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Introduction
During this presentation the following 
topics will be covered:

Diamond as a radiation detector:
its working principle

Investigation of the effect of light on deep trap 
levels by charge collection measurements

A study on optimisation of charge collection 
enhancement (pumping) by means of β
irradiation
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Polycrystalline CVD diamond properties
• Radiation hardness, up to: 1015 hadrons cm-2

• Fast response: ~ 1 ns
• Very low leakage current: ~ 1 pA cm-2

• Low dielectric constant: 5.6 ε0

• Large wafers: ~ 20 cm Ø
• Working at room temperature

• Signal/Noise lower than silicon: ~ 10
• Low charge collection efficiency
• Defects, mainly due to the polycrystalline nature of 

CVD diamond, originate trap levels in the bandgap

☺



S. Mersi - A study of charge collection processes on polycrystalline diamond detectors Slide 3/24

Polycrystalline CVD diamond properties
• Radiation hardness, up to: 1015 hadrons cm-2

• Fast response: ~ 1 ns
• Very low leakage current: ~ 1 pA cm-2

• Low dielectric constant: 5.6 ε0

• Large wafers: ~ 20 cm Ø
• Working at room temperature

• Signal/Noise lower than silicon: ~ 10
• Low charge collection efficiency
• Defects, mainly due to the polycrystalline nature of 

CVD diamond, originate trap levels in the bandgap

☺

Homoepitaxial growth is also presently being studied…
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In most recent diamonds (λ ~ t) CCD is also limited by bulk width
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Experimental setup

• Sensitivity ≈ 220 e-/mV
• ENC ≈ 350 e-

HV
A
D
C

Scintillator +
PM

HV

PC

β Source

0.1mCi 90Sr

Reproduction of the original 
setup by dr. Fred Hartjes
from NIKHEF, Amsterdam
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90Sr 10mCi Halogen lamp



S. Mersi - A study of charge collection processes on polycrystalline diamond detectors Slide 6/24

The ‘pumping’ effect
Measurement β source: 0.1 mCi 90Sr

90Sr 10mCi Halogen lamp



S. Mersi - A study of charge collection processes on polycrystalline diamond detectors Slide 6/24

The ‘pumping’ effect
Measurement β source: 0.1 mCi 90Sr

But if diamond is exposed to intense radiation, 
its signal is increased

90Sr 10mCi Halogen lamp



S. Mersi - A study of charge collection processes on polycrystalline diamond detectors Slide 6/24

The ‘pumping’ effect
Measurement β source: 0.1 mCi 90Sr

But if diamond is exposed to intense radiation, 
its signal is increased

This pumping effect is permanent, until diamond
is exposed to light (or heated ~600K)

90Sr 10mCi Halogen lamp
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Investigation of the effect of light 
on deep trap levels by CCD 
measurements

• Interpretation of pumping effect as the 
passivation of deep trap levels inside 
diamond bandgap

• Investigation of this effect by means of CCD 
measurement after sample illumination with 
monochromatic light

• Model refinement with two trap level bands  

T
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Our interpretation of pumping
Carriers’ mean life enhancement is due to traps
passivation

Pumping-depumping energies are thus complementary

Edepump+Epump=Egap

Edepump

Epump
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Investigation of deep trap levels

• Exposure to radiation (220-1000 nm)
• Photocurrent measurement
• CCD measurement

HV
A
D
C

Scintillator +
PM

HV

PC

Study of deep trap passivation effect by light radiation

Selected wavelength 
light source

β source
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Monochromator

• Photoconductivity 
measurement system

• Single monochromator
• Range: 180-1000 nm
• Resolution: 2.5 nm

p
A
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Device under test

Tracking device prototype

[Sung Han for the RD42 
Collaboration, “Diamond Beam 
Telescope for Charged Particle 
Tracking”, IEEE Transactions on 
Nuclear Science,  49 (4), p.1857]

• Width: 470mm
• Al metallized area: 25mm2 

• Pitch: 50mm
• Microstrips shorted

Polycrystalline CVD diamond DEBID
(CERN RD42 collaboration)
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Measurement details

90Sr 0.1 mCi
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Halogen lamp

depumping
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Measurement details
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10 mCi 90Sr

pumping

90Sr 
Electrometer

Meter
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Measurement details

90Sr 0.1 mCi

ADC

Electrometer

SW

Power

Meter

From 1.2 eV to 6.2 eV

0.1-0.5 eV steps
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Charge collection distance spectrum
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Charge collection distance spectrum
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Not relevant energies, probably due to extremely low efficiency.

Thermal annealing suggests that these are depumping energies 
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Charge collection distance spectrum
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Charge collection distance spectrum
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Charge collection distance spectrum
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The energy range is divided in complementary intervals:

if E pumps the sample, E’=Egap- E depumps it
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Principle of interpretation
Twofold pumping-depumping
energy ranges prove the 
existence of two kind of 
centers involved in the 
pumping process 1.7 2.7 3.7
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Observations indicate, for the CVD diamond sample under 
examination, the following structure

To summarize:

• Two bands of level in the low half bandgap
• Low band negative and high band positive 

in the depumped state, both neutral in 
pumped state

• Lower band begins at about 1 eV and ends 
at about 1.7 eV, higher band begins at 1.7
eV and ends at about 2.7 eV 

• Higher densities at about 1.7 eV and 2.5 eV
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A detailed study on pumping

• Correlation of polarization effect with respect 
to CCD in various diamonds

• Correlation of pumping efficiency with respect 
to CCD

• Study of bias voltage influence on pumping 
dynamics

+
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Hysteresis effect

This effect is known in CVD diamonds
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Hysteresis vs. CCD

• Hysteresis is anticorrelated to CCD



S. Mersi - A study of charge collection processes on polycrystalline diamond detectors Slide 20/24

E
Polarization effect

Beta irradiation

Local charge
neutrality, 
Uniform electric
field

β 

Charge
displacement,

One carrier
model

Polarization



S. Mersi - A study of charge collection processes on polycrystalline diamond detectors Slide 20/24

E
Polarization effect

β 

Beta irradiation

Local charge
neutrality, 
Uniform electric
field

β 

Charge
displacement,

One carrier
model

Polarization



S. Mersi - A study of charge collection processes on polycrystalline diamond detectors Slide 20/24

E
Polarization effect

β  

Beta irradiation

Local charge
neutrality, 
Uniform electric
field

β 

Charge
displacement,

One carrier
model

Polarization



S. Mersi - A study of charge collection processes on polycrystalline diamond detectors Slide 20/24

E
Polarization effect

β  

Constant bias
voltage, 

Constant mean
field

β 

Beta irradiation

Local charge
neutrality, 
Uniform electric
field

β 

Charge
displacement,

One carrier
model

Polarization



S. Mersi - A study of charge collection processes on polycrystalline diamond detectors Slide 20/24

E
Polarization effect

β  

Constant bias
voltage, 

Constant mean
field

β 

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400

um

V
/u

m

<E>=1V/um

A montecarlo simulation of local electric field
under 2cGy irradiation with 1013 cm -3 traps

ct

Beta irradiation

Local charge
neutrality, 
Uniform electric
field

β 

Charge
displacement,

One carrier
model

Polarization



S. Mersi - A study of charge collection processes on polycrystalline diamond detectors Slide 21/24

Pumping vs. CCD
• CCD measurements of several samples both in pumped 

and depumped state
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Pumping vs. CCD
• CCD measurements of several samples both in pumped 

and depumped state

• Pumping is correlated to defects in crystal lattice
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Bias field and pumping dynamics
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γ: traps filling constant
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Bias field and pumping dynamics
α: passivable traps/not 
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γ: traps filling constant
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Pumping and bias: a further study
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Conclusions
A diamond tracking prototype was illuminated with various 
wavelengths, after being previously fully pumped and depumped.
This study brought to the conclusion that there are at least two deep 
bands of trap levels inside diamond’s band gap, the lower one 
negative and the higher one positive in the depumped state, both
neutral in pumped state.

Lower band: 1 eV - 1.7 eV
Higher band: 1.7 eV - 2.7 eV

A further study with tighter band gap scanning is needed in order to 
better locate trap levels

A study on pumping proved the correlation between pumping and 
lattice defects.
Some bulk polarization effect was also shown and correlated with the 
presence of trap levels.
A study on pumping dynamics confirmed the presence of a polarization 
effect and provided a recipe for pumping optimization
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CVD diamond structure

Polycrystalline 
structure

Grains enlarge

during growth

growth side

substrate side
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Diamond wafer

Lapped diamond surface
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CVD diamond properties

• Single grains’ quality is not uniform
⇒ signal is not uniform

• Defects concentrated on grain boundaries
• Quality improves with thickness
• It is possible to remove defective material 

(standard procedure for CERN RD42 
samples)
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Diamond vs. silicon
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Pumping and depumping scheme
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Material removal (by Harris Kagan, OSU)
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E

Hysteresis vs. CCD
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