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Abstract. The dynamics of a beam in a ring with a localized multipolar nonlinearity is described by a polynomial one turn
map. The space charge forces act continuously along the ring, but their effect can be included by replacing the linear tune
with the depressed tune which depends on the Courant Snyeder invariant. This approximation allows to use the normal forms
to compute the nonlinear invariants, the nonlinear tune and the islands geometric parameters when a low order resonance is
approached.

INTRODUCTION

The theory of normal forms for symplectic maps, intro-
duced by Birkhoff in 1920[1], was first proposed by the
Bologna group [2, 3, 4, 5] as the natural extension of
Courant-Snyder theory to the nonlinear betatronic mo-
tion, and independently developed by E. Forest and oth-
ers [6, 7, 8]. The resonant and quasi-resonant theory has
been developed for dynamical applications [9, 10] and
the asymptotic properties of the Birkhoff series has been
analyzed to understand the nature of the underlying sin-
gularities [11, 12, 13] and to obtain Nekhoroshev-like
stability estimates [14, 15], see [16] for an overall re-
view. Numerical codes have been developed for the 2D
[17] and 4D case [18] and libraries for the analysis of a
nonlinear lattice [19] and the analysis of resonances[20].
These libraries include routines for polynomial algebra
and Lie series manipulations, for which more more spe-
cific codes have been developed to this end, see [21] and
[22] respectively.
Canonical perturbation methods were and still are cur-
rently used to deal with the polynomial nonlinearities
(chromatic or extraction sextupoles, multipolar errors).
The sextupoles or higher multipoles are usually treated
in the thin lens approximation, which provides a sym-
plectic map suitable for tracking. Canonical perturba-
tion is based on a truncated Fourier expansion of the δ
functions introduced by the thin lens approximation. The
slow convergence and the low order truncation of the
Fourier series render this theory quantitatively not accu-
rate, especially in the description of resonance phenom-
ena. The normal forms apply to the symplectic one turn
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map, which is evaluated by composing the polynomial
maps associated to all the thin nonlinear lenses present
in the ring. The normal form map, obtained by a polyno-
mial transformation, is symplectic and is symmetric with
respect to continuous (non resonant normal form) or dis-
crete (resonant or quasi-resonant normal form) rotation
group and can be written as the time one map of an inter-
polating Hamiltonian, which provides the invariants of
the system[16].
The non-resonant normal forms allow to compute the
nonlinear tune, which does not depend on the selected
section of the ring, and the transformation, determining
the nonlinear deformation of the beam envelope. This is
the analogue of the Twiss parameters used to determine
the beam profile in the linear case. When a resonance
is approached, the change of topology in phase space,
occurring with the appearance of a chain of islands in
the 2D case, causes a divergence due to the resonant di-
visors. In this case the resonant normal forms must be
used: the transformation and the interpolating Hamilto-
nian H are no longer affected by the resonant divisors,
but an angular dependence is introduced in H. For a 2D
map the pendulum like Hamiltonian H exhibits the chain
of islands. For a 4D map this is still true for a single reso-
nance, since a suitable combination of the actions is still
invariant; for a double resonance H is the unique invari-
ant and its level lines correspond to a 3D, rather than a
2D, manifold. At the lowest order the non-resonant nor-
mal forms allow to draw the resonance lines in the space
actions (or any 2D manifold like px = py = 0) for any
choice of the linear tunes (excluding the values corre-
sponding to unstable resonances). In this case the tunes
depend linearly on the actions. The method is applicable
to the tunes of the next order normal forms, which have a
quadratic dependence on the actions, or to the tunes and
actions obtained numerically from the tracking data by



Fourier analysis. The action-frequency map detects not
only the presence but also the localization of a resonance,
unlikely the standard frequency map analysis in the tunes
space.
Birkhoff theory is based on the Taylor series represen-
tation of the initial map, the normalized map and the
coordinates transformation. The homologic equation of
order n is obtained from the order n polynomial of the
Taylor expansion of the conjugation equation. The per-
turbation parameter is the distance r from the origin in
phase space and corresponds to an average of the linear
oscillation amplitudes in the x, px and y, py phase planes:
r = (εx + εy)

1/2, where εx = 2 jx, εy = 2 jy are the emit-
tances of the linear orbits and jx, jy the corresponding
actions. As a consequence, Birkhoff theory is accurate
for a low emittance beam, in spite of its asymptotic char-
acter due to the presence of small divisors. No arbitrari-
ness is involved, except for a group of gauge transforma-
tions, commuting with the symmetry group. Moreover it
is sufficient to truncate the one turn map to the same or-
der of the normal form to have correct results. This sim-
ple property allows to compute the normal forms even for
rings with thousands of nonlinear elements. Indeed the
one term map is obtained by repeatedly composing and
truncating the contributions of all the nonlinear terms.
Manageable analytic expressions are obtained (by hand
or algebraic manipulators) up to fourth order; higher or-
ders can be reached using the algorithmic approach, on
which our codes are based[17, 18]. The limits, imposed
by storage, are never reached for any practical applica-
tion since the Birkhoff series are asymptotic (order 10 is
typically the highest to be used, even though order 200
and 20 can be reached for 2D and 4D map respectively).
The remainder for a truncation to order N−1 is given by
CN rN and analytical estimates, based on majorant series,
show that CN has a factorial growth. For any value of
r the remainder diverges as N → ∞ but an exponentially
small value exp[−(r∗/r)η ] is reached at the optimal trun-
cation order N∗. Observing that the error between the ex-
act and the normal forms evolution after n iterates is just
n times the remainder, an exponential stability estimate
follows. The related scaling law was actually observed
in the long term dynamic aperture simulations for the
Henon map and the CERN Large Hadron Collider (LHC)
one turn map [23]. The normal forms were used to de-
velop the correction schemes for the multipolar errors of
the preliminary version of LHC lattice [5]; by imposing
that the lowest order tune shift vanishes, the sextupolar
and octupolar corrector gradients are analytically deter-
mined. Information on the strength of multipoles can be
extracted from the one turn map with an alternating cur-
rent (a.c.) dipole or with measures at different sections of
the ring [24, 25].
The quasi resonant normal forms provide some informa-

tion on the short term dynamic aperture as well when the
linear tune approaches an unstable resonance. The level
curve of the interpolating Hamiltonian provides a good
approximation to the triangular shaped dynamic aperture
for integer resonances in the 4D map [26]. For the 1/3
resonance the hyperbolic normal forms were used to de-
scribe the slow extraction process [27]. A new applica-
tion is the resonant extraction based on an accurate tai-
loring of the beam: the desired fraction of particles has to
be captured into an island and transported up to the ex-
traction region [28, 29]. The analytic dependence of the
resonance shape and position in phase space from the lat-
tice parameters allows a clear and accurate description of
the extraction mechanism.
The Birkhoff normal forms theory is applicable to impul-
sive polynomial nonlinearities (thin multipoles) whereas
canonical Hamiltonian theory is applicable to perturba-
tions with a smooth periodic dependence on s and on
the phase space coordinates. When space charge effects
are present the nonlinear Coulomb forces act continu-
ously on a test particle, out of the core for a Kapchinsky-
Vladimirsky (KV) beam or anywhere for a Gaussian
beam, and the use of canonical perturbation theory is
appropriate if the charge density is not too high. When
both space charge and magnetic multipoles are present,
the use of normal forms faces a difficulty because the
corresponding nonlinear forces require a different per-
turbation scheme. A possible solution consists in ap-
proximating the space charge force with a polynomial.
The repeated composition and truncation of space charge
kicks provides the transfer map between two thin lenses
and finally a polynomial one turn map is obtained. This
method works for smooth space charge forces but is ap-
plicable to a limited region around the beam core. A
polynomial approximation to the space charge force ac-
curate within the core cannot be extended beyond 1.5
times the core radius. As a consequence it is not suited to
explore regions up to several times the core radius, where
the most interesting effects such as the halo formation are
present.
This limit on the applicability of normal forms theory is
removed if we observe that the one turn map is just a a
rotation of the depressed phase advance composed with
the multipolar kick. We assume there is only one kick
in the ring and we choose linearly normalized (Courant-
Snyder) coordinates. In this case the phase advance de-
pends on the orbit: since the space charge Hamiltonian
is integrable in the 2D case, the tune is a function of the
linear invariant x2 + p2. For a 4D map integrability is lost
because the space charge potential couples the x, px and
y, py phase planes, except for a KV beam within the core.
This problem is overcome by replacing the exact tune
with its first approximation, with respect to the depressed
tune at the origin, provided by canonical perturbation
theory. This recently proposed procedure[30] provides a



symplectic one turn map whose accuracy decreases with
the distance from the the origin; the largest relative error
occurs at infinity where it is of order (1− ν0/ν)2. We
propose to apply the Birkhoff procedure to this symplec-
tic map in order to obtain its normal form representation.
Unlikely the standard case, where the linearly frequency
is fixed, now the normalizing transformations are locally
defined. Indeed the normalizing transformation and the
corresponding interpolating Hamiltonian depend on the
space charge depressed phase advance which is a func-
tion of the linear invariants. The plan of the presentation
is the following: in section 2 we show how to compute
the one turn map, in section 3 we recall the relevant prop-
erties of the normal forms and in section 4 we apply the
proposed method to a 2D map in a parameters range cor-
responding to the CERN PS experiment [31].

THE SINGLE MULTIPOLE MODEL

We consider a ring in the smooth focusing approxima-
tion with a radial charge distribution Qρ(r), where Q is
the total charge per unit length and ρ is normalized ac-
cording to

2π
∫ ∞

0
ρ(r)r dr = 1 (1)

Denoting by QE(r) and QV (r) the electric field
and its potential, where E(r) = E(r)r/r and
V (r) = −∫ r

0 E(r′)dr′, from Gauss theorem we have

E(r) =
2µ(r)

r
µ(r) = 2π

∫ r

0
ρ(r′)r′ dr′ (2)

Assuming that ρ(0) > 0, we define the core radius and
introduce an auxiliary function g(r) according to

r2
c =

1
π ρ(0)

ρ(r) = ρ(0) g
(

r2

r2
c

)

(3)

where g(0) = 1 and
∫ ∞

0 g(t)dt = 1 from (1). The mean
square radius is 〈r2〉 = r2

c
∫ ∞

0 t g(t)dt. It is convenient to
introduce two additional auxiliary functions

g1(t) =

∫ t

0
g(u)du g2(t) =

∫ t

0

g1(u)

u
du (4)

such that g1(t) = t + O(t2), g2(t) = t + O(t2) for t → 0
and g1(t) ' 1, g2(t) ' log t for t → ∞. The potential
becomes V (r) =−g2(r2/r2

c ). The equations of the orbits
in the smooth focusing approximation are

d2xi

ds2 =−ω2
0

2
xi−

∂Vm

∂xi
∑

l
δ (s− l)+

ξ
r

g1

(

r2

r2
c

)

xi

r
(5)

where Vm(x,y) denotes the potential of the 2m-pole and is
a homogeneous polynomial of degree m. The linear force

close to the origin is −ω2xi, where ω is the depressed
phase advance defined by

ω2 = ω2
0 −

ξ
r2

c
(6)

As a consequence the Hamiltonian of the system reads

H =
p2

x + p2
y

2
+ω2 r2

2
+

ξ
2

(

r2

r2
c
−g2

(

r2

r2
c

))

+Vm ∑
l

δ (s− l)

(7)
The sum of the focusing plus space charge potential be-
haves as 1

2 ω2 r2 for r → 0 and 1
2 ω2

0 r2 up to a logarithmic
correction as r → ∞. After a change to the linearly nor-
malized coordinates x′i = ω1/2xi and p′i = ω−1/2 pi the
Hamiltonian becomes

H = ω
p′x

2 + p′y
2 + x′2 + y′2

2
+

ξ
2

(

r′2

r′2c
−g2

(

r′2

r′2c

))

(8)

+ω−m/2Vm(x′,y′) ∑
l

δ (s− l)

Considering the motion in the invariant x, px plane, 2m-
pole potential reads Vm(x) = −xm km−1/m! and after the
scaling x′ = λX , p′x = λPx, r′c = λRc, where the scaling
factor is defined by λ = [ω (m− 1)!/km−1]

1
m−2 ω 1

2 and
letting ξ̃ = λ−2ξ , the Hamiltonian H̃ = λ−2 H reads

H̃ = ω
P2

x +X2

2
+

ξ̃
2

(

X2

R2
c
−g2

(

X2

R2
c

))

− Xm

m
,∑

l
δ (s− l)

(9)

Introducing the action-angle variables X = (2J)1/2 cosθ ,
Px = (−2J)1/2 sinθ the space charge Hamiltonian has an
angular dependence, which disappears after averaging.
As a consequence the space charge depressed phase ad-
vance reads

ω sc = ω +
ω2

0 −ω2

2ω

[

1− R2
c

J
1

2π

∫ 2π

0
g1

(

2J cos2 θ
R2

c

)

dθ
]

(10)

where we have used ξ̃/R2
c = ξ/r′c

2 = (ω2
0 −ω2)/ω and

ω sc = ∂
∂ J 〈H̃(Θ,J)〉. We notice that ω sc = ω +O(J) as

J → 0 and ω sc = ω +(ω2
0 −ω2)/(2ω)+ O(J−1 logJ)

as J → ∞.
We evaluate the integral for the KV distribution defined
by g(t) = ϑ (1− t), where ϑ is the step function, and
g1(t) = tϑ (1− t) + ϑ (t − 1). Denoting by f (y) the ex-
pression between the square brackets in (10) where y =
2J/R2

c we see that f (y) = 0 if y < 1 (within the core). If
y > 1 we define θ0 = arcosy−1/2 and notice that

f (y) = 1− 1
πy

[

∫ π−θ0

θ0

ycos2 θ dθ +
∫ 2π−θ0

π+θ0

ycos2 θ dθ+



+

∫ θ0

−θ0

dθ +

∫ π+θ0

π−θ0

dθ
]

=
2

πy

[

(y−2)arcos
1√
y

+
√

y−1
]

(11)
The Gaussian distribution is defined by g(t) = e−t and
g1(t) = 1− e−t and the function f (y) is given by

f (y) = 1− 2
y

[

1− e−y/2 I0

(y
2

)]

(12)

The 4D case can be treated in a similar way. A numerical
integration over the angles and a polynomial or cubic
splines fitting of the action depending function f might
be convenient in this case.

BIRKHOFF NORMAL FORMS

A map U(x) of R
2d with a fixed point at the origin

U(0) = 0 is in normal form with respect to the group
generated by a linear map L if it is invariant with respect
to the group transformation: U(Lnx) = Ln U(x). A suffi-
cient condition is that U commutes with the generator of
the group

∆U ≡UL−LU = 0 (13)

A symplectic map U with a linear component L, in
normal form with respect to the group generated by L,
takes the form

U = LeDH DH F = [F,H] (14)

where DH is the Lie derivative, [ ] denotes the Poisson
bracket and eDH = ∑ Dn

H/n! is the Lie series. The inter-
polating Hamiltonian H is symmetric H(Lx) = H(x) and
is invariant with respect to the map U namely H(U(x)) =
H(x). For simplicity we refer from now on to the two
dimensional case (d = 1). The factorization of the lin-
ear map L is relevant when L generates a discrete group.
Suppose L = R(2π p/q) is the rotation of an angle com-
mensurate with 2π for a 2D map. The symmetry group
is discrete and if the linear part of the map is L we call
resonant the normal form. If the linear part of the map
is R(2π p/q+ε) we may still choose L = R(2π p/q) im-
posing a discrete symmetry. This quasi-resonant normal
form is appropriate to investigate the limit ε → 0 and the
topology of resonances. The orbits of the Hamiltonian
H have the pendulum topology. The factorization of the
discrete rotation takes care of the jumps from one island
to a next one. When L = R(ω) is a rotation of an angle
incommensurate with 2π , the group is continuous, the or-
bits are circles and the normal form is non-resonant.
The linear map properties depend on its trace: if |TrL| <
2 the eigenvalues are complex conjugate with unit modu-
lus e±iω , the fixed point is elliptic and L =W R(ω)W−1,

where W has the standard form in terms of Twiss pa-
rameters. It is convenient to use complex coordinates z =
x− ip, z∗ = x+ ip. Since the transformation has determi-
nant 2i the evolution equations read ż = DH z ≡ 2i [z,H]
where the Poisson bracket is defined with respect to z, z∗.
The linear map becomes z′ = eiω z. If |TrL|> 2 the eigen-
values are real e±α and the fixed point is hyperbolic. Ex-
panding U(z,z∗) in a Taylor series, the normal form con-
dition ∆U = 0 defines its structure. In the non-resonant
elliptic case the allowed monomials are zn+1z∗n and the
map can be written as

U(z,z∗) = eiω eDH (zz∗) z = eiΩ(zz∗) z (15)

Ω = ω + 2H ′(zz∗) = ω +∑Ω2zz∗+ . . .+Ω2n (zz∗)n + . . .

In the resonant or quasi-resonant case where the linear
phase advance is ω = 2π p/q + ε and L = R(2π p/q),
the normal form is

U(z,z∗) = ei2π p/q eDH z

2H = h0(zz∗)+ ∑̀
≥1

[ h`(zz∗)z`q + h∗`(zz∗)z∗`q ] (16)

where h0 = εzz∗ + 1
2 Ω2 (zz∗)2 + . . .. The structure of the

Hamiltonian H is more transparent in the action angle
z =

√
2 j eiθ or polar coordinates z = r eiθ :

2H ≡ h = ∑̀
≥0

h`(2 j) cos(`qθ +δ`) = ∑
n≥2

rn Cn(θ ) (17)

The level lines of H interpolate the orbits of the map
U . Letting H(θ , j) = E be a level line diffeomorphic
to a circle centered at the origin, the invariant action is
defined by

J =
1

2π

∫ 2π

0
j(θ ,E)dθ (18)

where j = 2r2 and r is a real positive root of the polyno-
mial defined by the r.h.s. of (17). To compute the phase
advance Ω(J) we notice that if H does not depend on θ
then J = j and Ω = ∂H/∂J. In the general case, letting
E = E(J) the inverse function of J = J(E) defined by
(18) we have

Ω =
∂E
∂J

=
1

∂J
∂E

=
2π

∫ 2π

0

∂ j
∂E

(θ ,E) dθ
=

=
2π

∫ 2π

0

(

∂H
∂ j

(

θ , j(θ ,E)
)

)−1

dθ
(19)



A level line usually consists of two curves diffeomorphic
to circles centered at the origin corresponding to an in-
ternal and to an external orbit with respect to the chain of
islands. A chain is easily detected since in some intervals
of θ there are no real roots. Since the phase is locked, the
corresponding value of the phase advance is Ω = 2π p/q.
Efficient codes implementing the algorithm (21) and
computing the Hamiltonian H from U have been devel-
oped [18, 21].

THE VARIABLE FREQUENCY MAP

The model described in section 2 is a ring with space
charge and a thin 2m-pole and its one turn map reads

( x′

p′x

)

= R
(

ω sc

(

x2 + p2
x

2

))

( x

px + xm−1

)

(23)

The main difference with respect to the standard case
previously considered is that the unperturbed frequency
varies. However chosen any point on one orbit of the un-
perturbed map, its frequency is defined and the normal
form transformation can be carried out. Since ω sc varies
between ω and ω0, if no low order resonance appears in
that interval we can use the non-resonant normal form.
If there is a resonance 2π p/q with q ≤ 6 then the cor-
responding quasi-resonant normal form should be used.
The presence of two low order resonances is excluded
by the rather small depression of the phase advance nec-
essary to insure a good accuracy of the perturbative ap-
proximation to ω sc . The analytical formula remain un-
changed, except for the functional dependence of ω sc

on x2 + p2
x . In the algorithmic approach, the normal form

transformation needs to be recomputed for every orbit.
We quote the analytical result at the lowest order of nor-
mal forms N = m+1 for m even and N = m for m odd. If
the multipole is even m = 2(n+1), letting J = 1

2 (x2 + p2
x)

we have

Φ = I+[Φ]2n+1+ . . . Ω = ω sc (J)−Jn 1
2n+1

(

2n+1
n

)

(24)

If the multipole is odd m = 2n+1

Φ = I+[Φ]2n+[Φ]4n−1+ . . . Ω = ω sc (J)+J2n−1 c2n−1

c2n−1 =
n

22n+1

2n−1

∑
k=0

(

2n−1
k

)(

2n
k

)

(

cot(n−k− 1

2
)ω sc −

−cot(n− k +
1

2
)ω sc

)

(25)

The coefficient c2n−1 is not defined when
ω sc /(2π) = 0, 1

3 , . . . , 1
2n+1 . As a specific example

we consider a map whose bare tune ν0 = ω0/(2π)
varies on the range [6.25, 6.3], the tune depres-
sion ∆ν = ν0 − ν being 0.05 with a normalized
core radius Rc = 0.1. These values correspond to
the dynamic aperture experiment performed at PS.

-1 1
-1

1

x

p

-1 1
-1

1

x

p

Figure 1 Phase plot for a bare tune ν0=6.3 (left), and a tune

shift ∆ν=0.2 due to space charge for a KV beam of normalized

radius Rc=0.1 (left) in presence of a thin octupole m=4. Same

plot for ν0=6.26, ∆ν=0.05 (right). The blue dots correspond to

the map (23), the purple dots to the exact space charge map

(2×103 space charge kicks per turn). In the printed version

the difference in the grey tones cannot be appreciated

In that experiment ν0 = 6.26, the dynamics aperture is
6σ for a Gaussian beam when the resonance is crossed
and the tune depression is comparable with the values
we choose. For these values the agreement of the orbit
of the map (23) with the exact one is such that small
discrepancies are visible only in the chaotic region and
can hardly be appreciated on the plot of the tune along
any line p = C x.
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Figure 2 The same as Figure 1 for bare tune ν0=6.27 (left),

ν0=6.28 (right) and ∆ν=0.05, Rc=0.1, m=4

For a larger tune depression such as ∆ν = 0.2 the discrep-
ancy is visible far away from core, see figure 1 left, due to
the error in the approximation of the tune ν sc . In figure
1 and 2 we show the phase portraits when the bare tune



varies from 6.26 to 6.28, with the birth of the four islands
and their detachment from the region of stable orbits.
The lowest order ((N = 3)) approximation Ω = ω sc +
(x2 + p2)Ω2 and the resonant normal form with respect
to the resonance q = 4 at order N = 8 are compared
with the exact result from tracking in figures 3 and 4.
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x

ν

0 1
0.2

0.3

x

ν

Figure 3 Left: comparison of the exact tune obtained from

tracking for initial points along the x axis (red curve) with the

resonant perturbation theory at order N=8 (blue line) and

the lowest order perturbation theory N=3 (light green line)

In the printed version the first curve appears dark grey, the

second black the last one light grey. The map parameters are

ν0=6.27, ν=6.22, Rc=0.1, m=4 Right: the same for initial points

on the line p=x.

It may be noticed that the non-resonant normal form at
order N > 3 exhibits some wild oscillations due to the
small divisors associate to the resonance q = 4. The res-
onant normal form is stable and no significant differ-
ences are observed from order 4 to order 8, see figure
4. The cases considered here are quite challenging be-
cause the tune is non monotonic and a low order res-
onance is present. The conclusion is that the third or-
der non-resonant approximation, which has a very sim-
ple expression, is reasonably accurate before the chain
of four islands (indeed there are two chains) is met.
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0.00 1.00
 0.2
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Figure 4 Left: the same as figure 3 for resonant normal form

of order N=4 and map parameters ν0=6.28, ν=6.23, Rc=0.1, m=4

Right: the tune for the same map and resonant normal form

of order N=8

The q = 4 resonance can be dealt with the lowest or-
der N = 4 resonant normal form for which a readable
analytic expression can still be written. The case ν0 =
6.3, ν = 6.1 where the tune shift is four times bigger is
simpler because the islands do not show up for a sex-
tupole m = 2 or a decapole or are far beyond the dynamic
aperture for the octupole. In this case the non-resonant
normal forms are free of divisors in the region within the
dynamic aperture and are quite accurate. In Figure 5 we
compare the tracking exact result for the tune with the
lowest order N = 3 for the sextupole, and N = 5 for the
decapole with the normal form at order N = 8. A similar
result holds for the octupole.
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Figure 5 Left: comparison of the the exact tune, lowest

order N=3 and N=8 non-resonant normal form for a sextupolar

map m=3 with higher tune shift ν0=6.28, ν=6.23, Rc=0.1. Right:

comparison of the lowest order N = 5 and N = 8 non-

resonant normal form for a decapolar map m=5 with the same

parameters and ν0=6.28, ν=6.23, Rc=0.1

EXTENSIONS AND CONCLUSIONS

If there are several thin multipoles the normal forms
approach can be extended as follows. Suppose we have
two sections of normalized length s1, s2 = 1−s1. Letting
K1 and K2 be the multipolar kicks and supposing ω sc is
the space charge depressed phase advance on the ring,
the map can be written as

M =
(

R(s1 ω sc )◦K1

)

◦
(

R(s2 ω sc )◦K2

)

=
(

Φ1 ◦R(Ω1)◦Φ−1
1

)

◦
(

Φ2 ◦R(Ω2)◦Φ−1
2

)

=

= Φ2
[

Φ−1
2 ◦Φ1 ◦R(Ω1)◦Φ−1

1 ◦Φ2 ◦R(Ω2)
]

◦Φ−1
2 =

= Φ2◦ [R(Ω1 +Ω2)◦K12]◦Φ−1
2 = Φ2◦Φ12◦R(Ω12)◦Φ−1

12 ◦Φ−1
2



where we have used repeatedly the normal form trans-
formation (in the non-resonant case for simplicity) and in
the step before the last one we have simply expressed the
mapping factorizing the integrable part. This procedure
can be iterated to any number of thin lenses. To summa-
rize, we propose to use the normal form on a symplectic
map which describes accurately the space charge effects
combined with a multipolar kick. Even though normal
forms are locally defined, the result is as accurate as in
the standard case. The limits are imposed by its asymp-
totic character due to the small divisors. The extension to
the 4D case is straightforward and the proposed method
might be used to draw the resonance lines in action space
or in any 2D section like the xy plane for any chosen
working point.
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