
Pergamon
Computers Math. Applic. Vol. 28, No. 6, pp. 1-8, 1994

Copyright@1994 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

089%1221(94)00147-2

Simulated Annealing and Tabu Search in the
Long Run: A Comparison on QAP Tasks

R. BATTITI*

0898-1221/94 $7.00 + 0.00

Dipartimento di Matematica, Universita di Trento and INFN
Via Sommarive, 38050 Povo (Trento), Italy

battitiQscience.unitn.it

G. TECCHIOLLI
Istituto per la Ricerca Scientifica e Tecnologica and INFN

Via Sommarive, 38050 Povo (Trento), Italy
tecQirst.it

(Received and accepted March 1994)

Abstract-Simulated Annealing (SA) and Tabu Search (TS) are compared on the Quadratic
Assignment Problem. A recent work on the same benchmark suite argued that SA could achieve a
reasonable solution quality with fewer function evaluations than TS. The discussion is extended by
showing that the conclusions must be changed if the task is hard or a very good approximation of
the optimal solution is desired, or if CPU time is the relevant parameter. In addition, a recently
proposed version of TS (the Reactive Tabu Search) solves the problem of finding the proper list size
with an automatic memory-based reaction mechanism.

Keywords-Combinatorial optimization, Heuristic search, Tabu search, Simulated annealing,

Quadratic assignment problem.

1. INTRODUCTION

The competitive performance of “general-purpose” combinatorial optimization algorithms is still
an open issue. In particular, [l] argues that randomized local search (also called “repeated local
minima search” in the present work, or RLMS) provides better asymptotical results than the
Simulated Annealing algorithm of [2]. On the other hand, by considering the experimental results
of [3] on the Quadratic Assignment Problem, one observes that SA produces satisfactory results
and uses less function evaluations than the Tabu Search technique used in [4]. Tabu Search
schemes are designed to use memory during the search process and therefore to beat RLMS,
see [5,6] for two seminal papers and [7] for a brief description of the general TS algorithm.

Hence, we investigate into the matter in detail, particularly to find possible evidence of the
poor asymptotic performance of SA on the cited QAP tasks (see Section 3 for a brief description
of QAP). This work presents a general discussion about some fundamental differences between
SA and TS (Section 2), the output of our numerical experiments in terms of function evaluations
(Section 3), and the comparison of the actual CPU times on a specific workstation (Section 4).

We are pleased to acknowledge fruitful discussions with F. Glover and the kind collaboration of J. Paulli for making
available a digital copy of the QAP benchmark suite that he used and of S. Struthers for her courteous assistance.
Some of the cited preprints are available by anonymous ftp at the archive volterra. science. unitn. it
(130.186.34.16), see the README file for instructions.
*Author to whom correspondence should be sent.

1

2 R. BATTITI AND G. TECCHIOLLI

2. MARKOVIAN VERSUS MEMORY-BASED SEARCH

In our opinion, the leitmotif of [3] that ‘<fast and cursory SA is better than thorough and slow

TS” does not capture the main difference between SA (that moves after checking one neighbor)

and TS (that moves after evaluating the entire neighborhood). In fact, there is no problem in

designing “fast and cursory” versions of TS: for instance, a partial evaluation of the neighborhood

was used in our previous work about training neural nets with the Reactive Tabu Search [8].

For that application, the choice of evaluating a small and randomly-extracted subset of the

neighborhood reduced CPU times and maintained satisfactory performance.

The “quantum leap” of TS is caused by its intense use of memory, and therefore of learning,

during the search process. Some memory-based heuristics were already considered in the sixties
(see the historical discussion about local search in [9]), but only recently the availability of cheap

RAM components permits efficient search schemes based on intense memory usage, like the RTS

algorithm of [lo].

On the contrary, SA is a Markov chain Monte Carlo method, and therefore, memoryless.

By definition, the distribution of the random variable X(t + 1) in a Markov chain is mediated

entirely by the value of X(t): the past history does not influence the current move. Recently,

[l] demonstrated that the asymptotic performance of SA is worse than that of Repeated Local

Minima Search (repeated generation of random starting points and greedy search of the nearest

local minimum by exhaustive neighborhood evaluation). This result is not surprising: when the

“temperature” parameter has been decreased so that it is much smaller than the height of the

barrier around the current “attraction basin,” either the basin contains the global optimum, or

SA will spend an enormous amount of time before escaping, and therefore, it will be surpassed

even by the simple RLMS. The main problem is that SA will continue to jump up and down

without noticing that the movement is confined. The “convergence theorems” of SA (for example

with the logarithmic schedule Tt 0: Tl/ log(t)) are of dubious practical interest. Citing from [ll],

“these results say that SA . . . retains enough traces of exhaustive search to guarantee asymptotic

convergence, but if exhaustive search were a realistic option we would not be using SA anyway.”

This does not mean that SA will not solve some relatively simple tasks (see also Section 3).

The observation that “TS uses the same amount of information to perform one move as simu-

lated annealing uses in N moves” [3], N being the neighborhood size of the QAP, is not accurate

both because it is possible to apply a partial neighborhood evaluation to TS, and because the

information obtained from N points in the neighborhood usually is smaller than the information

obtained from N points on the search trajectory. For structured problems one expects that the

function values of the neighboring points will be correlated with the current value: guessing a

value in the neighborhood is easier than guessing an arbitrary value.’ In the QAP problem,

one does indeed obtain less information per point in the neighborhood than for uncorrelated

configurations, but one also needs fewer operations (if n is the QAP size, O(n’) operations are

required for evaluating a single random point, while 0(n2) operations are sufficient for the entire

neighborhood if efficient schemes are used, see for example [4,13]). In addition, when already-

visited points are found again during the search, no new information is obtained. In fact, this is

an underlying motivation for prohibiting moves that would revisit configurations in a version of

Tabu Search.

lA quantity that measures the average amount of information gained after observing the value of a stochastic

variable z with probability density function p(z) is the entropy H = - s-‘,” p(x) logp(z) dx. Now, if the value

of the zero-mean function f(t) along the search trajectory is modeled by an autoregressive process of order one:
f(t) = cy f(t - 1) + Z(t), with 0 < a < 1 and Z(t) a zero-mean random variable, the variances are related by

oz 2 zz 02 f (1 -c?). P t om s in the neighborhood will have a smaller spread than points on the trajectory, but

a smaller spread means a smaller entropy (Hz = Hf - log(l/dm). Th e uncertainty, and therefore the
information, for points on the trajectory is larger than that for points in the neighborhood. Autoregressive models
for the QAP task are considered in [12].

SA and TS in the Long Run 3

The statement that “the most difficult part of applying TS is finding the right list size” [3]

is not appropriate anymore. In the RTS scheme of [lo] and [14], the list size is adapted in an

automated way by reacting when configurations are repeated along the search trajectory. The

term “Reactive Tabu Search” derives from this property. All solutions found during the search

are stored and the discrete dynamical system that generates the search trajectory is regulated

by the entire past history. The asymptotic space-time requirements can be reduced to one bit

and a small number of CPU cycles per RTS iteration by using hashing strategies. The criterion

for prohibiting moves is the same that was used in [4]: an exchange is prohibited if it places

both units into locations that they had occupied within the last T iterations. The basic RTS

reaction is that T increases if a configuration along the trajectory is repeated, and decreases if

no repetitions occur in a suitable time interval. If a configuration is repeated more than once, a

diversification phase based on a random walk is activated (“escape” mechanism). The following

tests use the algorithm that is described and discussed in detail in [lo] (REPT = 2, CHAOS = 1,

the memory is never cleaned during the search).

3. COMPARING FUNCTION EVALUATIONS

Let us briefly summarize the notation and the SA algorithm. The QAP problem dimension

is n, the function to be minimized is:

f$: permutation of {1,2, . . . , n}.

For a concrete application, n units must be assigned to n locations such that the sum of products

distance x flow is minimized. The number of neighbors obtained by exchanging two arbitrary

units is N = n(n - 1)/2, the number of function evaluations is M.

The Simulated Annealing version used in [3] is considered for an extensive comparison on the

same QAP tasks adopted here. Before the SA run is started, one selects N/4 random neighbors

of the starting configuration and determines Amax and Amin, the maximal and minimal increase

in the objective function value. The initial value of the temperature T is then set equal to Amin +

0.1 (A,,, - Amin). During the run, T is decreased after each step by O.l(A,,, - Amin)/M, so

that T equals Amin at the end of the search.

The maximum problem dimension considered in [3] is 50, the maximum number of TS iterations

is 1,600. For RTS, these values correspond to some seconds of CPU time on current workstations

and it is doubtful that the results measure the potential of TS for solving ‘<hard” tasks. It was

then decided to investigate what happens for a larger number of search steps. The number of

allowed iterations was increased to 30,000 for RTS and 30,000 x N for SA. Some of the tasks

considered in [3] are solved exactly in a much lower number of iterations. Both for this reason

and for brevity, results are presented only for the most difficult tasks: nug30, proposed in [15],

stei and ste3, proposed in [16], ran3 and ran6 proposed in [3].

Let us start from what appears to be the most difficult task in Paulli’s paper: ste3, the task

proposed by Steinberg. Figure 1 reports the results obtained with RTS, RLMS, and SA. SA was

used in a “fast” version (M = 1,600 x N), and in a “slow” version (M = 30,000 x N). Let

us call these two options FAST-SA and SLOW-SA. The average deviations in percent from the

best known solution, and the standard deviation (T of the performance distribution are reported.

The optimal values found during our tests always coincide with those listed in [3]. Averages are

over 100 runs with different random initial configurations; therefore, the statistical error on the

average deviation is approximately a/10. The bottom plots in Figure 1 have the Y-axis resealed

so that the details in the 3% range can be seen better.

At M = 1600 x N function evaluations on our runs of SA gives: %Dev = 2.1, with 0 = 2.3,

while RTS obtains: %Dev = 5.7, o = 3.3. The performance approximately duplicates that shown

in [3], which considers the TS version of [4].

R. BATTITI AND G. TECCHIOLLI

80

FAST-SA -

SLOW-SA . ..w.--

2.5

1000 10000
M/N, (function evaluations)/(neighborhood size)

Figure 1. Steinberg task ste3: RTS (first 50,000 iterations) versus SA and
RLMS. Average deviation from best known solution with fcr bars (top), Y-axis
resealed (bottom).

SA and TS in the Long Run 5

3

2.5

2

5
‘S
S

4 lm5

1

0.5

0

; ii
i i.
j j:

; j
; . i! c...

: i:

100 1000 10000
M/N, (function evaluations)/(neighborhood size)

Figure 2. Evolution of average RTS results during the first 50,000 iterations
(curves for different tasks). The SA performance at M/N = 1,600 is shown
with thick points.

But RTS easily overcomes FAST-SA: at 10,000 iterations RTS gives %Dev = 1.12, B =

1.53, at 30,000 it gives %Dev = 0.15, ~7 = 0.46. For a fair comparison, SLOW-SA at M =

30,000 x N obtains %Dev = 0.59, u = 0.97: the expected quality of the solution is about four

times worse than that obtained by RTS, for the same number of function evaluations. The results

are surprising if one compares the trajectory length: 18,900,OOO iterations in SLOW-SA (630 x

30,000), only 30,000 in RTS.

Let us note that the difference between RTS and RLMS is negligible up to 1,000 iterations,

but it becomes substantial at large iteration numbers: at 30,000 iterations RLMS gives only

%Dev = 1.7, o = 1.1. This competitive advantage is precisely what an intelligent use of memory

is supposed to accomplish. RLMS tends to repeat previously found local minima with a higher

frequency than RTS, which builds upon the diversification enforced by the prohibition period

and by the “escape” mechanism. Some additional observations can be derived from Figure 1:

l SA produces interesting configurations only in the very last moments of its life, when the

“temperature” is small (i.e., when SA accepts almost only downward moves).

l The “life span” of SA is crucial. If SA is too fast, one is left with a result that can be

insufficient, but if SA is slow, one has to wait until the end of the search before obtaining

good approximations of the global optimum.

l On the contrary, the “life span” of RTS is not crucial. No parameters have to be chosen

by the user for specific tasks: the search continues until either the maximum allowed time

elapses or until an acceptable result is encountered. Naturally the best values obtained are
recorded as soon as they are found and listed at the end of the search.

How does one choose the proper number of search steps (and therefore, the “annealing sched-
ule”) for SA? In the absence of specific prescriptions, one executes a trial-and-error process until

the results are satisfactory. This can be easily done for simple tasks, but is difficult and time-
consuming for large and complex tasks.

6 R. BATTITI AND G. TECCHIOLLI

A conclusion of [3] was that “at the time TS catches up with SA the solution quality is usually

within 0.5-l% of the best known solution.” Now, it can happen that requiring only about 99%

of the global optimum simplifies some tasks that would otherwise be difficult. We find different

results in tests on the Knapsack problem [14]: the number of instances out of 100 that are solved

by SA at a given number of function evaluations remains substantially lower with respect to

the number solved by RTS. SA was used with time-dependent penalty to take the constraints

into account. For large Knapsack tasks (n = 500, with the same number of constraints), SA

beats RTS during the first phase but consistently loses for large numbers of function evaluations,

although different annealing schedules were tried.

Table 1. Comparison of RTS versus SA at 30,000 x N function evaluations. Averages of 100 runs.

Task Size Best sol. SA % Dev. (a) RTS % Dev. (a)

nug30 30 6124 0.056 (0.11) 0.015 (0.03)

stel 36 4763 0.35 (0.40) 0.42 (0.41)

ste3 36 7926 0.59 (0.97) 0.15 (0.46)

ran3 30 34574 0.025 (0.039) 0 (0)

ran6 50 149358 0.08 (0.10) 0.25 (0.31)

Table 1 lists the performance comparison for the most difficult tasks at 30,000 x N function

evaluations. RTS obtains comparable or better solutions for all tasks apart from ran6, in which

SA is still significantly better. The evolution of the average RTS performance as a function of
the number of iterations is shown in Figure 2.

4. COMPARING CPU TIMES

End users of Combinatorial Optimization algorithms are interested in solving tasks with mini-

mum time and effort. The total effort is difficult to evaluate, but certainly it includes contributions

from setting parameters appropriately. In what follows, our consideration is limited to the CPU

time and we answer to the following question: Which algorithm is expected to provide the best

performance if the same CPU time is allotted?

To fix a benchmark, the CPU time considered is that required by a run of SA for 1,600 x N
iterations. If we are interested in the asymptotic behavior, SA requires O(n) cycles to com-

pute a QAP function value on the trajectory, while RTS requires only O(1) cycles per point

in the neighborhood. In fact, the entire neighborhood can be evaluated in 0(n2) time, see for

example [131.
The asymptotic CPU times measured on our workstation’ are approximated by:

CPUt(SA) 7s 2~s t n, CPUt(RTS) M 4~s t n2,

where t is the number of iterations, i.e., the length of the search trajectory. Starting from the

above measurements, the number of RTS iterations corresponding to t(SA) = I., 600x N iterations

is:

= 400 (n - 1).

In Table 2, the average results at equivalent CPU times are shown for the same tasks considered

in Table 1. To facilitate the comparison, the SA performance derived from [3] is also listed.
At equivalent CPU times, RTS provides significantly better results for all tasks. While the

absolute time constants in the above formulas depend on the machine, language, and compiler,
the different asymptotic dependence on n will probably remain, at least for general-purpose

sequential processors. Let us note that the points in the neighborhood can be evaluated in

%park station 10 mod. 41 from SUN Microsystems Inc., SunOS Release 4.1.3, GNU gee C compiler.

SA and TS in the Long Run

Table 2. Comparison of RTS versus SA at the same CPU time (corresponding to 1,600 x N SA
iterations). Averages of 100 runs.

parallel, if a parallel processor or a dedicated VLSI chip is used. In this case, the real time will be
proportional to the number of RTS steps, and therefore, to M/N, while it is proportional to iM
for SA.

5. CONCLUSIONS

It is not surprising that SA beats TS when a limited number of iterations are executed on
relatively simple tasks. At the very beginning of the search SA “jumps around” in the search
space with an almost random walk (if the initial “temperature” is not too small with respect
to the typical function differences), and then converges in a stochastic way to the bottom of
an attraction basin with a sufficiently large probability measure, while TS is busy evaluating
neighboring points. But, if the final solution provided by SA is not acceptable, the user must
start again, usually with a slower annealing schedule, until the run produces acceptable results.
No such tuning is required by RTS, which uses all information acquired during an optimization
run to diversify the search in an automatic way. For the tasks considered, RTS needs less CPU
time than SA to reach average results in the 1% area.

This paper argued that a fast evaluation of the neighborhood can be executed also in the Tabu
Search framework [8] and that the main difference is given by the intense memory usage of TS
during the search trajectory generation. It is far from our intention to claim that SA is not
appropriate as an optimization algorithm, although other competitors do exist for simple tasks,
like RLMS or stochastic versions of it. What this paper claims is that the small overhead caused
by the efficient memory usage and adaptation mechanisms of RTS is, in some cases, repaid by
avoiding possible “traps” in the search process, such as attraction basins with large probability
measure but severely suboptimal function values.

1.

2.

3.
4.

5.
6.
7.

8.

9.

10.

11.

REFERENCES

A.G. Ferreira and J. Zerovnik, Bounding the probability of success of stochastic methods for global optimiza-
tion, Computers Math. Applic. 25, 1-8 (1993).
S. Kirkpatrick, C.D. Gelatt, Jr. and M.P. Vecchi, Optimization by simulated annealing, Science 220, 671-680
(May 1983).
J. Paulli, Information utilization in simulated annealing and Tabu search, COAL Bulletin 22, 28-34 (1993).
E. Taillard, Robust Tabu search for the quadratic assignment problem, Parallel Computing 1’7, 443-455
(1991).
F. Glover, Tabu search-Part I, ORSA Jounzal on Computing 1, 190-206 (1989).
F. Glover, Tabu search-Part II, ORSA Journal on Computing 2, 4-32 (1990).
N. Dubois and D. de Werra, EPCOT: An efficient procedure for coloring optimally with Tabu search, Com-
puters Math. Applic. 25 (lO/ll), 35-46 (1993).
R. Battiti and G. Tecchiolli, Training neural nets with the reactive Tabu search, Technical Report UTM 421,
Univ. of Trento, Italy, (November 1993).
C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization, Prentice-Hall, Englewood Cliffs, NJ,
(1982).
R. Battiti and G. Tecchiolli, The reactive Tabu search, Technical Report 9302-13, IRTS, Trento, Italy, (1992);
ORSA Journal on Computing (to appear).
R.M. Neal, Probabilistic inference using Markov chain Monte Carlo methods, Technical Report
CRG-TR-93-1, Univ. of Toronto, (September 1993).

8 R. BATTITI AND G. TECCHIOLLI

12. FL Battiti and G. Tecchiolli, Parallel biased search for combinatorial optimization: Genetic algorithms and
TABU, Microprocessors and Microsystems 16, 351-367 (1992).

13. A.M. Frieze, J. Ysdegar, S. El-Horbaty and D. Parkinson, Algorithms for assignment problems on an array
processor, Parallel Computing 11, 151-162 (1989).

14. R. Battiti and G. Tecchiolli, Local search with memory: Benchmarking RTS, Technical Report, Math. Dept.,
Univ. of Trento, Italy, (October 1993).

15. C.E. Nugent, T.E. Vollmann and J. Ruml, An experimental comparison of techniques for the assignment of
facilities to locations, Jotmnaf of Operations Research 16, 15Cb173 (1968).

16. L. Steinberg, The backboard wiring problem: A placement algorithm, SIAM Review 3, 37-50 (1960).

