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Abstract

We discuss the main sources of uncertainties in the calculation of the positron and antiproton top of the atmosphere spectra using
models including diffusion and convection or reacceleration. We show that, even including uncertainties, the models that include
diffusion and convection are more consistent with existing measurements. The next generation experiments like PAMELA will help
to reduce the uncertainties in the values of the main free parameters of the models, thus improving our knowledge of the origin and

propagation of cosmic rays.
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1. Introduction

We have chosen Galprop (Strong and Moskalenko,
1998) as a public code for the treatment of propaga-
tion of all cosmic rays (CR) together. Our scope has
been to determine the total uncertainties in the calcu-
lation of e and p top of the atmosphere spectra due
to the uncertainties of geometrical and propagation
parameters and cross sections. Here, we give very
short description of processes included in propagation
equation
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where Y(r, p, t) is total phase space density. This equa-
tion is valid for all the types of particles. Isotropic diffu-
sion is defined by the coefficient that depends from
rigidity (momentum per unit of charge, p =%) D, = f
Do(p/po)°. In some models, we have used a break in
the index ¢ at some rigidity p,, with a value §; = 0 below
the reference rigidity po. The convection velocity field
V., that corresponds to the Galactic wind, has a cylin-
drical symmetry and its z-component is the only one dif-
ferent from zero. It increases linearly with the distance z
from the galactic plane , in agreement with magnetohy-
drodynamical models (Zirakashvili et al., 1996). Reac-
celeration is determined by the diffusion coefficient for
the impulse space D,, that is a function of the corre-
sponding configuration space diffusion coefficient and
of the Alfven velocity Vs in the framework of quasi-lin-
ear MHD theory (Berezinskii et al., 1990). Of course,
Alfven velocity and convection velocity gradient in
Milky Way for reacceleration and convection terms
are unknown parameters of propagation (there are no
other sources of information from which we could ex-
tract them, except the spectra of cosmic rays) and their
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possible range will be constrained by the analysis of fits
of suitable data.

The same procedure is valid for constraining the
height of the galactic halo and the other unknown
parameters. This will be analyzed further in order to
obtain all the possible spectra of antiprotons and posi-
trons using the sets of the constrained parameters. In-
jected spectra of all primary nuclei are power law in
impulse dg(p)/dp =< p~7. This power law approximation
has been shown to be allowed in the framework of dif-
fusive shock acceleration models, as well as in model
with a small break in the injection indexes y. Source
term ¢(r,p) for secondaries contains cross sections for
their production from progenitors on H and He targets.
The last two terms in Eq. (1) are loss terms with charac-
teristic times for fragmentation and radioactive decay.
The heliospheric modulation in the vicinity of the Earth
has to be taken in account. We have used a model in
which transport equation (that describes diffusion pro-
cesses in the heliosphere and includes effects of helio-
spheric magnetic field and solar wind) is solved in the
force field approximation (Gleeson and Axford, 1968).
In this case, solar modulation is a function of just a sin-
gle parameter that describes the strength of the modula-
tion. All the dynamical processes are simulated with
relatively simple changing of the interstellar spectra dur-
ing the propagation inside the heliosphere, described by
the formula

(ptoa Etoa toa\ 2 .
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where E and p are energies and impulses of the interstel-
lar and top of the atmosphere fluxes and ¢ is the unique
parameter that determines the solar modulation.

2. Uncertainties of CR spectra

We have treated the two extreme cases of propaga-
tion models: the first that uses diffusion and reaccelera-
tion (DR) and the second that contains diffusion and
convection (DC) (Moskalenko et al., 2002). Many
parameters in the propagation equation are free and
must be constrained by experimental data. Secondary
to primary CR ratios are the most sensitive quantities
on variation of the propagation parameters. The most
accurately measured parameter is boron to carbon ratio
(B/C). For DR model we have required reduced y* less
than 2 for the fit of the experimental data (Fig. 1). We
take the data with relatively small solar modulation be-
tween 325 and 600 MV, where the force field approxi-
mation is better justified than for high modulation
parameters. In Fig. 2 is shown the subFe/Fe ratio,
important for testing the parameters of the propagation
models.
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Fig. 1. Enveloping curves of all the good fits of B/C data for DR and
DC model with their best fits inside and the best fit for DRB model.
Experimental data are taken from Davis et al. (2000).
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Fig. 2. Ratio (Sc + Ti+ V)/Fe that corresponds to the propagation
parameters that give the best fits of B/C data for the DC model is given
with dashed line and it is inside the corresponding uncertainty band
given with dashed lines. The ratio for the DR model is given with
dotted line and it is inside the uncertainty given with solid lines, while
for DRB model is given with larger-step dashed line without the
uncertainty band around. Experimental data are taken from Davis
et al. (2000).

For DC model (Fig. 1), we have taken all the reduced
y? values less than 2.8 for the variation of Dy, diffusion
indexes 01, below, and J,, above the reference rigidity
po =4 GV, z, V. and injection index for primary nuclei
71 below the reference rigidity p) = 20 GV and y, above
it. Allowed values for the propagation parameters can
be found in Table 1. We calculated the propagation
uncertainty bands and PAMELA expectations for e”
(Fig. 3), positron charge fraction (Figs. 4 and 5), anti-
proton proton ratio (Fig. 6) and p in the case of the best
fit DC model using the PAMELA geometrical factor
and detector characteristics (Picozza and Morselli,
2003) during the three years mission in which it will
measure with high statistics various cosmic rays spectra.
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Table 1
Allowed values for the propagation parameters for DC model

Par./val. z(kpc) Do (cm?/s) 0, dlj (km/skpc) vy 72

Minimal 3.0 23%x10% 048 5.0 242 214
Best fit 4.0 25%10%  0.55 6.0 248 220
Maximal 5.0 27x10% 062 7.0 250 2.22
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Fig. 3. Total uncertainties of ¢* fluxes and spectra that correspond to
the parameters of the best B/C fit for DC (solid lines around the best
fit) and DRB model (dashed lines around the best fit). Experimental
data from Picozza and Morselli (2003) vs. PAMELA expectations for
DC model.
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Fig. 4. Experimental data from (Picozza and Morselli, 2003) con-
fronted with PAMELA’s expectations for positron charge fraction for
the DC model. The propagation uncertainty band of the positron
charge fraction and the curve that corresponds to the parameters of the
best B/C fit in the middle are given for better confrontation.

We have found also spectra that correspond to the
parameters of the best fit of B/C data for protons, He
and e~ as well as corresponding uncertainties (Lionetto
et al., 2004). For DC model fits are good, while DR
overestimates p, He and e™. To improve the DR expec-
tations, we have considered the DR model with a break
in the injection index for the primary nuclei spectra ta-
ken at rigidity of 10 GV (DRB). We determined allowed
values of the propagation parameters demanding the
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Fig. 5. Total uncertainty of p fluxes and spectra that correspond to the
parameters of the best B/C fit for DC (solid lines) and DRB model
(dashed lines). Experimental data from Picozza and Morselli (2003) vs.
PAMELA expectations for DC and DRB model.
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Fig. 6. Experimental data from (Picozza and Morselli, 2003) con-
fronted with PAMELA’s expectations for the antiproton proton ratio
for the DC model background. The propagation uncertainty band of
the antiproton proton ratio and the curve that corresponds to the
parameters of the best B/C fit in the middle are given for better
confrontation.
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same y” as for DR model (Fig. 1). Even if " and prima-
ries are fitted a little better at low energies, all of them
remain overestimated while p spectra remain practically
unchanged.

3. Conclusions

For positrons in the DR model, the curve of the
minimal positron production still remains above the
experimental results, even when the uncertainties are
included. Breaking the index of the primary spectra
(DRB model) does not improves the agreement with
the data and slightly changes the best B/C fit (Fig. 1).
Protons and helium data are still overestimated. Elec-
trons remain largely overproduced at low energies, even
more than in the case without the break. The
antiprotons are underproduced. In those cases, the
experimental data fits can be easily improved adding
different primary components coming from neutralino
annihilations or from some other exotic contributions
(Lionetto et al., 2004).

For the model with diffusion and convection, all the
results are in excellent agreement with the data except
in the B/C case. This problem could be due to some
other sources of uncertainties, like the interstellar gas
distribution, solar modulation and approximations done
in the cross section calculations. As a possibility for
future analysis, we would like to emphasize that it is
natural to take into account models that include both
of the processes, convection and reacceleration. Further
measurements of antiproton and positron spectra,
primary to secondary CR ratios and solar modulation,
as well as the precise determination and parametrization
of important nuclear cross sections (Kamae et al., 2005)
seem to be crucial to determine the correct propagation

model. In the framework of DC model, exotic contribu-
tions remain possible at high energies (E > 20 GeV), and
not excluded at lower energies due to the relatively large
uncertainties.
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