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Abstract-Simulated Annealing (SA) and Tabu Search (TS) are compared on the Quadratic 
Assignment Problem. A recent work on the same benchmark suite argued that SA could achieve a 
reasonable solution quality with fewer function evaluations than TS. The discussion is extended by 
showing that the conclusions must be changed if the task is hard or a very good approximation of 
the optimal solution is desired, or if CPU time is the relevant parameter. In addition, a recently 
proposed version of TS (the Reactive Tabu Search) solves the problem of finding the proper list size 
with an automatic memory-based reaction mechanism. 
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1. INTRODUCTION 

The competitive performance of “general-purpose” combinatorial optimization algorithms is still 
an open issue. In particular, [l] argues that randomized local search (also called “repeated local 
minima search” in the present work, or RLMS) provides better asymptotical results than the 
Simulated Annealing algorithm of [2]. On the other hand, by considering the experimental results 
of [3] on the Quadratic Assignment Problem, one observes that SA produces satisfactory results 
and uses less function evaluations than the Tabu Search technique used in [4]. Tabu Search 
schemes are designed to use memory during the search process and therefore to beat RLMS, 
see [5,6] for two seminal papers and [7] for a brief description of the general TS algorithm. 

Hence, we investigate into the matter in detail, particularly to find possible evidence of the 
poor asymptotic performance of SA on the cited QAP tasks (see Section 3 for a brief description 
of QAP). This work presents a general discussion about some fundamental differences between 
SA and TS (Section 2), the output of our numerical experiments in terms of function evaluations 
(Section 3), and the comparison of the actual CPU times on a specific workstation (Section 4). 

We are pleased to acknowledge fruitful discussions with F. Glover and the kind collaboration of J. Paulli for making 
available a digital copy of the QAP benchmark suite that he used and of S. Struthers for her courteous assistance. 
Some of the cited preprints are available by anonymous ftp at the archive volterra. science. unitn. it 
(130.186.34.16), see the README file for instructions. 
*Author to whom correspondence should be sent. 
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2. MARKOVIAN VERSUS MEMORY-BASED SEARCH 

In our opinion, the leitmotif of [3] that ‘<fast and cursory SA is better than thorough and slow 

TS” does not capture the main difference between SA (that moves after checking one neighbor) 

and TS (that moves after evaluating the entire neighborhood). In fact, there is no problem in 

designing “fast and cursory” versions of TS: for instance, a partial evaluation of the neighborhood 

was used in our previous work about training neural nets with the Reactive Tabu Search [8]. 

For that application, the choice of evaluating a small and randomly-extracted subset of the 

neighborhood reduced CPU times and maintained satisfactory performance. 

The “quantum leap” of TS is caused by its intense use of memory, and therefore of learning, 

during the search process. Some memory-based heuristics were already considered in the sixties 
(see the historical discussion about local search in [9]), but only recently the availability of cheap 

RAM components permits efficient search schemes based on intense memory usage, like the RTS 

algorithm of [lo]. 

On the contrary, SA is a Markov chain Monte Carlo method, and therefore, memoryless. 

By definition, the distribution of the random variable X(t + 1) in a Markov chain is mediated 

entirely by the value of X(t): the past history does not influence the current move. Recently, 

[l] demonstrated that the asymptotic performance of SA is worse than that of Repeated Local 

Minima Search (repeated generation of random starting points and greedy search of the nearest 

local minimum by exhaustive neighborhood evaluation). This result is not surprising: when the 

“temperature” parameter has been decreased so that it is much smaller than the height of the 

barrier around the current “attraction basin,” either the basin contains the global optimum, or 

SA will spend an enormous amount of time before escaping, and therefore, it will be surpassed 

even by the simple RLMS. The main problem is that SA will continue to jump up and down 

without noticing that the movement is confined. The “convergence theorems” of SA (for example 

with the logarithmic schedule Tt 0: Tl/ log(t)) are of dubious practical interest. Citing from [ll], 

“these results say that SA . . . retains enough traces of exhaustive search to guarantee asymptotic 

convergence, but if exhaustive search were a realistic option we would not be using SA anyway.” 

This does not mean that SA will not solve some relatively simple tasks (see also Section 3). 

The observation that “TS uses the same amount of information to perform one move as simu- 

lated annealing uses in N moves” [3], N being the neighborhood size of the QAP, is not accurate 

both because it is possible to apply a partial neighborhood evaluation to TS, and because the 

information obtained from N points in the neighborhood usually is smaller than the information 

obtained from N points on the search trajectory. For structured problems one expects that the 

function values of the neighboring points will be correlated with the current value: guessing a 

value in the neighborhood is easier than guessing an arbitrary value.’ In the QAP problem, 

one does indeed obtain less information per point in the neighborhood than for uncorrelated 

configurations, but one also needs fewer operations (if n is the QAP size, O(n’) operations are 

required for evaluating a single random point, while 0(n2) operations are sufficient for the entire 

neighborhood if efficient schemes are used, see for example [4,13]). In addition, when already- 

visited points are found again during the search, no new information is obtained. In fact, this is 

an underlying motivation for prohibiting moves that would revisit configurations in a version of 

Tabu Search. 

lA quantity that measures the average amount of information gained after observing the value of a stochastic 

variable z with probability density function p(z) is the entropy H = - s-‘,” p(x) logp(z) dx. Now, if the value 

of the zero-mean function f(t) along the search trajectory is modeled by an autoregressive process of order one: 
f(t) = cy f(t - 1) + Z(t), with 0 < a < 1 and Z(t) a zero-mean random variable, the variances are related by 

oz 2 zz 02 f (1 -c?). P t om s in the neighborhood will have a smaller spread than points on the trajectory, but 

a smaller spread means a smaller entropy (Hz = Hf - log(l/dm). Th e uncertainty, and therefore the 
information, for points on the trajectory is larger than that for points in the neighborhood. Autoregressive models 
for the QAP task are considered in [12]. 
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The statement that “the most difficult part of applying TS is finding the right list size” [3] 

is not appropriate anymore. In the RTS scheme of [lo] and [14], the list size is adapted in an 

automated way by reacting when configurations are repeated along the search trajectory. The 

term “Reactive Tabu Search” derives from this property. All solutions found during the search 

are stored and the discrete dynamical system that generates the search trajectory is regulated 

by the entire past history. The asymptotic space-time requirements can be reduced to one bit 

and a small number of CPU cycles per RTS iteration by using hashing strategies. The criterion 

for prohibiting moves is the same that was used in [4]: an exchange is prohibited if it places 

both units into locations that they had occupied within the last T iterations. The basic RTS 

reaction is that T increases if a configuration along the trajectory is repeated, and decreases if 

no repetitions occur in a suitable time interval. If a configuration is repeated more than once, a 

diversification phase based on a random walk is activated (“escape” mechanism). The following 

tests use the algorithm that is described and discussed in detail in [lo] (REPT = 2, CHAOS = 1, 

the memory is never cleaned during the search). 

3. COMPARING FUNCTION EVALUATIONS 

Let us briefly summarize the notation and the SA algorithm. The QAP problem dimension 

is n, the function to be minimized is: 

f$ : permutation of {1,2, . . . , n}. 

For a concrete application, n units must be assigned to n locations such that the sum of products 

distance x flow is minimized. The number of neighbors obtained by exchanging two arbitrary 

units is N = n(n - 1)/2, the number of function evaluations is M. 

The Simulated Annealing version used in [3] is considered for an extensive comparison on the 

same QAP tasks adopted here. Before the SA run is started, one selects N/4 random neighbors 

of the starting configuration and determines Amax and Amin, the maximal and minimal increase 

in the objective function value. The initial value of the temperature T is then set equal to Amin + 

0.1 (A,,, - Amin). During the run, T is decreased after each step by O.l(A,,, - Amin)/M, so 

that T equals Amin at the end of the search. 

The maximum problem dimension considered in [3] is 50, the maximum number of TS iterations 

is 1,600. For RTS, these values correspond to some seconds of CPU time on current workstations 

and it is doubtful that the results measure the potential of TS for solving ‘<hard” tasks. It was 

then decided to investigate what happens for a larger number of search steps. The number of 

allowed iterations was increased to 30,000 for RTS and 30,000 x N for SA. Some of the tasks 

considered in [3] are solved exactly in a much lower number of iterations. Both for this reason 

and for brevity, results are presented only for the most difficult tasks: nug30, proposed in [15], 

stei and ste3, proposed in [16], ran3 and ran6 proposed in [3]. 

Let us start from what appears to be the most difficult task in Paulli’s paper: ste3, the task 

proposed by Steinberg. Figure 1 reports the results obtained with RTS, RLMS, and SA. SA was 

used in a “fast” version (M = 1,600 x N), and in a “slow” version (M = 30,000 x N). Let 

us call these two options FAST-SA and SLOW-SA. The average deviations in percent from the 

best known solution, and the standard deviation (T of the performance distribution are reported. 

The optimal values found during our tests always coincide with those listed in [3]. Averages are 

over 100 runs with different random initial configurations; therefore, the statistical error on the 

average deviation is approximately a/10. The bottom plots in Figure 1 have the Y-axis resealed 

so that the details in the 3% range can be seen better. 

At M = 1600 x N function evaluations on our runs of SA gives: %Dev = 2.1, with 0 = 2.3, 

while RTS obtains: %Dev = 5.7, o = 3.3. The performance approximately duplicates that shown 

in [3], which considers the TS version of [4]. 
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Figure 1. Steinberg task ste3: RTS (first 50,000 iterations) versus SA and 
RLMS. Average deviation from best known solution with fcr bars (top), Y-axis 
resealed (bottom). 
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Figure 2. Evolution of average RTS results during the first 50,000 iterations 
(curves for different tasks). The SA performance at M/N = 1,600 is shown 
with thick points. 

But RTS easily overcomes FAST-SA: at 10,000 iterations RTS gives %Dev = 1.12, B = 

1.53, at 30,000 it gives %Dev = 0.15, ~7 = 0.46. For a fair comparison, SLOW-SA at M = 

30,000 x N obtains %Dev = 0.59, u = 0.97: the expected quality of the solution is about four 

times worse than that obtained by RTS, for the same number of function evaluations. The results 

are surprising if one compares the trajectory length: 18,900,OOO iterations in SLOW-SA (630 x 

30,000), only 30,000 in RTS. 

Let us note that the difference between RTS and RLMS is negligible up to 1,000 iterations, 

but it becomes substantial at large iteration numbers: at 30,000 iterations RLMS gives only 

%Dev = 1.7, o = 1.1. This competitive advantage is precisely what an intelligent use of memory 

is supposed to accomplish. RLMS tends to repeat previously found local minima with a higher 

frequency than RTS, which builds upon the diversification enforced by the prohibition period 

and by the “escape” mechanism. Some additional observations can be derived from Figure 1: 

l SA produces interesting configurations only in the very last moments of its life, when the 

“temperature” is small (i.e., when SA accepts almost only downward moves). 

l The “life span” of SA is crucial. If SA is too fast, one is left with a result that can be 

insufficient, but if SA is slow, one has to wait until the end of the search before obtaining 

good approximations of the global optimum. 

l On the contrary, the “life span” of RTS is not crucial. No parameters have to be chosen 

by the user for specific tasks: the search continues until either the maximum allowed time 

elapses or until an acceptable result is encountered. Naturally the best values obtained are 
recorded as soon as they are found and listed at the end of the search. 

How does one choose the proper number of search steps (and therefore, the “annealing sched- 
ule”) for SA? In the absence of specific prescriptions, one executes a trial-and-error process until 

the results are satisfactory. This can be easily done for simple tasks, but is difficult and time- 
consuming for large and complex tasks. 
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A conclusion of [3] was that “at the time TS catches up with SA the solution quality is usually 

within 0.5-l% of the best known solution.” Now, it can happen that requiring only about 99% 

of the global optimum simplifies some tasks that would otherwise be difficult. We find different 

results in tests on the Knapsack problem [14]: the number of instances out of 100 that are solved 

by SA at a given number of function evaluations remains substantially lower with respect to 

the number solved by RTS. SA was used with time-dependent penalty to take the constraints 

into account. For large Knapsack tasks (n = 500, with the same number of constraints), SA 

beats RTS during the first phase but consistently loses for large numbers of function evaluations, 

although different annealing schedules were tried. 

Table 1. Comparison of RTS versus SA at 30,000 x N function evaluations. Averages of 100 runs. 

Task Size Best sol. SA % Dev. (a) RTS % Dev. (a) 

nug30 30 6124 0.056 (0.11) 0.015 (0.03) 

stel 36 4763 0.35 (0.40) 0.42 (0.41) 

ste3 36 7926 0.59 (0.97) 0.15 (0.46) 

ran3 30 34574 0.025 (0.039) 0 (0) 

ran6 50 149358 0.08 (0.10) 0.25 (0.31) 

Table 1 lists the performance comparison for the most difficult tasks at 30,000 x N function 

evaluations. RTS obtains comparable or better solutions for all tasks apart from ran6, in which 

SA is still significantly better. The evolution of the average RTS performance as a function of 
the number of iterations is shown in Figure 2. 

4. COMPARING CPU TIMES 

End users of Combinatorial Optimization algorithms are interested in solving tasks with mini- 

mum time and effort. The total effort is difficult to evaluate, but certainly it includes contributions 

from setting parameters appropriately. In what follows, our consideration is limited to the CPU 

time and we answer to the following question: Which algorithm is expected to provide the best 

performance if the same CPU time is allotted? 

To fix a benchmark, the CPU time considered is that required by a run of SA for 1,600 x N 
iterations. If we are interested in the asymptotic behavior, SA requires O(n) cycles to com- 

pute a QAP function value on the trajectory, while RTS requires only O(1) cycles per point 

in the neighborhood. In fact, the entire neighborhood can be evaluated in 0(n2) time, see for 

example [ 131. 
The asymptotic CPU times measured on our workstation’ are approximated by: 

CPUt(SA) 7s 2~s t n, CPUt(RTS) M 4~s t n2, 

where t is the number of iterations, i.e., the length of the search trajectory. Starting from the 

above measurements, the number of RTS iterations corresponding to t(SA) = I., 600x N iterations 

is: 

= 400 (n - 1). 

In Table 2, the average results at equivalent CPU times are shown for the same tasks considered 

in Table 1. To facilitate the comparison, the SA performance derived from [3] is also listed. 
At equivalent CPU times, RTS provides significantly better results for all tasks. While the 

absolute time constants in the above formulas depend on the machine, language, and compiler, 
the different asymptotic dependence on n will probably remain, at least for general-purpose 

sequential processors. Let us note that the points in the neighborhood can be evaluated in 

%park station 10 mod. 41 from SUN Microsystems Inc., SunOS Release 4.1.3, GNU gee C compiler. 
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Table 2. Comparison of RTS versus SA at the same CPU time (corresponding to 1,600 x N SA 
iterations). Averages of 100 runs. 

parallel, if a parallel processor or a dedicated VLSI chip is used. In this case, the real time will be 
proportional to the number of RTS steps, and therefore, to M/N, while it is proportional to iM 
for SA. 

5. CONCLUSIONS 

It is not surprising that SA beats TS when a limited number of iterations are executed on 
relatively simple tasks. At the very beginning of the search SA “jumps around” in the search 
space with an almost random walk (if the initial “temperature” is not too small with respect 
to the typical function differences), and then converges in a stochastic way to the bottom of 
an attraction basin with a sufficiently large probability measure, while TS is busy evaluating 
neighboring points. But, if the final solution provided by SA is not acceptable, the user must 
start again, usually with a slower annealing schedule, until the run produces acceptable results. 
No such tuning is required by RTS, which uses all information acquired during an optimization 
run to diversify the search in an automatic way. For the tasks considered, RTS needs less CPU 
time than SA to reach average results in the 1% area. 

This paper argued that a fast evaluation of the neighborhood can be executed also in the Tabu 
Search framework [8] and that the main difference is given by the intense memory usage of TS 
during the search trajectory generation. It is far from our intention to claim that SA is not 
appropriate as an optimization algorithm, although other competitors do exist for simple tasks, 
like RLMS or stochastic versions of it. What this paper claims is that the small overhead caused 
by the efficient memory usage and adaptation mechanisms of RTS is, in some cases, repaid by 
avoiding possible “traps” in the search process, such as attraction basins with large probability 
measure but severely suboptimal function values. 
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