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Correlated basis function perturbation theory with state-dependent correlations is used to calculate the nuclear photoabsorp- 
tion enhancement factor K in the electric dipole sum rule for some realistic models of nuclear matter. The contribution due to 
2p-2h admixtures in the ground state wave function turns out to be only a few percent of the unperturbed value. The values 
obtained for K are about 1.8 at experimental equilibrium density and increase almost linearly with density. We also give 
estimates of K for finite nuclei, obtained within the local density approximation framework. The surface effects give a 
contribution which is - 20% of the volume term. 

Recently, microscopic calculations of  the enhancement factor K in the electric dipole sum rule, given by  [1 ] 

K = (A/NZ)(m/h2)(OI [Dz, [V, Oz] ] 10), (1) 

have been performed [2] for some realistic models o f  nuclear matter. In the above equation 10) is the ground 
1 state o f  the non-relativistic hamiltonian having V as nuclear potential and D z = ~Ei= 1 ,A rizZi is the z component 

of  the electric dipole operator, with riz being the third component o f  the isospin opertor for the ith nucleon. The 
theoretical estimates [2] o f  K do not depend very much on the realistic interaction adopted, and are more than a 
factor o f  two larger than the experimental value [3], Kex p = 0.76 + 0.10, obtained from the integrated p h o t o -  
nuclear cross sections up to  the rr-meson production threshold. It is important to know how much of  this discre- 
pancy is due to effects not explicitly taken into account in the Bethe-Levinger sum rule, like tail corrections o f  
the integrated cross section, higher multipoles and dipole retardation effects, and how much is due to the in- 
adequacy of  the variational wave function used in the calculation. 

In this letter we present the results obtained for K when the variational ground state is corrected by  adding 
2p2h correlated basis functions (CBF) components to it. The 2p2h admixtures are calculated by  using second 
order CBF perturbation theory [4--6]. The CBF states are normalized but not orthogonal, and are given by 

[koi) = F[ (bi)/(cb i [F+Fltbi )1 /2 ,  (2) 

where I(I)i) are Fermi gas states and F = S Hi</= 1 ,AF/], wi th  S being the symmetrizer and Fi /a  two-particle correla- 
tion operator. In our calculations Fi/contains central, tensor and spin-orbi t  components and is determined varia- 
tionally, by  minimizing the expectation value o f  the hamlltonian in the state IxI, o ). The correlation operator F 
formally defines the unperturbed hamiltonian H 0 of  CBF perturbation theory [4], which is given by  

Ho,i/= ~i/(xI~i IHIxPi)/(~il~i ) . (3) 

The consequent perturbation series based upon the states Iq~i ) has been proved [6] to have the linked cluster 
property. 

l On leave of absence from the Physics Department of the University of Ioannina, loannina, Greece. 
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Recent analyses on the optical potential [6] and the momentum distribution [7] of  a nucleon in nuclear mat- 
ter have shown that the correlation operator F does not realistically represent the correlations of  particles close 
to the Fermi surface. In fact, second order CBF perturbation theory leads to corrections which are quite substan- 
tial for the effective mass rn* and the mojnentum distribution at k ~ k F . For an independent particle hamiltonian 
the enhancement factor K is given by K = m/m*(kF) -- 1. For an unperturbed CBF hamiltonian of the type given 
in eq. (3), if only the l p l h  CBF states are included in the summed oscillator strength, one gets [8] 1 + K = 
m/m*(kF) [1 + X(kF) ] 2, where X(kF) is directly related to the dynamical correlation. This structural property 
suggests that 2p2h state admixtures in the ground state might be important in the evaluation of K. In this ap- 
proximation, second order CBF perturbation theory provides for 102) the following unnormalized wave function 

a(hl ,  h2, Pl ,  P2)l~Ohl h2 pl p2 ) ,  (4) 102)= ]~0)+ ~ hl ,h2,Pl ,P2 

where both Iq~0) and I~ha h2p 1 p2 ) are normalized and 

a(hl ,  h2, Pl,  P2) = <q~ht h2p~ P2 IH - HoolxI, O)/[eV(hl) + eV(h2) - eV(pl) - eV(p2) ] . (5) 

H00 is the variational ground state energy given by (*0 [/-/1"0)/(#0 Iq~o )I/2 and eV(k) are the variational single 
particle energies [9], which satisfy the relation eV(p) - eV(h) = (*hp lHl~hp)/(#hp I~I'hp). Retaining up to the 
quadratic terms in o~, one gets the following correction to the variational KV: s 

6K = 6K 1 + 6K 2 , (6) 

where 

6K1 =(m/li2A) ~ (~0 IDC "DC001~hl h2 p, p2)°~hl , h2, Pl, P2) + c.c., (7) 
hi ,h2 ,P 1 ,P2 

and the second order 6K 2 is approximated by neglecting the non-diagonal matrix elements, with the result 

6K2~(m/h2A) ~ (qthlh2plp2lDC-DCool~hlh2ptp2)Ot2(hl,h2, Pl,P2 ) . (8) 
hi ,h2 ,Pl ,P2 

The above approximation is justified by the fact that the calculated 6K 2 is an order of  magnitude smaller than 6K 1 
The double commutator DC = [Dz, [ V, Dz] ] is given by the sum of the two-body operator DC 2 and the three- 

body operator DC3, which correspond to the two-nucleon and three-nucleon parts of the interaction considered. 
DCo0 is the expectation value of the operator DC for the wave function J~o0). The presence of DC00 in eqs. (7) 
and (8), as well as the prescence of rio0 in eq. (5), guarantees the linked cluster property of the corresponding 
matrix element, so that it is of order 1 ],4 and the matrix elements of DC-DC O0 appearing in eqs. (7) and (8) are 
of the order of  1]A and unity respectively. The cluster expansion of the non-diagonal matrix elements of D C -  
DC00 is very similar to that [5,7] o f H  - H00, and the procedure to calculate its cluster terms is the same as that 
discussed in ref. [7]. Similarly, the cluster expansion of the diagonal matrix elements ofDC - DCo0 in eq. (8) is 
analogous to that [5,6,9] of 

(~ht h2 p x P2 [/-/- H00 I~Pht h2 p i P 2 ) = eV(pm ) + eV(p2) -- eV(hx ) - eV(h2 ) + O(1/A), 

and leads to the result 

(*hi  h2Pl P2 [DC - DC001~ hi h2 Pl P2 ) = d(Pa) + d(P2) - d(hl)  - d(h2) + O(1/A), (9) 

where the function d(k) can be easily calculated by  tollowing the procedure devised in ref. [9] to compute the 
single particle energies ev(k ). 

Diagonal matrix elements have been calculated within the FHNC]SOC approximation [2,9 ], whereas only the 
two-body (TB) and the three-body separable (TBS) cluster diagrams have been retained in the evaluation of  the 
non-diagonal matrix elements of the hamiltonian [6] which are necessary to compute the coefficients a(h 1 , h2, 
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Pl, P2) given in eq. (5). The non-diagonal matrix elements of the double commutator operator have been com- 
puted at the lowest order of  the cluster expansion, namely 

(xI'0 IDC - DC001~hl h2Pl p 2  ) ~-, ~A(A - 1)(cb0 IF 12W(12)F12lq~h, h 2 P l  p 2  ) , (10) 

where W is defined [2] b y D C  2 = 2~i<]= 1 ,A W(i]). Some of the approximations used in the present calculation 
might be too crude. Terms, like (Xlth'  I" h'_v~_. ~! v" ~DC - DCo0 [~ha . . . . . .  h~  vl~ ,  )a*(h'l h '2  P'l P'2 )a(h 1 h 2 Pl P 2 ), as well as the 
neglected many body cluster contributions may play some role [6], and we do not expect an accuracy better 
than 15% in the evaluation of 6K. 

Most of our calculations have been done for the model interaction Urbana-v 14 + TNI(V) [10,11 ]. Urbana- 
°l 4 is a realistic two-body interaction [10], which reproduces the deuteron properties and the NN scattering 
data for Ela b up to 400 MeV and is given by a sum of 14 operator components (central, tensor, spin-orbit ,  L 2 
and quadratic spin-orbit).  TNI(V) is the semi-phenomenological model V of ref. [11] for the three-nucleon in- 
teraction and gives reasonable results for light nuclei and nuclear matter. TNI is explicitly included in the calcu- 
lation of the diagonal matrix elements [2], whereas in the evaluation of the non-diagonal ones it is not. The ef- 
fect of TNI in the single particle energies is "-'5%, hence the above approximation should lie within the accuracy 
of the present calculation. Table 1 gives the results obtained for 5K 1 , 8K 2 and 8K for the Urbana-vl4 + TNI(V) 
model at k F = 1.33 fm-1  for several values of  the healing distance d t of  the tensor correlation. The other varia- 
tional parameters of the pair correlation opertor F(i/) have been kept tLxed at their "optimal" values as given in 
ref. [2]. The table displays also the second-order corrections to the energy [6], given by  

[(~I'01/-/- H00l~hl  h2 Px P2 )[2/[eV(hl) + eV(h2) _ eV(pl) _ eV(p2)] , (11) 6E = (1/4A) hi ,h2 ,Pl ,P2 

and the quantity rB, defined by 

K B = (1/2A) ~ I(~0[H _ H001~hlh2pll~)12/[eV(hl) + eV(h2) _ eV(pl) _ eV(p2)] 2 
hi ,h2 ,Pl ,P2 

(12) 

which provides an unbiased measure of  the magnitude of a(h 1 , h 2, Pl,  P2) and measures the additional deple- 
tion of the Fermi sea due to 2p2h CBF state admixtures in the ground state [7]. The last two columns of the 
table give the second-order corrections to the energy and to the enhancement factor, when only the first four 
central components are retained in b o t h H -  H00 and D C -  DCo0. 

The "optimal" value dtp of  the parameter d t for CBF perturbation theory is considered to be the one for 
which r B is minimum. Generally, 8E is also minimum at d t = dtp; dtp does not necessarily coincide with the 
"optimal" variational value dry ofd t ,  since low-lying states do not contribute much to Hoo [6]. For the case dis- 
played in the table, dtv = 3.2r 0 and dtp = 3.17r 0. For the RSC [12,2] model, in its v 12 reduction, at k F = 1.33 
f m -  1 we get dtp = 3.44/" 0 and dtv = 2.89r 0. The suppression of the tensor components in H - H00 and DC - 
DCo0 largely reduces the perturbative corrections, expecially for DC - DC 00, indicating that most of  the long 

Table 1 
Break-up of the second order perturbative corrections to the energy and to the enhancement factor for the Urbana-v 14 ÷ TNI(V) 
m o d e l  of nuclear matter at k F = 1.3 3 f m  -1 for  several values of the tensor healing distance d t in uni t s  o f  r0 = (3/4~rp) 1 /3 .  The en- 
ergies are in M e V .  

dt]ro xB ~E 6K1 6K2 6K 6Ep<4 6Kp~4 

2.8 0.036 -2.20 0.26 -0.023 0.24 -1.63 0.05 
3.2  0 . 0 2 6  - 1 .96  -0.04 -0.014 -0.06 -0,43 0 . 0 4  
3.6 0.040 -3.50 -0.42 -0.015 -0.44 -2.97 -0.003 
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Fig. 1. Binding energy and enhancement factor of  nuclear 
matter in 0th and 2nd order o f  CBF perturbation theory as 
a function of tit at kF = 1.33 fm -t . The arrows indicate the 
value d t = dtp at which rB is minimum. 
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Fig. 2. Enhancement factor for nuclear matter as a function 
of the density p in units of Po = 2k~/3r¢2. The dashed lines 
give the variational estimates of refs. [2,8] with (Kv) or 

(K~J))'' state dependent correlations. The solid line without 
gives the second order CBF evaluation of  K. The open and 
full squares correspond to the variational and 2rid order esti- 
mates of K for the RSC model.  

range correlations perturbatively introduced in Ix#0)by the 2p2h admixtures are induced by the tensor inter. 
action. This implies also that d t is a critical parameter for the perturbative corrections to K. 

The results for the energy and for the enhancement factor are summarized in fig. 1. The zeroth order esti- 
mates H00 and K00 = (4/A)(m/h2)DCo0 are compared with the "fully corrected" values E (2) =/-/no + 6E and 
K (2) = K00 + ~K and the "partially corrected" values E(2)4= H00 + 6EP <4 and K(2) 4 = K00 + 6 / fp<4 The 

2 P P " 
rather strong dependence of  K(  ) on d t shows that 18K I overestimates tK - Kool especially when this quantity 
is large. 

The dependence o f  the enhancement factor on the density is shown in fig. 2, where the variational estimates * 1 
K v of  ref. [2] are also reported. The curve labeled with K~)  corresponds to the results obtained [8] for K v when 
only the scalar component (p - 1) is retained in the pair correlation operator. The zeroth order estimates K 00 
(dt = dtp ) almost coincide with K v at all the density values considered. The results obtained for the enhancement 
factor including the perturbative corrections are shown by the curve labeled K (2), and they are given by K00(dtp) 
+ ~K(dtp ) for each value o f  the density. The substantial difference between K ~ )  and K v stresses the importance 
of  the state dependent correlations, and primarily of  the tensor correlation [2 ,8 ,13-15]  in photonuclear reac- 
tions. The perturbative corrections ~K(dtp ) never exceed a 5% of  the corresponding K v ~ K00 , hence it is likely 

,1  An accurate minimization shows that the optimal values of  dry are slightly lower than those given in ref. [11] and used in reL 
[2] also. For instance dtv(k F = 1.13) = 2.86ro,  dtv(k F = 1.33) = 3.02ro and dtv(kF = 1.53) = 3.20ro. 
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that the present calculation of the enhancement factor in nuclear matter is fairly accurate. 
In the case of RSC model the perturbative corrections to K V are larger than for the Urbana model. At k F = 

1.33 f m -  1 we get the result 6K = 0.3, which is a 20% correction to the variational estimate. The corrected value 
K00(3.44r0) + 6K(3.44r0) = 1.81 almost coincides with the corresponding result obtained for the Urbana-o 14 
+ TNI(V) model. However the TNI accounts for about 10% of the total contribution to K, hence the RSC poten- 
tial gives an enhancement factor which is larger than the one provided by the Urbana-o 14 potential, in accord 
with the fact that the RSC potential has a larger D-state percentage [16]. 

The enhancement factor increases almost linearly with density, hence we expect that surface effects will re- 
duce the nuclear matter K. We estimated these effects by  employing the local density approximation (LDA) [17]. 
We have used the prescription Pay = p(R) with R = ~-(r 1 + r2) in the calculation of (DC 2) and R = ~(r 1 + r 2 + r 3) 
in evaluating (DC3). The corresponding expression for K is given by 

K = (13) 

where 
+1 

D"C2(rl 2' R) = [DC2(R 12)/2p(R)] f dlcos 0R[ P(rl) p(r2) , 
-1 

(14) 

DC3(rl 2, rl  3, r23, R) = [DC3(r 12, rl 3, r23)/87r202(R)] fd~2R d¢l 3 P(rl) P(r2) P(r3),  (15) 

where the integrations are done by taking r 12 as the z-axis. In eq. (13) the expectation value is calculated for 
symmetrical nuclear matter, which means that we assume K to be strictly independent on the symmetry param- 
eter [3 = (N - Z)/A. We have taken for p(r) the charge density distribution of ref. [18] normalized so as to be the 
particle density. We found very little dependence on the different types of  model parametrization given in ref. 
[18]. The results obtained are displayed by the solid line of fig. 3 and they are very well fitted by the "mass 
formula" K**- 2.3A -1/3  where the nuclear matter enhancement factor K** = 1.74 represents the volume term. 
The experimental data reported on the figure correspond to 
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Fig. 3. Enhancement factor for finite nuclei as obtained in the 
LDA approximation. The experimental data are from ref. 
[3] (squares) and ref. [20] (dots). 
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140 MeV 

1 +Kex  p = o61 f o(E, r) dE, r , (16) 

where o 0 = 0.06 (NZ/A) MeV b. The data for light nuclei (.4 ~< 40) have been obtained [19] by  measuring the 
to ta l  absorption cross section, those for heavy nuclei (A/>  100) by  the inclusive multiple photoneutron produc- 
t ion cross section [3]. The results shown in fig. 3 deserve the following comments:  (i) the deplet ion (~20%) due 
to  surface effects is quite substantial even in the lead region. (ii) the contribution from TNI us reduced with re- 
spect to  that  o f  nuclear mat ter  and it accounts for only few per cent o f  the t o t a l K ;  (iii) the LDA values are in 
reasonably good agreement with previous theoretical  estimates [16,20] except for light nuclei where LDA .is too  
crude. Our results for the enhancement factor should not  be directly compared with the experimental  data. Actu- 
ally the difference K - Kex p ~ 0.6 in the heavy nuclei region is a measure of  tail contributions and higher multi- 
poles and dipole retardation effects. I t  could be wiser to compare K with that  extracted from the forward 
Compton scattering which is related to  the absorption cross section by  means o f  dispersion relations [21]. A re- 
cent analysis [22] o f  this type  indicates a value o f K  = 1.6 T- 0.2 for 208pb. 

The authors are very much indebted to  Professor M. Rosa-Clot and Professor S. Rosati for illuminating discus- 
sions. Centro Nazionale di Calcolo Elet tronieo (CNUCE) o f  Pisa is also acknowledged for assistance with the 
numerics. The work has been supported in part b y  the NATO grant no. 0453/82.  
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