%. The
pressure drop along the Cu pipe connecting the manometer to the target chamber was found
smaller than 0.5%. In the pipe sections where direct pressure measurements were impossible
(i.e. inside the 40 mm long collimator at target entrance) linear pressure gradients were assumed.

The gas temperature profile without beam was measured in the target chamber with a special
low thermal capacity PT100 temperature transducer, shielded against thermal radiative effects,
with an accuracy of 0.1 C◦. The resulting density profile without beam, ρ(z), is shown in Fig. 5;
ρ(z) values are affected by statistical and systematic uncertainties of 0.25% and 0.5%, respec-
tively.

When the beam passes through the nitrogen gas the local density can be reduced due to
temperature and other effects at intense ion beam [35]. Moreover, pressure and temperature
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Fig. 3. Setup used to study the beam heating effect. See text for details.

gauges cannot be used in conjunction with the beam to detect changes in the local area along
the beam path. We measured the local gas density with and indirect method [35] exploiting the
ER = 259 keV resonance in the 14N(p, γ )15O reaction.

The local density is related to the energy loss �Ebeam by:

�Ebeam = Ebeam(zR) − ER =
zR∫

0

dE

d(ρx)

(
E(z)

)
ρbeam(z) dz, (4)

where Ebeam(zR) is the proton energy at the accelerator resulting, due to the energy loss in the
gas target, in E = 259 keV at position zR along the beam path, ER is the resonance energy, dE

d(ρx)
is the proton stopping power in nitrogen [34], and ρbeam is the actual target density with the
beam.

To take into account the beam heating effect in the nitrogen gas we introduced a correction
factor hbeam defined by:

ρbeam(z) = hbeam(z) × ρ(z), (5)

where ρ(z) is the gas density profile measured without beam. Combining Eqs. (4) and (5), and
assuming hbeam as constant with position (see later), the correction factor is given by:

hbeam = �Ebeam

�E
, (6)

where �Ebeam is the proton energy loss given by Eq. (4), and �E is the energy loss calculated
with the density profile measured without beam.

To measure �Ebeam we used a lead shielded 1′′ × 1′′ NaI detector mounted on a slit movable
along an axis parallel to the beam direction (Fig. 3). The lead shield had an hole of 5 mm diameter
and was 70 mm thick. The effective target length seen by the collimated detector was determined,
with the LUNA Monte Carlo code [36], to be 2.00 ± 0.14 cm (FWHM of the spatial efficiency
distribution for 7 MeV γ -rays).

To determine at which beam energy the resonance is located at zR in front of the NaI detector,
the resonance scan technique was used: The proton beam energy Ebeam was changed in fine steps
(500 eV) for getting the excitation functions and consequently the maximum of the yield.

The scans were repeated at several detector position along the target chamber, namely −5,
−3, −1, 1, and 3 cm (see Figs. 2 and 3). At each position the measurements were performed at
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Fig. 4. Beam heating correction factor hbeam as a function of the dissipated power per unit length in the nitrogen gas
[35] for different positions along the beam path (Fig. 2). Error bars do not include the systematic uncertainty of the beam
energy loss �Ebeam. The solid line through the data points assumes a linear relationship between the correction factor
and dW/dx.

several pressures, (0.5, 1.0, and 2.0 mbar) and with different beam intensities. For each resonance
scan, we calculated the density correction factor hbeam (Eq. (6)). The results are plotted in Fig. 4
as a function of the dissipated power per unit length dW/dx [35]:

dW

dx
= dE

dx
× Ip, (7)

where dE
dx

is the proton energy loss per unit length [34], and Ip is the proton beam intensity.
The hbeam values are mainly affected by the systematic uncertainties due to the determination

of the energy loss �Ebeam (see Eq. (4)) that ranged from 35% at 0.5 mbar, through 16% at 1 mbar
to 7% at 2.0 mbar (not shown in Fig. 4).

No sizeable hbeam dependence on the position has been observed (Fig. 4). This is in agreement
with the conclusions in Ref. [35]. In fact, a 10% variation in the target density ρ(z) (Fig. 5) would
result in a change of hbeam smaller than 2%, well below other experimental uncertainties.

As in Ref. [35] we assumed a linear relationship between hbeam and dW/dx (Fig. 4) obtaining:

hbeam = 1.0 − 5.4 × 10−4
(

dW

dx

)
, (8)

where dW/dx is in units of mW/cm. The total uncertainty of the hbeam factor given by Eq. (8)
is 3.2%, given by the average deviation between the adopted linear interpolation and the experi-
mental values.

The effective target density profile, including the beam heating effect, is shown in Fig. 5.

2.4. BGO detector and LUNA Monte Carlo simulation

In the experiment the signals from the six BGO sectors were summed to give the spectrum of
the total γ -rays energy emitted per event. The performance of the BGO detector were simulated
with the LUNA Monte Carlo code [36] and its predictions were tested in terms of detection
efficiency η(z) and spectrum shape. The code had also been extensively tested in the past [6,7,
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Fig. 5. Effective target density profile along the beam path for three typical nitrogen pressures (0.5, 1.0, and 2.0 mbar).
Profiles obtained with different beam current values are shown. The z axis is the same as on Figs. 2 and 3.

Fig. 6. BGO efficiency; full circles: experimental efficiency measured with a calibrated 137Cs radioactive source (activity
uncertainty 1.5%) in several positions along the beam axis; full squares: 22Na 1.275 MeV line (source activity uncer-
tainty 3.7%); full triangles: 22Na 2.297 MeV summing peak; solid, dashed and dash-dot lines are LUNA Monte Carlo
predictions for 137Cs, 22Na 1.275 MeV and 22Na 2.297 MeV peaks, respectively (uncertainty 1.5%). The vertical lines
represent the extension of the target chamber and BGO crystals (Fig. 2).

37]; in this experiment we compared the detection efficiency with experimental values of η(z)

(Fig. 6) obtained moving point-like calibrated radioactive sources (137Cs and 22Na) along the
beam path inside the bore-hole of the BGO detector (Fig. 2). The 137Cs source has been chosen
because it emits mono-energetic γ -rays and for the high accuracy of its calibration (1.5%) while
the 22Na (calibration accuracy 3.7%) has been used to check the code capability in describing the
summing properties of γ -rays cascades (see later). We quote a 1% systematic uncertainty due to
the approximations in the description of the setup geometry and materials.

The BGO detector covers a large solid angle and thus primary and secondary γ ’s arising
from transitions to intermediate states of 15O get summed with high probability in a peak at
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Fig. 7. 22Na spectrum (solid line, normalized to running time) compared with a simulation (dotted line, normalized to
the height of the 2.297 MeV experimental summing peak). The peak at 1.022 MeV is the sum of the two annihilation
γ ’s, the peak at 1.275 MeV is the dexcitation of the 1.275 MeV level of 22Ne, and the peak at 2.297 MeV is the sum of
the two annihilation γ ’s with the 1.275 MeV line (summing peak). The source was at the center of the target chamber.

Eγ = Q + Ecm; Q = 7.297 MeV for 14N(p, γ )15O. Spectrum shape and detection efficiency
depend on the decay probability to intermediate states of 15O (see Section 3.2). Similarly it
happens in case of a radioactive source, where the detector summing properties depends on well-
known branching ratios.

The Monte Carlo code generates, event by event, γ -cascades depending on given branching
ratio (for the 14N(p, γ )15O varying with beam energy). Details of the angular distribution and of
the branching ratio adopted are discussed in Section 3.2, where all the source of uncertainties
are presented (see Table 1). The γ -cascades are tracked through passive materials and into the
BGO crystals until they are absorbed by the detector or not. Details of the tracking properties of
primary and secondary particles of the Monte Carlo code can be found in Ref. [36]. The code
calculates, event by event, the total energy released into the six crystals Eγ , which depends on
the probability of detecting one or more photon in the same event (summing effect).

In our analysis, which is described in Section 3, the detection efficiency appears in the integral
of Eq. (13) together with the effective density profile ρbeam. The absolute detection efficiency at
a given z point is:

η(z) = Ndet(z)

Ngen
. (9)

Where Ndet(z) is the number of detected events originating at z point when Eγ is in the ROI
(Region of Interest, see Section 3.2), and Ngen is the total number of generated events. The typical
absolute detection efficiency for the summing peak in the ROI 6.5–8.0 MeV is 65.1 ± 0.4%.

The Monte Carlo predictions have been compared with 22Na and 14N(p, γ )15O experimental
spectra of Eγ . In Fig. 7 is shown the comparison of an experimental 22Na spectrum (solid line,
taken at the center of the target chamber, after laboratory background subtraction) with a LUNA
Monte Carlo simulation (dotted line). In Fig. 8 the comparison of a high statistics experimental
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Fig. 8. High statistics background subtracted 14N(p, γ )15O spectrum (thin line, normalized to the beam charge) compared
with a simulation (thick line, normalized to 14N(p, γ )15O experimental summing peak) at Ebeam = 237.9 keV.

spectrum of 14N(p, γ )15O (thin line, after background subtraction, amount of background in the
window of the plot is 1.5% of total counts) with a simulation (thick line) is shown.

The code reliability in the description of the complex structure of the γ -ray spectrum (pri-
mary and secondary γ -rays, escape peaks, summing effect) is demonstrated by the very good
agreement between simulated and experimental data (see Figs. 6, 7 and 8).

2.5. Gamma ray background

The gamma ray background has been studied with a dedicated setup (shown in Fig. 1 of
Ref. [38]) and has been already described elsewhere [38]. Briefly, the major sources of back-
ground have been identified and localized. The laboratory background counting rate in the ROI
is constant and well known (see Section 3.2).

A typical 14N(p, γ )15O spectrum with nitrogen gas is shown in Fig. 9 (solid line). For γ -rays
energies below 4 MeV, the spectrum is dominated by the laboratory background (see Figs. 9
and 10). For higher γ -energies, the background induced by the ion beam plays a more prominent
role, depending on the beam energies. To evaluate the contribution to the yield from beam in-
duced reactions, monitor runs with helium gas in the target chamber were performed at the same
beam energy (to avoid change in beam focusing). This contribution (after laboratory background
subtraction) is then rescaled to have equal energy of the proton beam when hitting the beamstop
[38] (see Section 3.2).

This procedure has been applied to γ -ray lines that directly appears in the ROI, like the
13C(p, γ )14N reaction (Q = 7.551 MeV) that leads to � 7.7 MeV γ -rays, superimposed with
the sum peak from the reaction to be studied.

Several other reactions lead to γ -rays of Eγ > 8 MeV [38], inducing a small Compton contin-
uum at lower energies. Their contribution to the yield in the ROI was evaluated with the helium
monitor runs (after laboratory background and 13C subtraction) and then rescaled to yield of
their peaks in the nitrogen spectrum. Single lines from resonant background reactions producing
γ -rays in the ROI [38] were fitted and subtracted for runs close to the resonance energy.
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Fig. 9. 14N(p, γ )15O γ -ray spectrum at Ebeam = 141.1 keV with 1 mbar nitrogen gas (solid line), running time 0.9 day,
accumulated charge 19.9 C. 14N(p, γ )15O γ -ray monitor run at same beam energy, normalized to equal lifetime with
the nitrogen run, with 1 mbar helium in the target (grey line), running time 1.0 day, accumulated charge 20.8 C. The
laboratory background without beam, normalized to equal lifetime with the nitrogen run is also shown (shaded area). In
the inset the 14N(p, γ )15O region of interest is expanded.

Fig. 10. γ -ray spectrum at Ebeam = 80.9 keV (Eeff = 70 keV, solid line). The running time is 49.12 day and the
accumulated charge is 928 ± 8 C. The most relevant beam induced background reactions are indicated. The laboratory
background is shaded. In the inset, the region of interest (ROI) for our analysis is enlarged: 14N(p, γ )15O signal (solid
line), and laboratory background (shaded area). The beam induced background is discussed in the text.

3. Data analysis

The number of detected counts dNγ produced in a length dz of the extended nitrogen gas
target is given by the expression:

dNγ = Npσ(E)ρbeamη dz, (10)
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where Np is the number of accelerated protons, ρbeam the nitrogen density and η the detection
efficiency. The proton beam loses part of its energy passing through the gas target system. The
laboratory energy of the projectiles at a given z point is:

E(z) = Ebeam −
z∫

0

dE

d(ρx)

(
E(z)

)
ρbeam(z) dz, (11)

where Ebeam is the laboratory accelerator beam energy and dE
d(ρx)

is the proton stopping power in
the nitrogen gas [34]. Thus, the reaction cross section varies along the beam path. Fusion reaction
can therefore take place, with different probability, not only inside the target chamber, but also in
the previous stages of the vacuum system and the emitted photons can be detected by the BGO
with an efficiency depending on the interaction position (see Fig. 2). Thus the number of detected
photons Nγ is given by:

Nγ = Np

L∫
0

σ
(
E(z)

)
ρbeam(z)η(z) dz. (12)

The length L = 36.4 cm is the distance between the first pumping stage, and the calorimeter: this
corresponds, according to the Monte Carlo simulation, to the gas target zone where is produced
99.9% of the detected fusion reactions. According to Eq. (1), the 14N(p, γ )15O cross section is
expected to be a continuous function at low energies and we can define an effective cross section
σeff, which is the average over the interaction energies:

σeff = Nγ

Np

∫ L

0 ρbeam(z)η(z) dz
. (13)

From Eq. (13) one obtains the S(E) factor, according to definition (1), provided that an effective
interaction energy Eeff is introduced.

3.1. Effective interaction energy

We defined the effective energy Eeff by the relation:

σ(Eeff) = σeff. (14)

By inverting Eq. (14) one could obtain Eeff = σ−1(σeff). Since σ(E) is not known before the
measurement, it is not possible to determine Eeff directly from experimental data, and a theoret-
ical assumption, eventually coupled with an adaptive iterative method, is needed. In the energy
range explored in the experiment, we assumed that the cross section is given by the sum of a
non-resonant term plus a Breit–Wigner function for the 259 keV resonance. Since typical values
of �Ebeam were about 10 keV in the target, we could assume, for each run below the 259 keV
resonance, a constant S factor in Eq. (1) (this introducing an additional uncertainty of 0.1% on
the S factor), and thus Eq. (14) reduces to:

e−2πη(Eeff)

Eeff
=

∫ L

0
e−2πη(E(z))

E(z)
ρbeam(z)η(z) dz∫ L

0 ρbeam(z)η(z) dz
. (15)

The effective interaction energy Eeff is simply obtained by inverting the Gamow factor in
Eq. (15). With this hypothesis Eeff does not depend on the S factor and no iterative correction is
needed.
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3.2. Experimental uncertainties

The number of detected events, Nγ , is obtained from the BGO spectra after background sub-
traction:

Nγ = NROI − Nlab − Nbeam, (16)

where NROI is the number of photons counted in the 6.5 and 8.0 MeV region of interest (ROI),
where the ratio between detection efficiency and background counting rate was maximum [31];
Nlab is the number of events due to laboratory background and Nbeam is the number of counts
due to beam induced background, both discussed previously (see Section 2.5). To investigate
for possible systematic effects due to the pressure of the monitor run, these measurements were
repeated at several helium pressures. We found these effects negligible within 0.2%. In the ex-
periment at high proton energy the background was dominated by the beam induced background
and the typical signal to noise ratio ranged from 30 to 60. At low proton energy the background
was dominated by the laboratory component. The laboratory background rate in the ROI, with-
out any passive shielding, was 21.1 ± 0.8 counts/day and the lowest counting rate in the present
experiment (after background subtraction) was 11.0 ± 0.8 counts/day at Eeff = 70 keV.

The statistical uncertainty on Nγ was typically smaller than 3%, and increased up to 7% for
the low energy runs. Fig. 10 shows the spectrum collected at Ebeam = 80.9 keV (Eeff = 70 keV),
the lowest energy explored in this experiment. It should be noted that, depending on the nominal
target pressure, the fraction of detected photons Nγ produced in reactions outside the target cell
and in the first aperture (A1 in Fig. 2) varied between 0.5 and 1.5%.

During the experiment the typical beam current was 0.3 mA and the number of accelerated
projectiles Np was obtained by Eq. (2): Its uncertainty depends on those of Wno_beam, Wbeam
and Ecal. The quantity Wno_beam was periodically monitored and we observed a 0.5% fluctuation
due to random variation of heat transfer conditions of the calorimeter components. The same
fluctuations have been assumed for Wbeam values. Since Ecal = Ebeam − �Ecal, where the last
term is the total projectile energy loss along the beam path, its uncertainty is affected by those
of ρbeam(z), and by the systematic uncertanty of the hydrogen stopping power in nitrogen gas.
For this we adopted the values and recent updates reported in Ref. [34]. The stopping power
uncertainty quoted in Ref. [34] is 2.9% (average deviation between fitted curve and experimental
data in the energy range between 10 keV and 3 MeV), and the overall agreement for the hydrogen
stopping power in all elements is 4.2% [34]. Since we measured at low energies, where the
discrepancy between the compilation fitted curve and experimental data looks larger [34], we
adopted for the stopping power a conservative uncertainty of 10%. Changing from 2.9% to 10%
increases the uncertainty on Np by less than 0.1%. The typical uncertainty of Np was 1%, while
in the low energy runs increased up to 2%.

The integral in Eq. (13) was calculated by the LUNA Monte Carlo code [36] for the exper-
imental conditions of each run (i.e. beam energy, target pressure, and beam current). The code
received as input the measured density profile along the beam path corrected with the beam heat-
ing effect (see Section 2.3 and Fig. 5). The uncertainty of the integral in Eq. (13) is affected by
those of the density ρbeam(z), of the detection efficiency η(z) and of the Monte Carlo integration
which is 0.75%. The uncertainty of the efficiency η(z) in the integral of Eq. (13) is affected by
those of the decay probabilities to intermediate states of 15O. For it the data reported in Ref.
[9] were adopted. We assumed a 10% uncertainty (absolute) of the decay probability values in
the entire energy range of our experiment for all the γ -ray transitions. This resulted in a 2.5%
systematic uncertainty on the integral in Eq. (13). The recent evidence for an M1 transition to
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Table 1
Summary of the experimental uncertainties. See text for details

Quantity Statistical Systematic

Nγ 3–7%
Np 1–2% � 1%
Eeff 0.08% 0.56%

ρ(z)a 0.25% 0.5%
hbeam

a 3.2%
η(z)a,b 0.75% 2.9%∫ L

0 ρbeam(z)η(z) dz 0.79% 4.3%

a The uncertainty on this parameter contributes to the overall uncer-
tainty of the integral of Eq. (13) quoted in the last raw of the table.

b The statistical uncertainty of the detection efficiency η(z) also in-
cludes the statistical uncertainty of the Monte Carlo integration tech-
nique.

the state at 6.18 MeV [39] does not affect our result within the errors due to the branching ratios
quoted above. The angular distribution anisotropy quoted in Ref. [9], thanks to the large solid an-
gle of the BGO detector, affects the efficiency η(z) in the integral of Eq. (13) with an uncertainty
of 1% only.

In the experiment the target pressure was maintained at 1 mbar, resulting in a beam energy
loss of 10 keV. A few runs with target pressure 0.5 and 2.0 mbar were also done to check possible
systematic effect. We do not observe any systematic effect on the S-factor, connected to different
nitrogen pressure within 1σ level (see Table 2 and Fig. 11).

The beam energy was varied in 10 keV steps between 80 and 250 keV in the laboratory system.
The effective energy Eeff, defined by Eq. (15) was calculated by the LUNA Monte Carlo code
[36]. The numerical integration and inversion of Eq. (15) was better than 10−4 (statistical) and
10−3 (systematic). The effective energy is also affected by the same uncertainty of Ecal quoted
above. Since Eeff is inside the exponential term, when inverting Eq. (1) its uncertainty affects the
astrophysical S(E) factor according to the equation:

(
�S

S

)
=

√(
�σ

σ

)2

+ (
1 + πη(Eeff)

)2
(

�Eeff

Eeff

)2

. (17)

Table 1 summarizes the error budget discussed above.

3.3. ωγ factor of the 259 keV resonance

The ωγ strength of the 259 keV resonance was also measured. The method was based on the
resonance scan technique, described in Section 2.3, but here using the BGO detector [31]. The
beam energy was changed in fine steps (500 eV) to determine the maximum of the reaction yield.
The counts collected at the maximum are related to the resonance strength as discussed below.

The 259 keV resonance cross section was described according to the usual Breit–Wigner
formula [1]:

σ(E) = ωγπλ2(E)
Γa(E) Γb(E) ΓR

2 2
, (18)
Γa_R Γb_R (E − ER) + (Γ (E)/2)
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where λ is the De Broglie wavelength, ER is the resonance energy, and Γ = Γa + Γb is the total
width of the resonance, Γa and Γb are the partial width of the decay channel, Γa_R and Γb_R are
the partial width values at the resonance, ωγ is the strength factor defined as [1]:

ωγ = 2J + 1

(2J1 + 1)(2J2 + 1)
(1 + δ12)

Γa_RΓb_R

ΓR

, (19)

where J is the resonant state spin and J1 and J2 are the spins of the projectile and target nu-
clei. The energy dependence of the relative partial widths Γa(E)/Γa_R and Γb(E)/Γb_R have
been assumed as in Ref. [1]. For the partial width of the entrance channel Γa(E) we used the
expression [1]:

Γa,l(E) =
(

2E

μ

)1/2 2h̄

Rn

Pl(E,Rn)θ
2
l . (20)

Where μ is the reduced mass (in amu units), Rn is the nuclear radius (in fm units), θ2
l is the

dimensionless reduced width, l is the orbital angular momentum quantum number, and Pl(E,Rn)

is the penetrability. At sub-Coulomb energies (E � EC ), the penetration factor Pl(E,Rn) is
related to the Gamow factor Pl=0 = exp(−2πη(E)) by the approximated expression [1]:

Pl(E,Rn)

P0(E,Rn)
= e

−2l(l+1)
( h̄2

2μZ1Z2e2Rn

)1/2

= e
−7.61 l(l+1)

(Z1Z2Rn)1/2
. (21)

Combining the Eqs. (20) and (21) and assuming s wave (l = 0), the energy dependence of the
relative partial widths Γa(E)/Γa_R becomes:

Γa(E)

Γa_R

=
(

E

ER

)1/2
e−2πη(E)

e−2πη(ER)
. (22)

Note that for a �E of 10 keV the effect of the energy dependence of Γb(E)/Γb_R is negligible,
while neglecting the energy dependence of Γa(E)/Γa_R (Eq. (22)) has an effect of 0.9% on the
determination of the ωγ factor. We included both the energy dependence of the relative partial
width in our determination of the ωγ strength.

Inserting Eq. (18) in Eq. (12) and solving for the ωγ factor one obtains:

ωγ = Nγ

Np

∫ L

0 πλ2(E(z))
Γa(E(z))

Γa_R

Γb(E(z))
Γb_R

ΓR

(E(z)−ER)2+(Γ (E(z))/2)2 ρbeam(z)η(z) dz
. (23)

Due to the very high counting rate, the statistical uncertainty of Nγ is negligible. The uncertainty
of Np is about 1%, while the accuracy of ρbeam(z), and η(z) have been discussed above. The in-
tegral in Eq. (23) has 2% statistical uncertainty due to the Monte Carlo integration. The stopping
power uncertainty quoted above affects the uncertainty of the ωγ strength, through Eq. (11), for
1.6% (included in the values shown in Table 3). The ωγ factor of the 259 keV resonance was
measured for three nitrogen pressures (0.5, 1.0, and 2.0 mbar) and the results are discussed in the
next section.

4. Results

Table 2 and Fig. 11 summarize the results obtained in the experiment. In Fig. 11, astrophysical
S factor values from the present study (filled circles) are compared with previous results: Our data
and that from Lamb and Hester [11] (open triangles) have been corrected for electron screening
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Table 2
S(E) factor of 14N(p, γ )15O. Data have not been corrected for electron screening effect. The electron screening enhance-
ment factor f [40] applied to the present data for Fig. 11 are also shown

Eeff ± σ stat
Eeff

± σ
syst
Eeff

σeff ± σ stat
σeff

± σ
syst
σeff Seff ± σ stat

Seff
± σ

syst
Seff

f

(keV) (barn) (keV barn)

70.08±0.01±0.09 (2.38±0.19±0.19)×10−13 1.74±0.14±0.14a 1.10
79.30±0.02±0.16 (9.82±0.54±0.51)×10−13 1.77±0.10±0.11a 1.08
88.70±0.04±0.20 (3.13±0.11±0.10)×10−12 1.70±0.07±0.07a 1.07
98.57±0.06±0.40 (9.03±0.49±0.45)×10−12 1.74±0.09±0.10a 1.06
108.00±0.09±0.61 (2.06±0.12±0.12)×10−11 1.68±0.10±0.11a 1.05
117.59±0.09±0.62 (4.80±0.20±0.23)×10−11 1.81±0.07±0.13a 1.05
126.64±0.09±0.64 (9.31±0.39±0.43)×10−11 1.85±0.08±0.13a 1.04
136.16±0.09±0.64 (1.84±0.13±0.13)×10−10 1.88±0.08±0.11a 1.04
153.26±0.09±0.61 (4.30±0.32±0.19)×10−10 1.86±0.14±0.10a 1.03
159.77±0.09±1.02 (6.05±0.22±0.29)×10−10 1.92±0.07±0.13b,d 1.03
163.93±0.09±0.61 (7.56±0.36±0.43)×10−10 1.98±0.10±0.13a,d 1.03
166.45±0.09±0.41 (9.77±0.45±0.52)×10−10 2.29±0.11±0.13c,d 1.03
171.47±0.09±0.54 (1.07±0.04±0.05)×10−9 2.05±0.07±0.10a 1.03
181.79±0.09±0.60 (1.88±0.06±0.09)×10−9 2.37±0.08±0.11a 1.02
186.61±0.09±0.93 (2.31±0.08±0.11)×10−9 2.44±0.08±0.15b,e 1.02
190.34±0.09±0.58 (2.85±0.08±0.12)×10−9 2.63±0.08±0.13a,e 1.02
192.60±0.09±0.40 (3.33±0.14±0.18)×10−9 2.85±0.12±0.16c,e 1.02
201.01±0.09±0.61 (4.36±0.23±0.19)×10−9 2.81±0.15±0.14a,f 1.02
203.48±0.09±0.41 (5.59±0.29±0.24)×10−9 3.33±0.17±0.15b,f 1.02
207.82±0.09±0.59 (6.72±0.23±0.30)×10−9 3.49±0.12±0.18a 1.02
213.03±0.09±0.98 (8.32±0.28±0.39)×10−9 3.70±0.13±0.21c,g 1.02
217.18±0.09±0.58 (1.12±0.04±0.05)×10−8 4.45±0.16±0.23a,g 1.02
219.58±0.09±0.39 (1.33±0.05±0.07)×10−8 4.92±0.19±0.25b,g 1.02
228.21±0.09±0.58 (2.29±0.07±0.10)×10−8 6.67±0.21±0.32a 1.01

aPressure 1.0 mbar; bPressure 2.0 mbar; cPressure 0.5 mbar; dBeam energy 181.2 keV; eBeam energy 209.1 keV; fBeam
energy 220.9 keV; gBeam energy 237.9 keV.

effect (see Table 2 for details), while this correction was disregarded for all the other data sets.
Present data are in agreement, in the overlapping region, with the data of Schröder et al. [15]
(open squares). On the contrary, the data of Lamb and Hester [11], obtained with an activation
study, are higher than ours. However they report a significant background contribution from
the 12C(p, γ )13N parasitic reaction and an additional 15% systematic uncertainty on detection
efficiency and beam intensity [11]. The data of Runkle et al. [28] (capture to the ground state,
6.18 and 6.79 MeV state) have also been included in Fig. 11 for comparison. Finally we find that
at low energies our data are significantly lower than the NACRE stellar reaction rate compilation
[18] (dashed line).

Table 3 summarizes the values of 259 keV resonance ωγ obtained in the present work and
by other authors. The strength value is in very good agreement with Ref. [9]. A reasonable
agreement is also found with other works [8,28].

Since there are no experimental data on the electron screening potential Ue for the
14N(p, γ )15O reaction, we adopted the conservative theoretical values of Assenbaum et al. [40]
to compare our data with R-matrix extrapolations (the adopted values of the enhancement fac-
tor f are reported in Table 2). At the lowest energies reached in the present work, the electron
screening effect from Ref. [40] is comparable with the present experimental uncertainties.
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Fig. 11. Astrophysical S factor for the 14N(p, γ )15O reaction from low energy studies: present work (filled circles), Lamb
and Hester [11] (open triangles), Schröder et al. [15] (open squares), Imbriani et al. [9] (open circles), Runkle et al. [28]
(open diamonds). Recent R-matrix analyses: Imbriani et al. [9] (continuous line), Runkle et al. [28] (dash-dot line), The
low energy assumption adopted in the NACRE compilation of stellar reaction rates [18] (dashed line) is also shown. Data
and fit from Runkle et al. have been added with R-matrix results from Ref. [9] for the missing transitions.

Table 3
ωγ values of the 259 keV resonance in the 14N(p, γ )15O reaction

Reference ωγ (meV)

Ajzenberg-Selove [8] 14±1
Runkle et al. [28] 13.5±1.2
Imbriani et al. [9] 12.9±0.4(stat)±0.8(syst)

Present work 12.8±0.3(stat)±0.5(syst)

Recently, the existence of a new resonance in 14N(p, γ )15O at Ebeam = 127 keV with ωγ =
4500 ± 900 neV was reported [41]. Later on, a dedicated search for this resonance resulted in an
upper limit on its ωγ of 32 neV (95% C.L.) [42].

From our data, we deduced a new upper limit of 0.83 neV (2σ level) for the ωγ of this
hypothetical resonance. Furthermore, we can quote an upper limit of 0.05 neV (2σ level) on the
strength of any resonance in the energy range Ebeam = 80−100 keV, and of 1.2 neV (2σ level)
in the energy range Ebeam = 100−150 keV.

4.1. 14N(p, γ )15O stellar reaction rate

The Maxwellian averaged reaction rate, NA〈σv〉, (in units of cm3 mol−1 s−1) is computed
following the prescription of Ref. [18]:

NA〈σv〉 = 3.7313 × 1010μ−1/2T
−3/2
9

∞∫
σ(E)E exp(−11.605E/T9) dE. (24)
0
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Fig. 12. Stellar reaction rate for the 14N(p, γ )15O reaction relative to the NACRE [18] rate, as a function of the stellar
temperature: present work (continuos line, see text for details); NACRE [18] (dashed line); LUNA solid target (Imbriani
et al. [9], dotted line).

Where μ is the reduced mass of the system (in units of amu), T9 is the temperature (in units of
109 K), σ is the cross section (in units of barn), and E is the center mass energy (in units of
MeV).

The calculation was performed numerically using the present cross section data, corrected
for the electron screening effect from Ref. [40] (see Table 2), and the ωγ value of the 259 keV
resonance given above. The results are shown in Fig. 12.

For energies E < 70 keV, we have assumed a linear relationship for the S-factor based on the
R-matrix data from the LUNA solid target experiment (Imbriani et al. [9], Fig. 11).

For temperatures T9 > 0.09, the data from the present work (solid line in the plot) contribute
directly for more than 90% to the stellar reaction rate, while the remaining 10% depends on the
assumption made for energies E < 70 keV.

For temperatures 0.06 < T9 < 0.09, the present direct data account for 50–90% of the area
under the Gamow peak.

For temperatures T9 > 0.18, the rate from the present work is consistent within the errors with
NACRE, but systematically lower by 10%. The reason of this systematic difference is that at these
temperatures the stellar reaction rate is dominated by the 259 keV resonance, and our value of
the ωγ of this resonance (Section 3.3, Table 3) is lower than the value of ωγ = 14 ± 1 meV
adopted in the NACRE compilation [18].

For T9 < 0.18, non-resonant capture becomes more and more important, and at these temper-
atures the present rate is up to 40% lower than NACRE since the S factor values are much lower
than the NACRE extrapolation (Fig. 11).

4.2. Astrophysical consequences

The data obtained in the present experiment has been used to directly evaluate the reaction
rate for several important stellar scenarios, with negligible impact from the extrapolation applied
at lower energies.

Low mass stars burn first hydrogen and then helium in their center. After the end of the helium
burning phase, the star consists of a degenerate core of oxygen and carbon and two shells burning
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hydrogen and helium, respectively. This phase of stellar evolution is called the Asymptotic Giant
Branch (AGB) [43]. It is characterized by flashes of the helium burning shell that spawn convec-
tive mixing in a process called dredge-up. Such a dredge-up transports the products of nuclear
burning from inner regions of the star to its surface, where they are in principle accessible to
astronomical observations.

The temperature in the hydrogen burning shell of an AGB star is of the order of T9 =
0.05–0.08 for the example of a 2M
 star (M
: mass of our Sun) with metallicity Z = 0.01.
It has been shown [44] that an arbitrary 25% reduction of the 14N(p, γ )15O rate with respect to
the NACRE [18] rate leads to twice as efficient dredge-up of carbon to the surface of the star,
because the rate of energy generation in the hydrogen burning shell becomes even lower than
before, enhancing the disequilibrium between hydrogen and helium burning shell. The CNO rate
suggested by the present study is more than 25% below the NACRE [18] rate. Still, the change
in the 14N(p, γ )15O rate might lift a disagreement between model and observation for so-called
carbon stars [45]: For low (i.e. 2M
) mass stars, models do not reproduce a sufficiently high
carbon content in the atmosphere.

Recently, a simulation for a 5M
, Z = 0.02 AGB star [46] found stronger thermal flashes for
a reduced CNO rate, consistent with the finding of Ref. [44] for a 2M
, Z = 0.01 AGB star.

For a zero metallicity (population III) star of 1M
, after a sufficient amount of carbon has
been created in the triple-α reaction, the CNO cycle is ignited in the so-called CN flash. This
CN flash takes place at T9 ≈ 0.065 and leads to a brief loop of the trajectory of the star in the
Hertzsprung–Russell diagram [47]. With a CNO rate that is 40% lower than the NACRE [18]
rate, this loop disappears [46]. Also, the first core helium flash in such a star was found to be less
luminous than in the reference case, albeit with a higher core mass, as a result of a lower CNO
rate [46].

Temperatures of T9 ≈ 0.1 correspond to CNO burning in heavy (20M
) population III
stars [48]. Explosive burning in novae [49] takes place at even higher temperatures, typically
T9 ≈ 0.2. The 15N/14N isotopic ratio in nova ashes depends sensitively on the 14N(p, γ )15O
rate [50]; the more precise rate that can be calculated from the cross sections obtained in the
present study will reduce the uncertainty of the isotopic ratio.

5. Conclusion

The total cross section of the 14N(p, γ )15O reaction, the bottleneck of the CNO cycle, has
been measured down to E = 70keV, well within the energy window where stellar CNO hydro-
gen burning takes place. The strength of the ER = 259 keV resonance has been determined with
improved precision, and stringent upper limits have been put on possible narrow resonances be-
tween Ebeam = 80–150 keV. The reaction rate for several scenarios of hydrogen burning, both
stable and explosive, has been calculated directly from the present cross section data, with neg-
ligible impact from the assumptions made for the cross section at lower energies. The impact of
the present rate on nucleosynthesis in AGB stars of different masses (M = 1–20M
), in partic-
ular the carbon content of the atmosphere and the luminosity of the core helium flash, and on
explosive burning in novae (15N/14N isotopic ratio) has been discussed.
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