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Metabolism of glutathione in tumour cells as evidenced by 1H MRS
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Abstract 1H MRS signals of glutathione and of free glutamate
were examined in samples from cultured tumour cells, namely
MCF-7 from mammary carcinoma and TG98 from malignant
glioma, with the aim of relating signal intensities to aspects of
GSH metabolism. Spectra of cells harvested at different cell den-
sities suggest that GSH and glu signal intensities are related to
cell density and proliferation and their ratio is dependent on
the activity of the c-glutamyl cysteine synthetase. The hypothesis
is confirmed by experiments performed on cells treated with
buthionine sulfoximine that inhibits the enzyme activity.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The tripeptide c-glutamylcysteinylglycine, Glutathione

(GSH), is a ubiquitous molecule that may act as antitoxic

agent by reacting with both electrophylic or oxidizing species

[1]. The GSH level and metabolism have been invoked as ma-

jor determinants of the efficiency of cells in its detoxification

action against internal toxic agents that are produced during

cell lifespan as well as external chemical or physical insults [2].

MRS has been employed to study GSH metabolism both

in vitro [3,4] and in vivo [5,6]. 1H MRS signals of GSH and

of its oxidized form GSSG were assigned to specific chemical

groups through 1D and 2D COSY experiments performed in

GSH solution and in perchloric acid extracts from tissues

[4,7,8].

In a previous paper [8], we related the intensity of GSH sig-

nals of tumour cells to cell tendency to undergo apoptosis by

irradiation. In the present study, we examined MRS signal

intensity of GSH and of free glu in cultured cells MCF-7 from

mammary carcinoma and T98G from malignant glioma, aim-

ing at elucidating to which aspects of GSH metabolism they

are related. On the basis of experiments on cells collected at

different cell densities and on cells treated with buthionine sul-

foximine (BSO), we found that the cell density and prolifera-

tion are the major determinant of intensities of GSH and of
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free glu signals and their ratio is directly related to the activity

of c-glutamyl cysteine synthetase, the rate limiting enzyme in

GSH synthesis.
2. Materials and methods

MCF-7 cells were purchased from ATCC (Manassas, VA, USA) and
kindly donated by Dr. Stefania Meschini, Istituto Superiore di Sanità,
Rome, Italy. Cells were grown, as adherent cells, in RPMI 1640 med-
ium (Hyclone, Logan, Utah) and 1· nonessential aminoacids (Euro
Clone Life Science Division, Milan, Italy). T98G cells were purchased
from the ECACC (Porton Down, Salisbury, Wiltshire, SP4 0JG) and
kindly donated by Dr. Angelica Facoetti of University of Pavia, Italy.
Cells were grown, as adherent cells, in RPMI 1640 medium (Hyclone)
added with 1 mM sodium pyruvate and 1· nonessential amino acids
(Euro Clone Life Science Division). The medium of both cell lines
was supplemented with 10% fetal calf serum (Hyclone) and 50 lg/ml
gentamicin. Cells deriving from both cell lines were routinely seeded
in 175 cm2 flasks at a density of 4 · 105 cells per flask in 50 ml medium.
The medium was replaced every 72 h.

MCF-7 and T98G cells were treated with BSO for 18 h. The medium
was then removed, cells washed and fresh medium added.

GSH solutions were prepared by dissolving GSH in 2H2O to a final
concentration of 10 mM and pH adjusted to 7.4.

PCA extracts were prepared as previously described [8].
All reagents were purchased from Sigma (St. Louis, MI, USA).
1D 1H MR spectra were run at 400.14 MHz on a digital Avance spec-

trometer (Bruker, AG, Darmstadt, Germany) equipped with a 1 mm
microprobe. Signals were acquired with a 90� RF pulse and a sweep
width of 4006.4 Hz. The number of scans was 512 with a repetition time
of 4.36 s. Water suppression was obtained by irradiating water signal.
2D 1H COSY spectra of cells were acquired with a 90�–tl–90�–t2 pulse
sequence, by summing 16 free induction decays for each of 256 incre-
ments in t1. Spectra were acquired as a matrix of 512 · 256 data points
in the time domain. When indicated, a Lorentzian–Gaussian function
with LB = �10 Hz and GB = 0.1 was applied to enhance the resolution
in the time domain before Fourier transformation.

To perform MRS measurements on cells, a pellet of approxi-
mately 5 · 106 cells was suspended in phosphate-buffered saline
with 10% 2H2O and inserted in a 1 mm tube.

By considering that (i) the spectral region of interest was well char-
acterized with respect to metabolite peaks; (ii) signals had similar
intensities and linewidths and (iii) the signal to noise ratio was above
10 also for the lowest signals, the ‘‘1D WINNMR’’ software (Bruker)
was considered adequate for spectral deconvolution. A Gaussian/
Lorentzian ratio equal to 1 for the line shape function was chosen.
3. Results

Fig. 1 shows the 1H MR spectral regions (4.5–0.5 ppm) of

T98G (a) and of MCF-7 (b) cells. Many signals from mobile

lipids are present in both spectra. Main signals of fatty acid
blished by Elsevier B.V. All rights reserved.
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Fig. 1. ID 1H MR spectra (region 4.5–0.5 ppm) of (a) T98G and (b) MCF-7cells. 2D COSY 1H MR spectra (region 4.65–1 ppm) of (a 0) T98G and
(b) MCF-7 cells.
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chains are at 0.89 ppm from terminal –CH3, at 1.27 ppm from

(–CH2)n bulk, at 1.61 ppm from (–CH2) in position 3, at

2.02 ppm from CH2ACH2ACH‚CH and at 2.32 ppm from

(–CH2) in position 2. Signals from GSH, centred at 2.97

(bCH2 group of cys), 2.55 (cCH2 of glu), 2.17 (bCH2 of glu)

are also intense, particularly in spectra of T98G cells

(Fig. 1a). Signals at 2.35 and at 2.10 ppm are from cCH2

and bCH2 of free glu, respectively. Assignments were con-

firmed by 2D COSY spectra (Fig. 1a 0,b 0). The correlations

from glu residues in GSH can be found at 2.17–2.55 ppm (b
and c protons) and at 2.17–3.78 ppm (b and a protons). The
cross peak of cys residue in GSH is found at 2.97–4.57 ppm

(b and a protons). Free glu shows the cross peak at 2.10–

2.35 ppm from b and c protons, while the correlation from b
and a protons at 2.10–3.77 ppm partially overlaps to the cor-

responding cross peak of glu in GSH.

To perform signal deconvolutions for evaluating intensities

of signals associated to the GSH metabolism, we compared cell

spectra with those of GSH and of free glu solutions. Fig. 2

shows the 1H MR spectral regions, diagnostic for GSH and

free glu signals, of a T98G cell sample (a), GSH solution (b)

and glu solution (c). The structure of the signals at 2.55 at
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Fig. 2. (a) Spectrum (region 3.9–1.9 ppm) of T98G cells with (a 0,a00), details of cys and glu of GSH, respectively; (b) spectrum (region 3.9–1.9 ppm) of
10 mM GSH solution with (b 0,b00). details of cys and glu of GSH, respectively; (c) spectrum (region 3.9–1.9 ppm) of 10 mM glu solution.
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2.97 ppm is shown in more detail in Fig. 2a 0,a00,b 0,b00. Compar-

ison of GSH signals in cells with GSH signals in solution indi-

cates that the envelope of glu in GSH, resulting from the

coupling pattern of the two protons of cCH2 with the two pro-

tons of bCH2, resonates approximately at the same frequency

in cell and in solution spectra (compare Fig. 2a00,b00). On the

contrary, the cys envelope, resulting from the coupling pattern

of the two protons of bCH2 with the proton of aCH group, is

shifted in cell spectra to higher fields with respect to the same

signal in GSH solution (compare Fig. 2a 0,b 0).

Peak deconvolution of cell spectra that takes into account

coupling patterns deriving from spectra of GSH and glu solu-

tions, is shown in Fig. 3. The cys peak of GSH was fitted with

five lines and three further lines at lower fields (at 3.04, at 3.03

and 3.01 ppm, respectively) were added in both T98G (Fig. 3a)

and MCF7 cell spectra (not shown). On the basis of a compar-

ison with PCA extract spectra (not shown), the signal at

3.04 ppm was attributed to the CH2 of creatine (more intense

in MCF7 than in T98G cells and extracts) and the signal at

3.01 ppm to the eCH2 of Lys (of comparable intensity in the

two cell lines). The signal at 3.03 ppm was not assigned. The

signal of glu of GSH at 2.55 ppm was fitted with eight lines

(Fig. 3b). Fourteen lines were necessary to obtain a good fit

in the interval 1.5–2.5 ppm (Fig. 3c). In particular, quartets

were used to fit the free glu peak at 2.35 ppm and the peak

of glu of GSH at 2.17 ppm while one large peak was used to

fit the envelope centred around 2.10 ppm deriving from the

bCH2 of free glu and gln (the cCH2 of gln is the peak at

2.42 ppm). The peak at 1.9 is from the acetate while the peak

at 1.68 was not assigned. Fig. 3d shows the 0.4–1.20 ppm re-

gion deconvolved with one peak at 0.94 ppm from cytosolic

polypeptides, at 0.89 ppm from cytosolic polypeptides and lip-
ids and at 0.7 ppm from cholesterol. Finally, a broad compo-

nent encompassing the deconvolved regions was added.

To measure relative metabolite concentrations, fitted peak

areas in the 1D spectra were referred to the area of the signal

at 0.94 ppm from the methyl group of cytosolic polypeptides.

We indicate with G the relative concentration of GSH in cells

measured by the envelope signal intensity of glu of GSH at

2.55 ppm and with g that of free glu at 2.35 ppm while ‘‘glu-

tot’’ indicates the sum G + g. Furthermore, we indicate with

C the relative concentration of cys of GSH measured from

the envelope signal intensity at 2.97 ppm. Table 1 reports rela-

tive concentrations G, C, g and glutot and ratios G/g and C/G

for a number of samples deriving from cells harvested in log

phase. Notably, C was only 76% of G in MCF-7 cells and

85% of G in T98G cells, pointing to an incomplete visibility

of cys of GSH in cell spectra.

Cell growth slowed down as cell density increased during

progression towards confluent and post confluent state for

both MCF-7 and T98G cells (Fig. 4a,b). G decreased as a func-

tion of the time in culture in both cell lines (Fig. 4a 0,b 0) and its

decrease was accompanied by a parallel decrease of g and glu-

tot while ratios G/g were almost constant up to six days after

seeding (Fig. 4a 0,a00,b 0,b00). Afterwards, in correspondence with

the onset of confluence, g remained almost constant while G

further decreased: consequently, G/g ratios dropped to lower

values (Fig. 4a 0,a00,b 0,b00).

A large spread of G and g values was observed in different

samples harvested from MCF-7 and T98G cells in log phase.

Nevertheless, both G and g were linearly dependent on glutot

(Fig. 5a,b) while ratios G/g were almost constant (Fig. 5a 0,b 0).

To clarify to which metabolic steps the signal inten-

sity changes could be attributed, we monitored the effect of
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Fig. 3. Spectral deconvolution of a typical 1H MR spectrum of T98G cells: (a) region of cys of GSH; (b) region of glu of GSH; (c) region of free glu;
(d) region of the cytosolic polypeptides. See text for signal assignments.

Table 1
Mean values and standard deviation (in brackets) of relative concen-
trations of glu of GSH (G), free glu (g), glutot = G + g and cys of GSH
(C) as obtained from spectra of MCF-7 and T98G cells (at least 10
independent experiments)

MCF-7 T98G

G 0.74 (0.12) 0.84 (0.25)
g 0.71 (0.19) 0.54 (0.14)
Glutot 1.45 (0.12) 1.38 (0.38)
G/g 1.04 (0.51) 1.54 (0.19)
C 0.56 (0.02) 0.85 (0.15)
C/G 0.78 (0.12) 0.85 (0.15)

Ratios among values are also given. Cells had been harvested in log
phase.

640 S. Grande et al. / FEBS Letters 581 (2007) 637–643
inhibiting the activity of c-glutamyl cysteine synthetase on MR

signals. Cell were treated with BSO, that inhibits the enzyme

activity, and Fig. 6 shows a representative experiment of dose

response with BSO concentration ranging from 0.025 to 1 mM.

In MCF-7 cells, treatment with 0.1 mM BSO concentration

produced a decrease of G up to 46% of control sample, paral-

leled by an increase of g (Fig. 6a and Table 2). G decreased fur-

ther in this cell line by increasing BSO concentration to 1 mM,

representing an additional drop of 10% (Fig. 6a and Table 2).

T98G cells were even more sensitive to BSO as G decreased to

16% of control for 0.1 mM BSO concentration: a further 9%

decrease was induced by 1 mM BSO. Also in T98G cells, g in-

creased (Fig. 6b). As a consequence, G/g ratio markedly de-

creased in both cell lines (Fig. 6a 0,b 0). The increase of g did

not compensate completely the decrease of G and, conse-

quently, glutot values were lower in treated with respect to
controls (Table 2) in both cell lines. Furthermore, BSO treated

samples were characterized by a lower number cells with re-

spect to controls (Table 2).

Analysis of 2D COSY spectra confirmed the behaviour of

the 1D spectra. On the other hand, they were not considered

for evaluating metabolite relative concentrations because cross

peak areas are strongly dependent on relaxation times.
4. Discussion

MRS technique is presently employed to monitor GSH con-

centration particularly in in vivo studies [6]. A deep insight into

the meaning of intensity changes of MRS signals associated to

GSH metabolism is therefore of fundamental importance.

With this respect, studies in intact cultured cells that maintain

cells under controlled conditions are a unique tool for high-

lighting aspects of GSH metabolism.

The literature data report decrease of GSH level when cell

density increases [9–11]. Our MRS data confirm the literature

findings, as the relative concentration of GSH, G, decreased

with time in culture in both MCF-7 and T98G cells (Fig. 4).

These data were completed by the new observation that a com-

parable decrease occurred also for the concentration of free

glu, g, in log phase (Fig. 4). Consequently, the concentration

of total glu, glutot, decreased while ratios G/g remained almost

constant in log phase. G/g was affected only at confluence

(Fig. 4).

In the past, it was not clear whether the decrease of GSH

with cell density increase was due to limited nutrient supply

or to programmed regulation. In our opinion, the decrease
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of G accompanied by the decrease of g (and therefore of glu-

tot) with cell density in log phase may be attributed to a
decrease of the amount of nutrients that cells draw from the

medium, amount that is mostly bound to cell crowding and
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Table 2
Mean values of relative concentrations of glu of GSH (G), free glu (g) and glutot = G + g obtained from spectra of MCF-7 and T98G cells after
treatment with BSO at the indicated concentrations

MCF-7 MCF-7 0.1 mM BSO tr MCF-7 1 mM BSO tr

N (c/f) 10.5 ± 1 7.1 ± 0.7 8 ± 0.8
G 0.74 ± 0.07 0.34 ± 0.03 0.27 ± 0.03
g 0.71 ± 0.07 0.98 ± 0.1 0.97 ± 0.1
glutot 1.45 ± 0.15 1.27 ± 0.13 0.83 ± 0.08

T98G T98G 0.1 mM BSO tr T98G 1 mM BSO tr
N (c/f) 2.5 ± 0.3 2.2 ± 0.2 1.5 ± 0.2
G 0.49 ± 0.05 0.09 ± 0.009 0.040 ± 0.004
g 0.43 ± 0.04 0.66 ± 0.07 0.64 ± 0.06
glutot 0.92 ± 0.09 0.75 ± 0.08 0.68 ± 0.07

Cells, seeded at a density of 4 · 105 cells per flask, had been BSO treated at the third day in culture and harvested 18 h after treatment. The number
N · 10�6 of cells per flask (c/f) is also given. Data reported are from one representative experiment for MCF-7 and one for T98G.
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is unpredictable from one experiment to another (Fig. 5). On

the other hand, constant G/g ratios during cell proliferation

in log phase should reflect the constant activity of the enzyme

c-glutamylcysteine synthetase while the decrease of G not

accompanied by a decrease of g and the consequent drop of

G/g observed at confluence (Fig. 4) could be due to lower activ-

ity of this enzyme when cells are less proliferating.

This interpretation is confirmed by the pattern of signal inten-

sity modifications of MCF-7 and T98G cells after BSO treat-

ment. After inhibiting the activity of the c-glutamylcysteine

synthetase by BSO, in fact, G decrease was accompanied by in-

crease of g with a consequent strong decrease of G/g ratios

(Fig. 6 and Table 2). This effect was dose dependent (Fig. 6

and Table 2) and is due to the lower activity of the c-glutamyl-

cysteine synthetase. This enzyme, being the rate limiting step in

the GSH synthesis, hinders the utilization of glu that cells draw
from the medium for GSH synthesis. G/g ratio can be, therefore,

utilized as an index of the activity of c-glutamylcysteine synthe-

tase, the rate limiting enzyme in GSH synthesis that is constant

in log phase and declines passing from log to confluent state.

On the other hand, glutot declined slightly as a function of

BSO dose because the increase of g did not compensate the de-

crease of G (Table 2). By observing that the number of cells in

treated samples was slightly lower than in controls (Table 2), a

lower proliferation rate in BSO treated cells can be envisaged,

in agreement with evidences from the literature [12]. The slight

decrease of glutot in BSO-treated cells could be therefore con-

sequence of this decreased proliferation. Cell cycle modifica-

tions linked to lower proliferation after BSO treatment have

been observed in different cell systems [13]. Preliminary data

(not shown) indicate a similar behaviour for the cell lines here

examined.
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Intensity of cys signal is approximately 76% of glu signal in

GSH of MCF-7 cells and 85% in GSH of T98G cells (Table 1).

The cys residue in GSH can be strongly involved in interac-

tions with other molecules: in fact, protein S-glutathionylation

is a well-described phenomenon occurring in a number of rel-

evant physiologically situations [2]. The presence of very

strong interactions that immobilize the cys residue in a pool

of GSH molecules may account for the lack of visibility in

the MR spectra. On the other hand, the chemical shift of the

cys signal is different in cell spectra with respect to GSH solu-

tion (Fig. 2), showing that also the visible pool of cys is affected

by some kind of interactions.

The glu residue and the visible cys residue in GSH are af-

fected by treatment with BSO in a twofold manner in both cell

lines (Fig. 6). This result suggests that there are two pools of

GSH in the cell, with one easily depleted by BSO and a second

more resistant. The entity of the two pools depends on the cell

line. This behaviour would confirm the hypothesis of the liter-

ature that a pool of GSH exists, more resistant to BSO treat-

ment, attributed mostly to mitochondrial GSH [14–16].

These evidences, if confirmed in other cell systems, may offer

a new tool for the study of GSH metabolism.
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