Silicon photomultipliers: on ground characterizations and modelling for use in front-end electronics aimed to space-borne experiments

Davide Badoni ^a Francesco Altamura ^a Alessandro Basili ^a Raffaele Bencardino ^a Vittorio Bidoli ^a Marco Casolino ^a Anna De Carli ^a Tom Froysland ^a Marcello Marchetti ^a Roberto Messi ^a Mauro Minori ^a Piergiorgio Picozza ^a Gaetano Salina ^a Arkady Galper ^b Mikhail Korotkov ^b Alexander Popov ^b

^a Phy.Dep.Univ. "Tor Vergata", Tor Vergata Sect. INFN

^b Moscow Engineering and Physics Institute

Presented by: Davide Badoni

Abstract

Silicon Photomultipliers (Si-PM) consist of an array of semiconductor photodiodes joint on the common substrate and operating in limited geiger mode. A new generation of Si-PM is currently under test in INFN Rome Tor Vergata facilities: they consist of a 5625 element, $3 * 3 mm^2$ array with an improved light response. These elements have been characterized. Furthermore, a functional model of the Si-PM has been developed to be used in a VLSI development of front-end electronics.

1. Introduction

Silicon Photomultipliers (Si-PM) consist of an array of avalanche semiconductor photodiodes[1] joint on the common substrate and operating in limited geiger mode. These diodes have been provided by Mephi group[2]. In this work we discuss the performance of the $3 * 3 mm^2$ size Si-PM. It is composed by 5625 elements (pixel) and it has been tested and characterized (gain and aging) with a static stimuli configuration; furthermore, a functional model of the Si-PM has been developed to be used in a VLSI development of front-end electronics. For their linearity, low voltage and small dimensions, they are particularly suited for space applications.

2. Characterization

The current $I(V_b) = I_l(V_b) - I_d(V_b)$, where I_l and I_d are light and dark current respectively, has been used for the gain evaluation. The gain could be estimated by the formula $Gain(V_b) = \frac{I(V_b^*)}{I(V_{flex})}$ [3], where V_b^* is the bias voltage V_b at the working voltage and V_{flex} is a flex on the I - V characteristic: for $V_b < V_{flex}$ the increment of $I(V_b)$ would tend to an asymptotic value; for $V_b > V_{flex} I(V_b)$ becomes sensitive to the avalanche effect. We present the results of two different measures: the first one is the I - V characteristic at several temperatures (see fig.1) and the second one is the gain vs. aging at different bias voltages, according on the above definition (see fig.2).

Fig. 1. I vs. V with different temperature. From top: 293K, 283K, $273\div118K.$

Fig. 2. Gain vs. aging. Different curves corrispond to different reverse bias voltage; from top to bottom: 21.0V; 20.8V; 20.6V; 20.4V. One unit of aging correspond to about 80 mC of integrated charge.

3. Si-PM Model

Fig. 3. Single pixel array vs. global representation.

In the fig. 3 are represented two alternative equivalent circuits of SiPM. With the approximation that parameters of all pixels are the same, the single pixel parameters (parameters with *-pix* extension in the left side of fig. 3) has a linear relationship with the parameters in the global representation (right side of fig. 3). The R_{s-pix} is the inserted ohmic resistor which causes the limitation in the geiger-mode. The others parameters are extracted directly from measures on SiPM (see fig. 4). The R_{p-pix} takes into account the thermal current: it depends on temper-

ature and V_b and represent the time integral mean of the current. The junction capacitance C_{d-pix} also depens on V_b . The current generator I_{ph-pix} represents the incoming photons.

Fig. 4. Measures of capacitance $C_d(V_b)$ (\blacksquare) and resistance $R_p(V_b)$ (\blacktriangle).

References

- G. Bondarenko et al. Limited geiger-mode silicon photodiode with very high gain. Nuclear Physics B 61B (1998) 347.
- [2] P.Buzhane et al. Silicon photomultiplier and its possible applications. Nucl. Instr. and Meth A A504 (2003) 48.
- [3] A.Karar et al. Characterization of avalanche photodiodes for calorimetry applications. Nucl. Instr. and Meth A 428 (1999) 413.