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ABSTRACT In a paper published in 2009, Brun et al. proved that in the presence of a D-CTC one
can map K distinct non-orthogonal states (hereafter input set) to the standard orthonormal basis of a K-
dimensional state space. To implement this result, the authors propose a quantum circuit which includes,
among SWAP gates, a fixed set of controlled operators (boxes) and an algorithm for determining the unitary
transformations carried out by such boxes. To our knowledge, what is still missing to complete the picture is
an analysis evaluating the performance of the above circuit from an engineering perspective. The objective
of this paper is therefore to address this gap throughout an in-depth simulation analysis which exploits
the approach proposed by Brun et al. in 2017. This approach relies on multiple copies of an input state,
multiple iterations of the circuit until a fixed point is (almost) reached. The performance analysis led us to
a number of findings. First, the number of iterations is significantly high even if the number of states to be
discriminated against is small, such as 2 or 3. Second, we envision that such a number may be shortened as
there is plenty of room to improve the unitary trasformation acting in the aforementioned controlled boxes.
Third, we also revealed a relationship between the number of iterations required to get close to the fixed
point and the Chernoff limit of the input set used: the higher the Chernoff bound the smaller the number of
iterations. A comparison, although partial, with another quantum circuit discriminating the non-orthogonal
states, proposed by Nareddula et al. in 2018, is carried out and differences are highlighted.

INDEX TERMS Classical simulation of quantum systems, Benchmarking and performance characteriza-
tion.

I. INTRODUCTION AND STATE OF THE ART
Closed timelike curves (hereafter, CTCs) have been debated
for some time now. Since Deutsch’s seminal work [1],
quantum information theorists have become involved in the
discussion.

Although there are now several models of CTCs under
active consideration by the quantum information community,
we focus on the most prominent one for describing quantum
systems in the presence of CTCs, introduced by Deutsch [1].
Refer to [2] and the references in it for information on other
models.

Several researchers have argued that, for example,
“Deutschian" closed timelike curves (D-CTCs) can help

solve NP-complete problems [3], that a D-CTC-assisted
classical or quantum computer has computational power
equivalent to that of PSPACE [4], that a a D-CTC would
be able to violate the Heisenberg’s uncertainty principle [5],
and that a D-CTC-assisted quantum computer can perfectly
distinguish an arbitrary set of non-orthogonal states [6]. This
paper focuses on the last issue. The choice of this focus
was, to some degree, motivated by the fact that quantum
discrimination underpins various applications in quantum
information processing tasks. Readers interested in exploring
this research pathway may wish to consult [7].

Treatments of CTCs in the quantum information litera-
ture generally distinguish two subsystems: the chronology-

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TQE.2022.3142531,
IEEE Transactions on Quantum Engineering

L. Bacciottini et al.: Discriminating Quantum States in the Presence of a D-CTC

violating system, which passes through the CTC and returns
to its own past, and the chronology-respecting system, which
does not itself pass through the CTC but can interact with the
chronology-violating subsystem.

In a paper published in 2009, Brun et al. [6] proved that
in the presence of a D-CTCs one can map K distinct non-
orthogonal states to the standard orthonormal basis of a K-
dimensional state space. Moreover, the paper conveys: 1) the
basic architecture of a quantum circuit to discriminate non-
orthogonal states, in terms of controlled boxes (acting solely
on closed timelike curves) other than SWAP gates, and 2) an
algorithm for deriving unitary transformations carried out by
such boxes.

To our knowledge, what is still missing to complete the
picture is a deep analysis evaluating the performance of the
quantum circuit shown in [6] from an engineering perspec-
tive. The purpose of this paper is therefore to address this gap
by exploiting the simulation approach for D-CTC described
in [2]. The major advantage of this approach is that it has
a guaranteed fixed-point convergence, which is exactly what
we seek. On the other hand, the main drawbacks are: 1) it
could take a long time to converge to a fixed point, whose
computation is known to be a PSPACE-complete problem
[4]; 2) it requires, in general, many copies of the initial input
state.

Thus, our assessment boils down to evaluating the behav-
ior of the convergence speed towards a fixed point when the
quantum circuit is fed by input sets of states with very differ-
ent characteristics. This type of performance analysis gave us
an invaluable insight into the impact on the convergence rate
of the level of overlapping between the states belonging to
their input sets. A comparison of performance, albeit partial,
with the quantum circuit for discriminating non-orthogonal
states, published by Nareddula et al. [8] is provided and
findings are highlighted. This paper builds upon the research
work undertaken in the M.SC. thesis by Bacciottini [9].

The rest of the paper proceeds as follows. The following
section provides a basic background of the closed timelike
curves (CTCs) whereas Section III sketches the quantum
circuits from [6] and [8]. Section IV defines the simulative
approach used to evaluate the performances of both models
and the metric for such evaluation. Section V deals with the
software architecture we developed and the equipment we
used, whereas Section VI describes the assessment of both
models. Section VII outlines the impact of the various input
sets defined in the paper to the number of iterations to land on
the fixed point. Conclusions and perspectives are discussed in
Section VIII.

II. CLOSED TIMELIKE CURVES BACKGROUND
Before evaluating and comparing either model, we mainly
outline a few concepts related to quantum operations formal-
ism [10] which provides the tools to describe the evolution of
the Deutschian model of CTC (below, D-CTC).

D-CTCs are formally specified by means of the following
objects:

• the initial density operator ρCR = |ψ⟩ ⟨ψ| for the
chronology-respecting system (hereafter, CR), where
|ψ⟩ is a pure input state for the CR, and

• the interaction unitary U between CR and the
chronology-violating system (hereafter, CTC).

The model in [1] assumes that CR and CTC are not inter-
acting until the CTC emerges from the past mouth of its
wormhole, i.e. the initial state of CR and CTC starts in a
tensor state ρCR ⊗ ρCTC , where ρCTC is a density operator
for the CTC state. Systems CR and CTC interact according to
a unitaryU , leading to the following state after the interaction

ρCR⊗ρCTC → U(ρCR⊗ρCTC)U† = U(|ψ⟩ ⟨ψ|⊗ρCTC)U†

(1)
Note: Even though (1) is formulated in terms of a pure

input state |ψ⟩ it can be directly generalized to mixed inputs
as shown in [11].

The reduced density matrix ρ′CR of the chronology-
respecting system CR after the interaction is

ρ′CR = TrCTC{U(|ψ⟩ ⟨ψ| ⊗ ρCTC)U
†}. (2)

On the other hand, D-CTCs impose a self-consistency
condition, in which the density operator ρCTC of the CTC
is the same, both before and after it enters the wormhole.
Formally,

ρCTC = NU,ρ(ρCTC) = TrCR{U(|ψ⟩ ⟨ψ| ⊗ ρCTC)U
†}.

(3)
Mathematically, this can be seen as Nature finding a fixed-

point solution of the channel NU,ρ that depends on the
chronology respecting system CR [1].

The output state ρ′CR is in general a nonlinear function
of the input state |ψ⟩, because ρ′CR (2) depends on both |ψ⟩
and ρCTC , and ρCTC (3), in turn, depends on |ψ⟩. This lack
of linearity allows the limits of quantum mechanics to be
overcome. Specifically, as pointed out in [6], a party having
access to a CTC (hereafter called CTC-assisted party) could
perfectly distinguish any set of non-orthogonal quantum
states which consequently implies the violation of the Holevo
bound [12]. In the next section we outline the work by Brun
et al. [6], which implements one of the two recipes assessed
in the paper.

For ease of writing, when referring to the circuits and
algorithms described in [6] and [8], we use the acronyms
BHW and NBP respectively, from the initials of authors’
surnames. Furthermore, the expressions BHW/NBP quantum
circuit and BHW/NBP model are used interchangeably.

III. QUANTUM CIRCUITS DESCRIPTION
This section outlines the quantum circuits that will be evalu-
ated and compared to each other. It also provides an overview
of the simulative approach used to evaluate the performance
of both quantum circuits.
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ρCR

U

ρ′CR

ρCTC || || ρCTC
FIGURE 1: A quantum circuit showing a D-CTC in an interaction U . The CTC
state is the same at the beginning and at the end of the interaction, and this is
expressed by the wormhole symbols "||".
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FIGURE 2: BHW quantum circuit.

A. BHW QUANTUM CIRCUIT
Brun et al. [6] proved that, given a set {|ψk⟩}K−1

k=0 of distinct
non-orthogonal states in a space of dimension K = 2n,
then a party with access to an K-dimensional D-CTC can
implement the following map

|ψk⟩ → |k⟩ ∀k ∈ {0, 1, 2, . . . ,K − 1} (4)

where states |k⟩ are a standard orthonormal basis (often
called Computation Basis States or CBS for short) for theK-
dimensional space. The quantum circuit that can perform this
map is illustrated in Fig. 2, which is a generalization to any n
of the circuit illustrated in [6] relative to case n = 2.

The CR and CTC registers contain n qubits each. The first
qubit in the CR register is any qubit taken out from an input
set {|ψk⟩}K−1

k=0 , and the remaining n − 1 qubits (ancillary
qubits) are initialized to state |0⟩. As shown in Fig. 2, the
complete interaction unitary U - recall (1), (3) - is given by
U = V S, where

S = SWAP (CR↔ CTC) (5)

and V is a controlled unitary from the CR to the CTC
expressed as

V =
K−1∑
k=0

|k⟩ ⟨k|Uk (6)

The {Uk}K−1
k=0 in (6) are a set of K unitary transformations

acting just on the CTC system (see the boxes in Fig. 2) and

are chosen in such a way that

Uk |ψk⟩ = |k⟩ ∀k ∈ {0, 1, 2, . . . ,K − 1}. (7)

To verify that the circuit of Fig. 2 implements the mapping
in (4) let’s take ρCR = |ψk⟩ ⟨ψk| as the input state of the
CR. Before the interaction, the CTC is in the state ρCTC
which must satisfy the self-consistency condition (3) for
|ψ⟩ = |ψk⟩. It is very simple to check that the solution
ρCTC = |k⟩ ⟨k| satisfies the self-consistency condition and
gives the desired output state (2), i.e. |k⟩.

To guarantee the uniqueness of the solution of the self-
consistency condition (3), a set of sufficient (but by no means
necessary) constraints must hold, i.e.

⟨j|Uk |ψj⟩ ̸= 0 ∀j and ∀k. (8)

In addition to the aforementioned theorem, Brun et al.
[6] provide an algorithm for the construction of the unitary
transformations {Uk}K−1

k=0 acting only on the CTC system,
satisfying (8). The algorithm is outlined below using the
pseudo-code shown in Fig. 3.

The set S (see Fig. 3) of non-orthogonal states {|ψk⟩}K−1
k=0

to be discriminated is given as input to the CR system (#1).
At the kth iteration, the loop in Fig. 3 returns the matrix

Uk. In order to achieve this, we must construct two different
orthonormal bases |bm⟩ and |cm⟩, for m = {1, 2, . . . ,K},
that we will store in the empty sets B and C (#5, #6, #7)
respectively.

The first element |b1⟩ in B is the (k + 1)th element inside
S, which corresponds to |ψk⟩ ⊗ |0⟩⊗n−1 (#8).

The second element |b2⟩ in B is obtained by performing
the Gram-Schmidt orthogonalization between |b1⟩ and any
other state inside S. For simplicity, we take the immediately
subsequent state (#9).

The first element |c1⟩ in C is simply the CBS state |k⟩
(#11). The second element |c2⟩ in C is obtained as a uniform
superposition of all the other CBS states (#12).

There are only two linearly independent states in the set
S. For this reason, we complete B and C bases with any set
of orthonormal states (#14). The freedom in the choice of
these additional states has no impact on the performance of
the algorithm. We will come back to this point later in Section
VI-A3.

We use B and C elements to build the matrix Uk following
the expression in (#15).

The loop is repeated for each possible value of k in
{0, 1, . . . , 2n − 1}.

B. NBP QUANTUM CIRCUIT
The NBP quantum circuit shown in Fig. 4 was proposed by
Nareddula et al. [8] for storing and retrieving n-bit classical
information faithfully in the presence of a D-CTC in violation
of the Holevo bound. It should be noted that the problems
of encoding and decoding a string of classical bits in a
qubit are equivalent to the problem of discrimination of non-
orthogonal states [13].

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TQE.2022.3142531,
IEEE Transactions on Quantum Engineering

L. Bacciottini et al.: Discriminating Quantum States in the Presence of a D-CTC

1: S is the set of non-orthogonal, n-qubit state vectors
|ψk⟩ |0⟩⊗n−1 for k ∈ 0 . . . 2n− 1, where |ψk⟩ ≡ cos πk

2n
|0⟩+

sin πk
2n
|1⟩, sorted by ascending k.

2: U is the set which will contain all Uk matrices, for k ∈
0 . . . 2n − 1.

3: U ← ∅
4: for k in 0 . . . 2n − 1 do
5: B is the set which will contain the {|b1⟩ , . . . , |bn⟩} basis.
6: C is the set which will contain the {|c1⟩ , . . . , |cn⟩} basis.
7: B ← ∅, C ← ∅
8: |b1⟩ ← S[k]
9: |b2⟩ ← gram_schmidt(S[k + 1 mod 2n], S[k])

10: B ← B ∪ {|b1⟩ , |b2⟩}
11: |c1⟩ ← |k⟩
12: |c2⟩ ←

∑
i̸=k|i⟩√
2n−1

13: C ← C ∪ {|c1⟩ , |c2⟩}
14: Fill B and C with any n− 2 orthonormal state vectors.
15: Uk ←

∑
i |ci⟩ ⟨bi|, where |bi⟩ ∈ B and |ci⟩ ∈ C

16: U ← U ∪ Uk

17: end for
18: Return U

FIGURE 3: Pseudocode for BHW recipe implementation

Let k be the integer value representing an n-bit string
an−1, . . . , a0; k can obviously assume values in the interval
[0, 2n− 1]. Nareddula et al. map the possible values of k to a
set {|ψk⟩}2

n−1
k=0 of K = 2n distinct non-orthogonal quantum

states according to the map

k → |ψk⟩ = cos
πk

2n
|0⟩+ sin

πk

2n
|1⟩

∀k ∈ {0, 1, . . . ,K − 1}.
(9)

It can be easily verified that the above states are evenly
spaced pure states lying on the XZ-plane of the Bloch sphere.
For reasons which will be explained in Section VII, this set
will be called the XZ(n)-input set. Note that for n = 2, by
varying k in the set {0, 1, 2, 3}, we reproduce the BB84 states
{|0⟩ , |+⟩ , |1⟩ , |−⟩}.

For retrieving the encoded information, Nareddula et al.
employ the CTC-assisted circuit shown in Fig. 4 which maps
each state |ψk⟩ to the CBS state |k⟩ . The first qubit |ψ⟩ of
the Chronology Respecting system CR is the encoded qubit,
whereas the others, all set to |0⟩, are n − 1 ancillary qubits.
The unitary interaction of the circuit can be written as U =
CWTRS, where C, W , T , R, and S are groups of gates
highlighted in Fig. 4. Since it is used in the next section, we
also define the unitary V as

V = CWTR. (10)

To show the algorithm correctness, Nareddula et al. first
prove that CTC input state ρCTC = |k⟩ ⟨k| is a fixed point
of the Deutsch equation (Equation 3) if |ψ⟩ = |ψk⟩, where
|k⟩ = |an−1, . . . , a0⟩. In this case we can assume that CR
input state is |ψ⟩ ⊗ |0⟩⊗n−1 and CTC state right out of
the wormhole is |k⟩ ⟨k|. Gate S simply swaps the states of
the two systems, so that state |ψk⟩ is now the state of the
first CTC qubit. Then, gate R applies consecutive controlled

rotations that transform the state |ψk⟩ to |0⟩. Hence, the CTC
state is now |0⟩⊗n , and gates T and W do not have any
influence on it. Gate C performs the following action on the
whole system (labels are added for clarity):

|k⟩CR⊗|0⟩CTC → |k⟩CR⊗|0⊕ k⟩CTC = |k⟩CR⊗|k⟩CTC .
(11)

Measuring the CR system along the CBS enables the
retrieval of the initially encoded n-bit string in |ψ⟩ with a
probability equal to one. Also note that the final state of the
CTC is the same as the initial one entering the system, thus
proving the self-consistency condition 3.

Finally, Nareddula et al. in [8] successfully demonstrate
the uniqueness of the solution by exploiting the set of suf-
ficient conditions provided by Brun et al. in [6]. We don’t
prove that here because these are fairly long algebraic calcu-
lations that are beyond the scope of this work. The interested
reader can find the proof in [8].

Note on Complexity - Lastly, it must be pointed out that
the NBP model has a quantum cost in the order of O(n)
with respect to the number n of classical bits encoded. The
quantum cost of a circuit is expressed in terms of the number
of primitive gates required to build it [14]. Instead, the BHW
model has a cost in the order of at least O(2n), because it is
composed of 2n controlled unitaries {Uk}K−1

k=0 , which must
also be decomposed in an equivalent combination of primi-
tive quantum gates. This will definitely lead to an increase in
the quantum cost.

IV. SIMULATIVE APPROACH OF A D-CTC, METRIC AND
SCENARIOS
The iterative approach we used to simulate the presence of a
D-CTC follows the scheme proposed in [11] and is shown by
Fig. 5, where |c⟩ is any initial pure state for the CTC system.
|Ψk⟩ ≡ |ψk⟩ |0⟩⊗n−1 are independent copies of the CR
system and the unitary V is defined above for both BHW (6)
and NBP (10) quantum circuits respectively. This approach is
justified by the fact that consecutive applications of the quan-
tum channel NU,ρ(ρCTC) = TrCR{U(ρCR ⊗ ρCTC)U

†}
make the CTC system state converge to the fixed point |k⟩ ⟨k|
of the interaction. Formally,

lim
N→∞

NN
U,ρ(|c⟩ ⟨c|) = |k⟩ ⟨k| . (12)

The interested reader can find the proof of (12) in [11].
From (12) it is clear that convergence towards the fixed

point is asymptotic. From an engineering perspective, we’re
looking at the estimation of the metric Nland(95%), defined
as follows:

Nland(95%) = min
N

{N : p(k,N) ≥ 0.95}

where p(k,N) = Tr
{
|k⟩ ⟨k| NN

U,ρ(|c⟩ ⟨c|)
} (13)

For instance, if Nland(95%) = 15 when the CR system is
fed with |ψ5⟩, it means that after 15 iterations the output (Fig.
5) lands on state |5⟩ ⟨5| with probability p(5, 15) ≥ 0.95.
We chose Nland(95%) because it is neatly visible in the
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FIGURE 4: The NBP quantum circuit.

performance figures reported in Section VI, but we could
have an Nland(99%) or something else.

As explained in [2], each iteration of a D-CTC simula-
tion circuit requires an independent copy of the state |ψk⟩,
whatever k. Clearly, the smaller the value of Nland(95%),
the better the performance of the algorithm. To evaluate the
impact on Nland(95%) of

1) the value of n, i.e. the number of qubits of the CR and
CTC systems,

2) the initial state |c⟩ for the CTC system,
3) the state |ψk⟩ of the CR system,

we define many scenarios, each identified by a specific triplet
(n, |c⟩ , |k⟩). We performed an exhaustive performance eval-
uation on all possible |c⟩ and |k⟩ values (hereafter called
parameters) for scenarios with n = 2, 3, 4.

The performance assessment in the paper draws on two
metrics: Nland(95%) we just defined, whereas QCB (Quan-
tum Chernoff Bound) pertains to the characterization of the
input set. QCB will be introduced in Section VII where it is
first used.

The implementation of the above simulative approach on a
quantum computer requires a major problem to be addressed:
the number of qubits required by the simulative environment
(Fig. 5) increases linearly with the number of iterations
N . This makes practically impossible to reach Nland(95%)
using quantum simulators like Qiskit Aer QasmSimulator
[15], which supports up to 30 qubits. We found a way to fix
this problem which may be useful to anyone facing the same
situation. For this reason, we detail our solution in Appendix
B .

V. SOFTWARE ARCHITECTURE AND EQUIPMENT
As we said previously, scenarios were simulated by using
Qiskit Aer QasmSimulator [15] as backend (unless otherwise
specified), configured as a noiseless device. The machine on

|c⟩
V

|Ψk⟩
V

|Ψk⟩
V

|Ψk⟩ output

FIGURE 5: This figure depicts a D-CTC simulation for which N = 3.

which the backend was installed is equipped with a 24-cores
CPU, where each core is an Intel Xeon Processor (Cascade
Lake), and 64 GB RAM.

The thorough performance assessment we carried out re-
quired us to simulate a wide range of different scenarios,
using both the BHW and NBP models. For this purpose, we
realized a Python package built on top of Qiskit [15], which
abstracts the underlying complexity of the quantum circuits
and delivers a simple API to the final user. Fig. 6 shows
a simplified version of the interface: we can see that the
user has just to initialize an instance of CTCCircuitSimulator
specifying the number of qubits n and the target state |k⟩ ⟨k|
through parameters size and k_value respectively. By setting
the parameter ctc_recipe, the user chooses which model
and which input set to use for the simulation. Results are
produced in the form of text files and bar plots just by calling
public methods like

• simulate, to gather measurement outcomes for the sce-
nario defined by a specified initial state |c⟩ ⟨c| (parame-
ter c_value);

• test_convergence, to test the same scenario under a vary-
ing number of iterations (this method is key to determine
Nland(95%), and we used it to generate the bar plots
reported in the next section);
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CTCCircuitSimulator
+ CTCCircuitSimulator(size, k_value, ctc_recipe)
+ simulate(c_value, iterations)
+ test_convergence(c_value, start, stop, step)
+ test_c_impact(c_values, start, stop, step)

Qiskit

<<import>>

FIGURE 6: A simplified version of the interface of our Python package.

• test_c_impact, to determine the impact of the initial
state |c⟩ ⟨c| on Nland(95%).

Since it is computationally hard to execute the BHW
quantum circuit in scenarios where n = 4, we also developed
a Python program relying on NetSquid [16]. It realizes an
API very similar to the one shown above, but the algorithm
numerically computes the output state of the circuit by
applying each iteration as a single unitary matrix, without
decomposing it in primitive gates.

We make available to interested users the full set of out-
come bar plots at [17].

VI. BHW MODEL VS NBP MODEL ASSESSMENT
In this section, we estimate the convergence speed of the
BHW and NPB quantum circuits specified above, both pow-
ered by the XZ(n)-input set (9). Outcomes of our analysis
are shown by several bar plots where:

• x-axis reports the number of iterations performed by the
simulator.

• y-axis reports, for each iteration, the estimated probabil-
ity of correct discrimination p(k,N).

• Each bar shows an error edge representing the 95%
confidence interval.

Because of space problems, we only report the more
significant scenarios in which the initial state |c⟩ is the
Hadamard state. We verified through our in-depth simula-
tive analysis that for both BHW/NBP quantum circuits the
Hadamard state guarantees the lowest value of Nland(95%)
without any a priori knowledge about the state |ψk⟩. Obvi-
ously, we did not consider scenarios where |c⟩ = |k⟩, because
in these cases the system has already converged to the fixed
point. See Appendix C for details regarding this topic.

A. BHW QUANTUM CIRCUIT ASSESSMENT
1) Outcomes for n=2 and n=3
Figs. 7 and 8 show the behavior of the convergence speed
towards the corresponding fixed points for n = 2 and n = 3
respectively. From these figures emerges that Nland(95%) =
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FIGURE 7: BHW bar plot for scenario (n = 2, |c⟩ = |++⟩ , |k⟩ = |00⟩).
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FIGURE 8: BHW bar plot for scenario (n = 3, |c⟩ = |+ + +⟩ , |k⟩ = |000⟩).

13 iterations for n = 2 whereas Nland(95%) = 60 iterations
for n = 3. This means that with a probability of 0.95,
we need 13 and 60 copies of |ψk⟩ to discriminate between
22 = 4 non-orthogonal states and 23 = 8 non-orthogonal
states respectively. This trend in the increase of Nland as n
increases, is further confirmed by the outcomes obtained for
n = 4.

2) Outcomes for n=4
Before showing the results of these scenarios, we need to
make it clear that we had to modify the background for our
simulations. Since the BHW quantum circuit has a quantum
cost in the order of O(2n) primitive gates (as pointed out
in [8]), Qiskit’s transpiler takes an unacceptable amount of
time in decomposing and executing the controlled gates in an
equivalent combination of primitive gates. For this reason,
we exploited the NetSquid [16] framework, which applies
those gates as a single matrix, thus drastically reducing the
execution time. Fig. 9 clearly shows that, with n = 4,
Nland(95%) is reached in about 270 iterations. The same
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FIGURE 9: BHW bar plot for scenario
(n = 4, |c⟩ = |+ + ++⟩ , |k⟩ = |0000⟩).

number of iterations would have been achieved if we had
used the quantum gates provided by the Qiskit’s transpiler,
but the time would have been much greater.

3) {Uk}2
n−1

k=0 analysis
The findings reported above are based on the matrices
{Uk}2

n−1
k=0 that we derived using the BHW algorithm as

it is defined in [6]. Recalling Section III-A, the BHW al-
gorithm entails, for each unitary Uk, the construction of
two orthonormal bases B = {|b1⟩ , . . . , |b2n⟩} and C =
{|c1⟩ , . . . , |c2n⟩}. The algorithm imposes a unique way to
determine the first two states of each set, i.e. |b1⟩ , |b2⟩ , |c1⟩ ,
and |c2⟩. Despite the choice of the remaining basis states
({|b3⟩ . . . |b2n⟩} and {|c3⟩ . . . |c2n⟩}) is free, it does not have
any impact on the performance of the algorithm (at least)
in terms of Nland(95%). To put it another way, giving
|b1⟩ , |b2⟩ , |c1⟩ , and |c2⟩, different choices of {|b3⟩ . . . |b2n⟩}
and {|c3⟩ . . . |c2n⟩} lead to the same Nland(95%). This sur-
prising property (at least at first sight) of bases B and C was
subjected to a comprehensive verification (for n = 2, 3) by
simulation. However, there is still considerable freedom in
choosing the algorithm used to build {Uk}2

n−1
k=0 , whose only

constraints are represented by (7) and (8). For example, an
alternative to the BHW algorithm may exploit a different
approach for the construction of |b1⟩ , |b2⟩ , |c1⟩ and |c2⟩,
leading to different performance.

In fact, Brun et al. in [6] present an alternative set of
matrices for the n = 2 scenario, which still comply with
the sufficient conditions in (7) and (8). Fig. 10a shows that
using this specific set, Nland(95%) is reached with certainty
after just 7 iterations (using Hadamard as initial state), which
is about half of the 13 iterations needed for the scenario in
Fig. 7. The scenario which led to the bar plot in Fig. 10b
performs particularly well and leads to an insight which will
be detailed in Section VII-C.

Therefore, the lesson learned is that the choice of matrices
{Uk}2

n−1
k=0 can have a significant impact on Nland(95%). We
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FIGURE 10: BHW bar plots for scenarios (n = 2, |c⟩ = |++⟩ , |k⟩ = |00⟩)
(a) and (n = 2, |c⟩ = |10⟩ , |k⟩ = |00⟩) (b), using the alternative set of
matrices.

will delve deeper into this topic in Section VII-C. Hence-
forth, we will continue to use {Uk}2

n−1
k=0 obtained using the

algorithm shown in Fig. 3, being aware that there may be
alternative choices performing better or worse. The problem
of finding the set of matrices {Uk}2

n−1
k=0 that minimizes the

value of Nland(95%) remains an open issue which can be
the topic of another potential paper.

4) BHW Assessment Considerations
Fig. 11 reports Nland(95%) for n = 2, 3, 4. The purpose
of this figure is to emphasize that the value of Nland(95%)
appears to be in the order ofO(22n), at least for the scenarios
considered in this analysis.

For completeness, Table I (and Table II, see below) shows
the time to execute Nland(95%) iterations in the different
scenarios when n = 2, 3, 4. Of course, the execution time
for n = 4 is much shorter as we have moved to a different
backend. For each n, the computation was performed using
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FIGURE 11: A summary bar plot showing the value of Nland(95%) as a
function of n.
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FIGURE 12: NBP bar plot for scenario (n = 2, |c⟩ = |++⟩ , |k⟩ = |00⟩).

the QasmSimulator 1024 times (shots) (and NetSquid when
n = 4) running on the equipment described in Section V.

TABLE I: Execution time for 1024 shots of Nland(95%) iterations for
n = 2, 3, 4.

Iterations Time (s) Backend
n=2 13 43.71862 QasmSimulator
n=3 63 6310.75999 QasmSimulator
n=4 270 1.21239 NetSquid

B. NBP QUANTUM CIRCUIT ASSESSMENT

Figs. 12, 13 and 14 represent, for the NBP model, the
corresponding Figs. 7, 8 and 9 for the BHW model.

When we compare these bar plots of both models with the
same n, we notice that the BHW model reaches the fixed
point slightly (between 7% and 11%) faster than the NBP
model.

Since the NBP model has an efficient quantum cost which
is in the order of O(n), the fixed point was achieved in
a reasonable time using Qiskit Aer QasmSimulator for all
scenarios.
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FIGURE 13: NBP bar plot for scenario (n = 3, |c⟩ = |+ + +⟩ , |k⟩ = |000⟩).
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FIGURE 14: NBP bar plot for scenario
(n = 4, |c⟩ = |+ + ++⟩ , |k⟩ = |0000⟩).

1) NBP Assessment Considerations

Fig. 15 shows that the exponential relationship between n and
Nland(95%) still holds for the NBP model. Table II reports
the execution times for n = 2, 3, 4. From a simulation point
of view, it should be pointed out that the O(n) cost of the
NBP model leads to a drastic reduction in the total number
of quantum gates applied to run Nland(95%) iterations w.r.t.
the BHW model, whose cost is O(2n).
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TABLE II: Execution time for 1024 shots of Nland(95%) iterations for
n = 2, 3, 4.

Iterations Time (s) Backend
n=2 14 0.40567 QasmSimulator
n=3 70 2.08098 QasmSimulator
n=4 295 9.99327 QasmSimulator
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FIGURE 15: A summary bar plot showing the value of Nland(95%) as a
function of n.

VII. IMPACT OF THE INPUT SET ON CONVERGENCE
The performance analysis shown so far has exploited the
XZ(n)-input set, i.e. a set of non-orthogonal pure states (9)
evenly spaced on the XZ-plane of the Bloch sphere. The main
advantage of the XZ(n)-input set is that all states belonging
to it can easily be obtained through simple rotations along
the Y axis of the Bloch sphere. This advantage was largely
exploited by the NBP model illustrated in Section III-B. On
the other hand, it is the source of a significant drawback,
since forcing all states to lie on the XZ-plane of the Bloch
sphere, it leads to great overlap between states, making their
discrimination hard. Fig. 16 shows this situation. The above
considerations have led us to deepen our understanding of the
relationship between the overlap among the non-orthogonal
states of an input set and Nland(95%). Specifically, given a
generic input set of K non-orthogonal states to be discrimi-
nated, we want to tackle the following problems:

• Can one characterize their overlap with the value of a
"collective" metric?

• Does the metric values have a relationship with
Nland(95%)?

These questions will be answered in sequence.

A. THE QUANTUM CHERNOFF BOUND METRIC
Our choice to tackle the first problem is the quantum Cher-
noff bound (hereafter QCB) because of its nice feature of
universality, as it identifies the unique metric quantifying the
distance of quantum states that does not share the undesirable
features of other distance measures like the fidelity, the trace
norm and the relative entropy [18]. Appendix A sketches the
QCB and provides some references for the reader who wants
to delve deeper into this topic.
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FIGURE 16: XZ(n) states represented on the Bloch sphere, for (a) n = 2, (b)
n = 3, (c) n = 4. Note that they are confined on the XZ-plane.

B. DIFFERENT INPUT SETS DEFINITION

To quantify the impact of an input set on its QCB and on
Nland(95%) we need to define different input sets according
to criteria that help us to unearth the aforementioned relation-
ship. The approach we have pursued hinges on several input
sets with their states located at the vertices of polygons (2D)
and polyhedrons (3D), not always regular, both inscribed in
the Bloch sphere.

1) XZ(n)-input set

This is a set of equidistant states on the XZ plane of the
Bloch sphere. These states are arranged at the vertices of a
regular polygon inscribed in the XZ-plane circumference of
the Bloch sphere as shown in Fig. 16. For n = 2 we have four
states located at the vertices of a square, for n = 3 we have
eight states located at the vertices of an octagon, etc. This
arrangement achieves the maximum QCB for states bound to
the same plane. We have already defined this set in Section
III-B and exploited this scenario in Section VI.

2) XZ(n, ϕ)-input set

This is a set of states fairly distributed on a Bloch sphere
meridian identified by an angle ϕ. This input set is obtained
by rotating the XZ(n)-input set of an angle ϕ around the
z-axis. Formally:

|ψk⟩ = cos
πk

2n
|0⟩+ eiϕ sin

πk

2n
|1⟩ (14)
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TABLE III: XY Z(n = 2) encoding map.

|ψ0⟩ |0⟩
|ψ1⟩ cos 0.3041π |0⟩+ sin 0.3041π |1⟩
|ψ2⟩ cos 0.3041π |0⟩+ ei

2π
3 sin 0.3041π |1⟩

|ψ3⟩ cos 0.3041π |0⟩+ e−i
2π
3 sin 0.3041π |1⟩

This input set will allow us to check whether the angle ϕ has
an influence on Nland(95%) when we turn around the z-axis
the plane on which the states are located.

3) XZ(n, quadrant) Input Set
This set of inputs is obtained by taking the states of the
XZ(n)-input set and distributing them uniformly across one
quadrant of the XZ plane. Formally,

|ψk⟩ = cos
πk

2n+2
|0⟩+ sin

πk

2n+2
|1⟩ (15)

The rational behind this choice is that qubit states are now
closer to each other with respect to the XZ(n)-input set and
therefore their overlap increases.

4) XYZ(n)-input set
In order to separate spatially the various states of an input set,
so as to maximize the set’s QCB, we place the states at the
vertices of regular polyhedrons inscribed in the Bloch sphere.
The resulting input set {|ψk⟩}2

n−1
k=0 will be termed XY Z(n)-

input set where n is such that 2n gives the number of the
quantum states to be discriminated.

XYZ(n=2) - We define this input set by picking four states
placed at the vertices of an ideal tetrahedron inscribed in the
Bloch sphere. Table III reports the formal definition of the
states, which are geometrically represented in Fig. 17a.

XYZ(n=3) - In this input set each state is associated to a
vertex of a cube (n = 3, and therefore 23 = 8) inscribed in
the Bloch sphere. Table IV reports the eight state vectors, and
Fig. 17b represents them on the sphere.

XYZ(n=4) - Unfortunately, there is no regular polyhedron
having sixteen vertices. For this reason, we propose to use an
approximate polyhedron by exploiting a method which can
easily be generalized to any value of n:

• Draw two meridians on the Bloch sphere corresponding
to φ = 0, π2 .

• Draw four parallels on the Bloch sphere corresponding
to θ = π

5 ,
2π
5 ,

3π
5 ,

4π
5 .

• The states that make up the encoding are the sixteen
intersections of these parallels and meridians. We rely
on Fig. 17c for a graphic representation.

5) XYZ(n, clove)-input set
Like we did for the XZ(n, quadrant)-input set, here we
redistribute the states of the XY Z(n)-input set equally on
a reduced clove of the Bloch sphere, identified by θ ∈ [0, π2 ]
and ϕ ∈ [0, π]. The aim of this input set is to increase the
overlap among its states w.r.t.XY Z(n), which in turn should
make their discrimination more difficult. There are several

TABLE IV: XY Z(n = 3) encoding map.

|ψ0⟩ cos 0.1521π |0⟩+ sin 0.1521 |1⟩
|ψ1⟩ cos 0.1521π |0⟩+ i sin 0.1521 |1⟩
|ψ2⟩ cos 0.1521π |0⟩ − sin 0.1521 |1⟩
|ψ3⟩ cos 0.1521π |0⟩ − i sin 0.1521 |1⟩
|ψ4⟩ cos 0.3480π |0⟩+ sin 0.3480π |1⟩
|ψ5⟩ cos 0.3480π |0⟩+ i sin 0.3480π |1⟩
|ψ6⟩ cos 0.3480π |0⟩ − sin 0.3480π |1⟩
|ψ7⟩ cos 0.3480π |0⟩ − i sin 0.3480π |1⟩
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FIGURE 17: XYZ(n) states represented on the Bloch sphere, for (a) n = 2, (b)
n = 3, (c) n = 4. Note that they exploit all the 3d space of the sphere.

ways to achieve this purpose, each characterized by its own
QCB. Since, in doing this, we did not commit ourselves to
any optimization problem, we decided to distribute the states
on the clove uniformly on the meridians and the parallels, i.e.
in the most basic way, according to the following algorithm.

• For n = 2 we place |ψ0⟩, |ψ1⟩ and |ψ3⟩ on half of the
XZ-plane. The |ψ2⟩ state is obtained by rotating |ψ0⟩ ≡
|0⟩ by 90 degrees on the YZ-plane. See Fig. 18a.

• For n = 3 we drew an intermediate semi-parallel on
the clove, identified by θ = π/4. We placed three states
(|ψ5⟩, |ψ6⟩ and |ψ7⟩) uniformly spread over this semi-
parallel, four states (|ψ1⟩, |ψ2⟩, |ψ3⟩, |ψ4⟩) uniformly
spread over half of the XZ-plane, and finally a state
|ψ0⟩ ≡ |0⟩. See Fig. 18b.

• For n = 4 we used an approach very similar to the n =
3 case, i.e. we drew two intermediate semi-parallels at
θ = π/6, π/3. We uniformly placed three and five states
on these semi-parallels respectively, seven states on half
of the XZ-plane and again |ψ0⟩ ≡ |0⟩. See Fig. 18c.

In Fig. 18a we highlight a strong resemblance with BB84
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TABLE V: QCB values for the input sets we defined, depending on the number
of bits n.

XZ(n,
quad-
rant)

XZ(n) XZ(n, ϕ) XYZ(n,
clove)

XYZ(n)

n=2 0.03880 0.69315 0.69315 0.69315 1.09860
n=3 0.00965 0.15835 0.15835 0.15835 0.40541
n=4 0.00241 0.03880 0.03880 0.06933 0.10036

states, the only topological difference is that |ψ2⟩ is rotated
by 90 degrees on the YZ-plane. In Fig. 18b we point out
that the states |ψ4⟩ , |ψ7⟩ , |ψ0⟩ , |ψ5⟩ , |ψ1⟩, are placed on
half of the XZ-plane, exactly like the first five states from
XZ(n = 3). These considerations justify the fact that
XZ(n) and XY Z(n, clove) share the same QCB if n = 2
or n = 3.

To clarify further the relationship between the level of
overlap of the states that comprise the previously defined
input sets and their QCBs, it may be helpful to be aware
of the QCB values associated with the corresponding input
sets. Table V reports, for any input set defined above, the
value of the QCB for n = 2, 3, 4. The table clearly indicates
that the QCB values are consistent with the overlapping state
considerations. Specifically,

• XZ(n, quadrant)-input sets have QCB values well
below those of other input sets.

• XZ(n)- and XZ(n, ϕ)-input sets share the same quan-
tum states topology on the Bloch sphere. As a result,
they have the same QCB value, regardless of ϕ.

• XY Z(n)-input sets have significantly higher QCB val-
ues than those pertaining to the other input sets thanks to
the tri-dimensional redistribution of states which lowers
the overlap.

• The XY Z(n, clove)-input sets have the same QCB
values as the XZ(n)-input sets in which n = 2 and
n = 3.

• Although the XY Z(n, clove) and XZ(n, quadrant)
input sets are defined with the purpose to increase the
overlap between states, the former has a far higher QCB
than the latter. This may be justified geometrically along
the following lines of reasoning. InXY Z(n, clove), the
states can be spread over a quarter of the surface of the
Bloch sphere so that they have fewer opportunities for
overlap than in the XZ(n, quadrant) in which states
can be distributed over the arc of a quadrant of a unit
circle. Consequently, the QCB of XY Z(n, clove) is
significantly less than the QCB of XZ(n, quadrant).

C. EVALUATION OF THE INPUT SETS
By design, the NBP model can only support XZ(n) as input
sets. Therefore, the following analysis pertains exclusively
to the BHW model that supports all types of input sets.
As discussed in Section III-A, each input set gives rise to
a specific BHW circuit which can be determined using the
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FIGURE 18: XYZ(n, clove) states represented on the Bloch sphere, for (a)
n = 2, (b) n = 3, (c) n = 4. Note that they are bound to one fourth of the
sphere.

BHW algorithm.
In the following, we quantify the impact of QCB values

on Nland(95%). For this purpose, we applied the simula-
tive approach described in Section IV and determined the
Nland(95%) for each input set.

Fig. 19 clearly highlights that there is a strong correlation
between the value of QCB and that ofNland(95%). This cor-
relation tends to grow even more when there are more states.
We can indeed notice how the gap between the Nland(95%)
values of XZ(n, quadrant)-, XZ(n)- and XY Z(n)-input
sets become much greater when we raise the value of n.

A further consideration can be made regarding in-
put sets with the same QCB value. Taking XZ(n) and
XY Z(n, clove) for n = 2 and n = 3, we note that, from
the Nland(95%) standpoint, the latter (see Fig. 19) performs
slightly worse than the former.

Lastly, we found out from comparing Fig. 7 and Fig.
10 pertaining to XZ(2) that there is plenty of room for
improvement in Brun et al. algorithm. We therefore took a
closer look at Fig. 10b in order to better understand how
p(k,N) evolves as the number of iterations N increases. By
using Python scipy 1.7.1 we discovered that the best fit of the
bar plot of Fig. 10b is

f(N) = 1− exp{−γN} (16)

where N is the iteration number and γ = 0.69315, which is
exactly the Chernoff bound! (as reported in Table V).

Now, if we assume that (16) holds also for the other
scenarios, then we could draw the bar plot reported in Fig.
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19 where the height of the dark green bars is equal to
Nland(95%) whereas the height of the light green bars,
denoted by NQCB(95%), is calculated as follows.

NQCB(95%) = min
N

{N : 1− exp
{
−NξSQCB

}
≥ 0.95},

(17)
where ξSQCB is the QCB of the corresponding input set S (see
Appendix A). In other words, if it were possible to design
an algorithm (hereinafter referred to as AQCB) capable of
achieving the QCB limit for any input set, then the BHW
enhancement margin with respect to the AQCB would be
accurately quantified by the difference between the light
green and dark green bar heights in Fig. 19. This means that a
recipe to build the unitaries {Uk}2

n−1
k=0 different from the one

described by the algorithm in Fig. 3 could lead to much better
results, and the proof of this statement is the alternative set of
matrices shown in Section VI-A3. Finally, we conclude this
section with the definition of a new metric that enabled us to
enrich the assessment carried out thus far.

Indeed, Fig. 19 also reports (orange dots) the ratio of the
minimum number of iterations NQCB(95%) as predicted by
the AQCB algorithm to the observed values of Nland(95%)
of the BHW algorithm. This performance index reflects
BHW’s performance against AQCB in relative terms rather
than absolute terms, as NQCB(95%) or Nland(95%) have
done.

This ratio is 1 when the two algorithms perform equally
and approaches 0 when the AQCB outperforms BHW.

VIII. CONCLUSIONS AND OUTLOOK
In this paper, we performed a thorough simulative analysis of
two quantum circuits from [6] and [8], which discriminate
non-orthogonal quantum states with the assistance of D-
CTCs. Our analysis boils down to evaluating a convergence
speed towards a fixed point when the above quantum circuits
are fed with specific input sets comprising non-orthogonal
states.

Results clearly show that, when both models are fed with
an XZ(n)-input set (the only possible input set for a com-
parison) with a number of states greater than 4 (n = 2), the
number of iterations required to achieve perfect discrimina-
tion may be too high to be helpful in practical applications.

For the Brun et al. [6] model only, another finding is
that the number of iterations needed to reach the fixed point
depends heavily on the input set supplied to the model. In
particular, Fig. 19 points out that the input set XY Z(n)
outperforms with respect to the input set XZ(n, quadrant).

Through our in-depth simulative analysis, we found that
the above dependency is closely related to the degree of
overlap between states within the input set. To quantify
this dependence, we exploited the quantum Chernoff bound
metric to characterize the non-orthogonality of the states
within an input set and this enabled us to figure out how the
bigger the QCB the smaller the Nland(95%).

Finally, for both models, a significant burden is that an
original copy of the qubit state is required for each iteration.
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FIGURE 19: Bar plots showing Nland(95%) depending on the input sets we
defined, for n = 2 (a), n = 3 (b) and n = 4 (c). Dark green bars report
Nland(95%) for the BHW algorithm, whereas light green bars report
NQCB(95%).

This fact and the high value of Nland(95%), even if n
is small, does not allow, for example, to use a qubit to
convey classic Internet packets (i.e. a string of hundreds of
bits) from the sender to the recipient. Let us consider the
simplest case, that is n = 2. The sender encodes the qubit
and teleports it to the receiver which will have to decode it.
Using the most performing BHW quantum circuit, it takes 7
iterations to extract two bits with a probability of 95%. This
means that we should use 7 copies of the qubit to extract,
with a 95% probability, 2 classical bits. However, we know
that with the superdense coding [19], with probability 1, we
can extract 2 classical bits from one qubit. As a conclusion,
despite that with a CTC assisted quantum circuit the Holevo
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bound is violated, superdense coding still remains the most
effective approach for moving classical bits along a quantum
communication channel.

In an attempt to eliminate the use of one copy of the
original qubit for every iteration we also tested the use of
approximate cloned copies [20] of the original qubit. Unfor-
tunately, the results were disappointing, and we gave up on
that approach.

However, we now have figures that allow us to compare the
BHW and NBP quantum circuits against the performance of
existing algorithms that use constant-sized quantum memory
[21]. This topic has been left for a next potential paper.
Furthermore, as we discussed in Section VII-C, the recipe
used to build Uk matrices has a significant impact on the
performance of the discrimination algorithm. Thus, the prob-
lem of finding the {Uk}K−1

k=0 set that minimizes the value of
Nland(95%) is an open issue that deserves to be addressed.

APPENDIX. A
In the following we sketch the reasoning which led to the
QCB. Let ρ1 and ρ2 be two quantum states and denote
by ρ⊗N1 and ρ⊗N2 the quantum states composed of N i.i.d.
copies of ρ1 and ρ2 respectively. A party prepares a quantum
system in a state either ρ⊗N1 or ρ⊗N2 . The optimal success
probability psuccess,N , for a second party to guess which
of these two states has been prepared is fully described by
the Helstrom bound [22], which exploits the trace distance
between the two states. It is however not straightforward
to compute the trace distance between i.i.d. states ρ⊗N1 and
ρ⊗N2 in an analytic form. Furthermore, the Helstrom bound
cannot be generalized to a set with multiple states. However,
if N is large enough, the optimal success probability can be
approximated as psuccess,N ≈ 1 − exp{−NξQCB}, where
the quantity ξQCB is called quantum Chernoff bound (QCB
for short), and is computed as (from [18])

ξQCB = lim
N→∞

−1− psuccess,N
N

=

= − log

(
min

0≤s≤1
Tr

{
ρs1ρ

1−s
2

})
.

(18)

Since we are interested in discriminating non-orthogonal
states of an input set with multiple states {ρi}2

n

i=1, (18) has
been extended to the set S = {ρi}2

n

i=1 as follows:

ξSQCB = min
i,j

ξQCB(ρi, ρj), i, j ∈ {1, 2, . . . , 2n}. (19)

This expression involves the pairwise QCB among all pairs.
With this generalization, we can apply (19) to any input set
of non-orthogonal states and find the related ξSQCB .

In this paper we use the term quantum Chernoff bound
(or QCB) also for its generalization (19). In literature, it
is also commonly referred as multiple Chernoff bound to
differentiate it from the pairwise version (18).

APPENDIX. B
As one may have already noticed, the size of the D-CTC sim-
ulation circuit grows linearly with the number of iterations

N . In particular, if k is the value associated to an n-bit string
and we want to perform N iterations, the total number of
qubits required by the simulator is

#qubits = (N + 1)n. (20)

In our case, we experimentally assessed that both IBM-Q
ibmq_qasm_simulator and Qiskit Aer QasmSimulator strug-
gle when the number of qubits exceeds 20. This is a very
strict limit to our purposes because the number of iterations
that we can test is very low. For example, if n = 2, then we
can test no more than 9 iterations. If instead n = 4, then we
can only test up to 4 iterations, which is unacceptable.

Notice that with the D-CTC simulative approach shown
in Section IV, quantum registers are "wasted" after the V
gate has been applied to them, and new quantum wires
are added for the next iteration. We found an optimization
which "recycles" these qubits by re-initializing them into a
fresh copy of CR system. As we can see in Fig. 21, this is
performed by Reset operators, indicated by the symbol |0⟩,
and initialization gates (INIT (|ψk⟩)), which map the state
|0⟩ into the encoded state |ψk⟩. This approach makes the
circuit size independent of the number of iterations N , so
that the total number of qubits is always

#qubits = 2n. (21)

Fig. 21 shows the case for n = 2. The generalization for n-
bits is straightforward, as the only thing to do is to add SWAP
and Reset gates to match the size of n.

APPENDIX. C
In this appendix we try to justify our guess that, though based
on a large simulation campaign (with all the limitations that
simulation implies), the Hadamard state is the initial state that
guarantees the best performances in terms of Nland(95%).

For what concerns the XZ-input set, Figs. 20a and 20b
clearly show that certain CBS states provide an initial "boost"
to the algorithm convergence. In particular, we discovered
that for both BHW and NBP (using the XZ-input set) the
best CBS initial state |c⟩ is equal to the target state |k⟩ except
for the most significant qubit, which is flipped. This can be
expressed as

|c⟩ =
∣∣k + 2n−1 mod 2n

〉
. (22)

The problem is that we do not have any a priori knowledge
about the target state |k⟩. It therefore seems reasonable to
select an initial state |c⟩ that does not stick to a specific target
state |k⟩.

The Hadamard state |+⟩⊗n is a perfectly fair superposition
of all CBS states. Results show that for the BHW algorithm, it
guarantees higher performances than any |c⟩ ̸= |k⟩ belonging
to the CBS. This still holds true true for all possible input
sets we defined, as confirmed by the representative examples
shown in Figs. 20a and 20c.

Regarding the NBP algorithm, the Hadamard state remains
a better choice than any random CBS state. As shown in Fig.
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20b, the performance achieved using |c⟩ = |++⟩ is only
slightly worse than the best CBS initial state. This was also
confirmed in all other scenarios.

The reason why Hadamard performs so well may be
explained by the following consideration: since it is a fair
superposition, it can’t be orthogonal to the target state |k⟩.
This guarantees that the algorithm always starts up with a
1/

√
2n fraction of the state already landed on the fixed point

|k⟩.
For input sets having a regular geometric structure like

XZ(n) and XY Z(n) our guess is that the Hadamard state
is the optimal choice. For other highly non-regular input
sets where some states are significantly more "isolated" than
others, we saw that BHW algorithm can have very differ-
ent performances depending on the initial and target states
[17]. In such cases, it may be worth exploring the behavior
of an initial state |c⟩ built as a weighted superposition of
CBS states, where states with worse performances have an
increased weight, to speed up the worst case convergence
speed.
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FIGURE 20: Bar plots showing how the choice of a different initial state |c⟩
impacts on the performance of the BHW algorithm with XZ-input set (a), NBP
algorithm (b) and BHW algorithm with XYZ-input set (c). Blue bars regard
initial states picked from the CBS, whereas red bars show the performance of
the Hadamard initial state.
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FIGURE 21: Three iterations of the optimized circuit simulating the D-CTC interaction. Reset operators (|0⟩) let us not "waste" qubits and re-use them in the next
iteration. INIT (|ψk⟩) gate maps the state |0⟩ into |ψk⟩. For the sake of readability, the figure represents the case in which n = 2, and the generalization is
straightforward.
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