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Abstract. We construct a simple 3-body quark model for the non strange nucleon resonances and we give
results for the spectrum, the helicity amplitudes and the transition form factors. All the observables, in
particular the transition form factors, are evaluated analytically and the results are compared with those
of other models.

PACS. 12.39.Jh Nonrelativistic quark model – 13.40.Gp Electromagnetic form factors – 14.20.Gk Baryon
resonances with S = 0 Protons and neutrons

1 Introduction

Recently there has been a renewed interest in the study of
baryon properties [1–8]. Most attention has been devoted
to the spectrum and the helicity amplitudes [9–11,1,4–7]
but the problem of describing the transition form factors
is still open [1–3,12]. On the other hand, the experimen-
tal knowledge of the transition form factors is still poor.
New accurate and systematic data are expected from the
forthcoming experiments at TJNAF (CEBAF).

The non relativistic constituent quark models (CQM)
have given good results in the study of the static proper-
ties of the nucleon [9,11], like the baryon spectrum and
the magnetic moments, and in a qualitative reproduction
of the photocouplings [13,14]. The use of harmonic oscil-
lator gives rise to form factors which do not reproduce the
experimental data and for this reason it can be interesting
to investigate to which extent the results for the transition
form factors depend on the choice of the wave functions.

In this article we construct a simple three-body poten-
tial model, which gives analytical results for all the ob-
servables. In particular, we report on the transition form
factors for the electromagnetic excitation of the nucleon.

In Sect. 2 we introduce the hypercentral description
of the 3-body problem. In Sect. 3 we construct the model
and calculate the spectrum. In Sects. 4 and 5 we calculate
the helicity amplitudes and the transitions form factors re-
spectively and compare the results with the experimental
data. A brief conclusion is given in Sect. 6.
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2 The three-body problem

We consider non-strange baryons as a bound state of three
constituent quarks. After removal of the center of mass
coordinate, R, the configurations of three particles are
described by the Jacobi coordinates, ρ and λ,

ρ =
1√
2
(r1 − r2),

λ =
1√
6
(r1 + r2 − 2r3). (1)

Instead of ρ and λ, one can introduce the hyperspherical
coordinates, which are given by the angles Ωρ = (θρ, φρ)
and Ωλ = (θλ, φλ) together with the hyperradius, x, and
the hyperangle, ξ, defined respectively by [15,16]

x =
√
ρ2 + λ2, ξ = arctg(

ρ

λ
). (2)

As a model of light baryons, we consider three identical
quarks of mass m with Hamiltonian

H =
p2
ρ

2m
+
p2
λ

2m
+ V (x), (3)

where the potential V (x) is assumed to depend on x only,
that is to be hypercentral. Since x = (ρ2 + λ2)

1
2 , the

interaction in (3) is not purely a two-body interaction,
but it contains three-body terms.

Several authors [17–20,4,21] have suggested that three-
body interactions can play an important role in hadrons,
since the non-abelian nature of QCD leads to gluon-gluon
couplings which, in turn, can produce three-body forces. It
is also interesting to notice that two-body interactions can
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be well approximated by a hypercentral potential [22–25],
specially for the lower part of the spectrum.

Using hyperspherical coordinates, the kinetic energy
operator of a three-body problem can be written as:

− 1
2m

(∆ρ +∆λ) = − 1
2m

(
∂2

∂x2
+

5
x

∂

∂x
− L2(Ωρ, Ωλ, ξ)

x2
),

(4)
where L2(Ωρ, Ωλ, ξ) is the quadratic Casimir operator of
the six dimensional rotation group, O(6), and its eigen-
functions are the hyperspherical harmonics Y[γ]lρlλ(Ωρ,Ωλ,
ξ)

L2(Ωρ, Ωλ, ξ)Y[γ]lρlλ(Ωρ, Ωλ, ξ) =

γ(γ + 4)Y[γ]lρlλ(Ωρ, Ωλ, ξ), (5)

with the grand-angular quantum number, γ, given by γ =
2v + lρ + lλ, and v = 0, 1, ... and lρ and lλ being the
angular momenta associated with the ρ and λ variables.
The hyperspherical harmonics are written as products of
standard spherical harmonics, trigonometric functions and
Jacobi polynomials (see [16]).

If there is hyperrotational O(6) invariance (i.e. if the
quark potential is hypercentral, depending on the hyper-
radius x only), each eigenfunction can be factorized into a
hyperradial part, ψγ(x), and a hyperangular part,
Y[γ]lρlλ(Ω). The hyperradial wave function ψγ(x) is a so-
lution of the equation

[
d2

dx2
+

5
x

d

dx
− γ(γ + 4)

x2
]ψγ(x) = −2m[E − V (x)]ψγ(x).

(6)
This equation can be solved analytically in two cases [22,
20]:

V (x)h.o. =
3
2
kx2 (7)

(six-dimensional harmonic oscillator) and

Vhyc(x) = −τ
x

(8)

(six-dimensional Coulomb problem). We can observe that
the two-body harmonic oscillator potential

∑
i<j

1
2kr

2
ij =

= 3
2kx

2 that means that it can be written as a hyper-
central potential. The h.o. is used as a basis in the ap-
proach of [9].

The use of a hyperCoulomb interaction in baryon struc-
ture was suggested long ago [26] following earlier observa-
tions that the low-lying spectrum of hadrons has a hydro-
genlike structure [27]. In the case of the potential of (8),
all results for the three-quark problem can be obtained in
closed analytic form, thus providing an alternative basis
to the harmonic oscillator.

The solution of the hyperCoulomb problem can be sim-
ply obtained by generalizing to six dimensions the calcula-
tions for the usual Coulomb problem in three dimensions,
obtaining

En,γ = −τ
2m

2n2
, (9)

where n = γ + 5
2 + n′ is the principal quantum number

and n′ = 0, 1, 2, ... is the radial quantum number that
counts the number of nodes of the wave function. The
hyperCoulomb potential has a symmetry O(7) , larger
than the O(6)-symmetry which is shared with every hy-
percentral potential. The dynamic symmetry O(7) of the
hyperCoulomb problem can be used to obtain the eigen-
values using purely algebraic methods. In fact, the hyper-
Coulomb Hamiltonian can be rewritten as [21]

H = − τ2m

2[C2(O(7)) + 25
4 ]
, (10)

where C2(O(7)) is the quadratic Casimir invariant ofO(7).
By observing that the eigenvalues of C2(O(7)) in the to-
tally symmetric representations ofO(7), (ω, 0, 0), are ω(ω+
5) [28], one obtains directly the eigenvalues

E = − τ2m

2[ω(ω + 5) + 25/4]
, ω = 0, 1, ...∞. (11)

The quantum number ω is related to n and γ by n = ω+ 5
2 ,

where ω = γ + n′.
The eigenfunctions of (6) with the hyperCoulomb po-

tential can be obtained analytically and are

ψωγ(x) =
[

(ω − γ)!(2g)6
(2ω + 5)(ω + γ + 4)!3

] 1
2

×(2gx)γe−gxL2γ+4
ω−γ (2gx), (12)

where for the associated Laguerre polynomials we have
used the notation of [29] and g = τm

ω+ 5
2
.

The hyperradial wave functions, ψωγ(x), depending on
x, are totally symmetric for exchange of the quark coor-
dinates. They must be completed with the appropriate
combinations of hyperspherical harmonics which not only
have definite total angular momentum L but also trans-
form according to an irreducible representation of the per-
mutation group of three identical objects, S3. The problem
of finding combinations of hyperspherical harmonics with
definite transformation properties for S3 has been solved
in different ways [30,31,21]. In Table 1 we report the
results.

The complete wave functions contain a hyperradial,
hyperangular, spin, flavor and color part. The orbital an-
gular momentum L and spin S of the three quarks are cou-
pled to the total angular momentum J . The colour part is
completely antisymmetric and the hyperradial part, which
depends only on x, is completely symmetric. Therefore,
the remaining part must be completely symmetric. In prac-
tice, this means that the complete wave functions are those
of [9], written in terms of hyperspherical coordinates, x,
ξ, Ωρ, Ωλ, where the harmonic oscillator part is substi-
tuted by the hyperCoulomb function ψωγ(x) of (12). The
complete baryon states are reported in Appendix A.

An interesting property of the spectrum of the hyper-
Coulomb potential is the degeneracy of the first excited
L = 0 state and the L = 1 states, both belonging to the
representation (1, 0, 0) of O(7) (see Fig. 1).
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Table 1. Combinations (Y[γ]lρlλ)S3 of the hyperspherical har-
monics Y[γ]lρlλ that transform as irreducible representations of
S3. For simplicity of notation, in the third column we have
omitted the coupling of lρ and lλ to the total angular momen-
tum L given in the second column

γ LPS3 (Y[γ]lρlλ)S3 S3

0 0+
S Y[0]00 S

1 1−M Y[1]10 Mρ

Y[1]01 Mλ

2 2+
S

1√
2
[Y[2]20 + Y[2]02] S

2+
M Y[2]11 Mρ

1√
2
[Y[2]20 − Y[2]02] Mλ

1+
A Y[2]11 A

0+
M Y[2]11 Mρ

Y[2]00 Mλ

The near degeneracy of the states with L = 0 [N(1440)
P11] and L = 1 [N(1520)D13, N(1535)S11,...] is a charac-
teristic of the experimental spectrum of the nucleon. This
feature cannot be reproduced in models with only two-
body forces since the excited L = 0 state, having one more
node, must always lie above the L = 1 state, as shown in
[32].

However, the hyperCoulomb potential produces a spec-
trum which converges to zero for large values of ω. In order
to provide a realistic description of the spectrum, one must
add a confining interaction to the hyperCoulomb term.

3 The spectrum

The hyperCoulomb potential does not confine quarks in
hadrons and therefore one has to add a confining term.
From lattice calculations and other considerations [33,
18] one expects to have a linear potential. The potential
we use is

V (x) = −τ
x

+ βx. (13)

The solution of the hypercentral (6) with this potential
cannot be obtained analytically, except when the linear
term is treated as a perturbation. We consider here this
situation, which is valid, to a good approximation, for the
low-lying states.

Fig. 1. Schematic representation of the low-lying spectrum of
the hyperCoulomb potential. The total orbital angular momen-
tum, the parity and the S3-symmetry (S,A,M) are reported on
top of each levels

Fig. 2. Schematic representation of the low-lying spectrum of
the hyperCoulomb potential with linear confinement. The total
orbital angular momentum, the parity and the S3-symmetry
(S,A,M) are reported on top of each level. On the bottom the
grand-angular quantum number γ is reported

The energy eigenvalues can be obtained analytically
and are given by

En,γ = −τ
2m

2n2
+

β

2mτ
[3n2 − γ(γ + 4)− 15

4
], (14)

The confining term removes theO(7) degeneracy and leaves
only an O(6) degeneracy (see Fig. 2).

On the basis of some general arguments (for example
one-gluon exchange contributions) one expects additional
quark-quark interactions which are spin dependent, in par-
ticular a spin-spin interaction, a spin-orbit interaction and
a tensor one. We do not consider spin-orbit forces, for
which there is little evidence in hadrons, and we make the
following model for the spin-spin and tensor interactions

V S(x) = Ae−αx
∑
i<j

σi · σj =

= Ae−αx[2S2 − 9
4
], (15)

(16)

where S is the total spin of the 3-quark system,

V T (x) = B
1
x3

∑
i<j

[
(σi · (ri − rj)) (σj · (ri − rj))

|ri − rj |2

− 1
3
(σi · σj)

]
. (17)

We note that for one-gluon exchange, the coordinate de-
pendence of V S is δ(rij) [9], while in algebraic approaches
[1] this dependence is taken to be a constant.

Using the states of Appendix A, the matrix elements of
the spin-dependent interactions (16, 17) can be evaluated
analytically. The diagonalization is performed numerically
and the results depend on the strength A, the ratio α

τ and
B. Contrary to the case of one gluon exchange, the spin-
spin interaction of (16) acts on all states, while for a delta
function dependence only L = 0 states are affected. With
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Table 2. Comparison between the calculated masses of non-strange baryon resonances below 2GeV ,Mcalc, and the experimental
masses [33], Mexp

Baryon Status Mexp Jπ ω γ Lπ S S3 Mcalc

(MeV) (MeV)

N(938) P11 **** 938 1
2

+
0 0 0+ 1

2
S 938

∆(1232)P33 **** 1232 3
2

+
0 0 0+ 3

2
S 1237

N(1440) P11 **** 1440 1
2

+
1 0 0+ 1

2
S 1562

∆(1600)P33 *** 1600 3
2

+
1 0 0+ 1

2
S 1675

N(1535) S11 **** 1535 1
2

−
1 1 1− 1

2
M 1543

N(1520) D13 **** 1520 3
2

−
1 1 1− 1

2
M 1544

N(1650) S11 **** 1650 1
2

−
1 1 1− 3

2
M 1665

N(1700) D13 *** 1700 3
2

−
1 1 1− 3

2
M 1679

N(1675) D15 **** 1675 5
2

−
1 1 1− 3

2
M 1671

∆(1620)S31 **** 1620 1
2

−
1 1 1− 1

2
M 1544

∆(1700)D33 **** 1700 3
2

−
1 1 1− 1

2
M 1544

N(1710) P11 *** 1710 1
2

+
2 0 0+ 1

2
M 1819

N(1720) P13 **** 1720 3
2

+
2 2 2+ 1

2
S 1819

N(1680) F15 **** 1680 5
2

+
2 2 2+ 1

2
S 1819

∆(1910)P31 **** 1910 1
2

+
2 2 2+ 3

2
S 1863

∆(1920)P33 *** 1920 3
2

+
2 2 2+ 3

2
S 1819

∆(1905)F35 **** 1905 5
2

+
2 2 2+ 3

2
S 1819

∆(1950)F37 **** 1950 7
2

+
2 2 2+ 3

2
S 1864

∆(1900)S31 *** 1900 1
2

−
2 1 1− 1

2
M 1829

hydrogenic wave functions, the effect of the tensor inter-
action is rather small, contrary to the case of harmonic
oscillator wave functions.

We can now compare the results of this model with
the experimental spectrum. In absence of spin-spin inter-
actions, masses are given by (14), to which a constant
should be added

M = E0 −
τ2m

2n2
+

β

2mτ
[3n2 − γ(γ + 4)− 15

4
], (18)

in order that for n = 5
2 and γ = 0 the nucleon mass is

reproduced. There are two strength parameters here: τ
and β from the hyperCoulomb and the confining term.
These parameters can be fitted to the observed resonance
masses, with values τ = 6.39, and β = 0.148fm−2, consid-
ering a quark mass about one third of the nucleon mass.
In finding the values of the parameters in absence of spin-
spin interactions, an average is taken over different states
with the same quantum numbers ω, γ and different spin
( 1
2 or 3

2 ).
The spin-spin interaction depends on two parameters,

A and α. These two parameters are determined from the
N(939)−∆(1232) and the N(1535)−N(1650) splittings.
The resulting values areA = 140.7MeV and α = 1.53fm−1,
a relatively long range. This means that with hydrogenic
wave functions, which are not so concentrated near the ori-
gin as the harmonic oscillator ones, a spin-spin interaction
with non-zero range is necessary in order to reproduce the
observed splittings. On the other hand, the origin of the
spin-spin dependent interaction can be ascribed not only
to the zero-range one-gluon exchange interaction, but also
to more complicated exchange mechanisms.

The tensor interaction depends on the parameter B.
Since with hydrogenic wave functions the effects of the
tensor interaction is very small, we have no way to de-
termine this parameter. However, with values of B of the
order of ≈ 14MeV fm3, the description of the spectrum is
slightly improved, although the overall effect of the tensor
interaction is small. Our final results, summarized in Table
2, show that this model provides a reasonable description
of the observed resonances, specially for the lower part of
the spectrum because of the approximation used for the
confining term.

4 The helicity amplitudes

The reproduction of the spectrum is not a sufficient test
for a model. A further test is provided by the analysis of
the electromagnetic properties, as the helicity amplitudes
and the transition form factors. The helicity amplitudes
describe the photoexcitation of the nucleon to a baryon
resonance. Up to now they have been extracted from pion-
photoproduction and their present knowledge is affected
by a certain amount of model dependence, mainly due
to some ingredients (resonance propagators, strong decay
vertices,..) which are necessary in order to analyze exper-
imental data. Nevertheless they are the necessary input
for the theoretical calculation of a variety of fundamental
processes, like photoproduction of mesons (π, η, K,...) and
Compton scattering.
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The helicity amplitudes are defined as

A3/2 = 〈B, Jz = 3
2 |Hem|N, Jz = 1

2 〉

A1/2 = 〈B, Jz = 1
2 |Hem|N, Jz = −1

2 〉,
(19)

where B denotes a resonance (N* or ∆) and Hem is the
transverse electromagnetic interaction. The electromag-
netic interaction is given by a direct photon-quark cou-
pling and is written in the non-relativistic approximation
as [13,14]

Hem = −
3∑
j=1

[
ej

2mj
(pj ·Aj

+Aj · pj) + 2µjsj · (∇×Aj)] , (20)

where ej ,mj , sj ,pj and µj = ej
2mj

denote, respectively, the
electric charge, the mass, the spin, the momentum and the
magnetic moment of the j-th quark and Aj = Aj(rj) is
the photon field.

The baryon states have been determined in the previ-
ous sections and are given in Appendix A. All the parame-
ters of the model have been fixed on the baryon spectrum
and the SU(6)-mixing due to the spin-dependent inter-
actions of Section 3 is taken into account for all baryon
states. We evaluate the amplitudes in the equal momen-
tum frame or Breit frame,

k2 = Q2 +
(W 2 −M2)2

2(W 2 +M2) +Q2
, (21)

where M is the nucleon mass, W is the mass of the res-
onance, and Q2 = k2 − k0

2 is the mass squared of the
photon with tetramomentum (k0,k).

In Tables 3 and 4 we report the calculated helicity am-
plitudes for the proton and the neutron compared with the
compilation of the PDG [34]. One can see the effect of
including the spin dependent interaction, particularly im-
portant for those resonances, as the S11(1650) etc., which,
without a SU(6)-breaking term, would be identically zero.
One can see that our results are quite similar to the h.o.
ones and so one can conclude that the calculated helic-
ity amplitudes depend on what the two models have in
common, that is the SU(6) (spin-flavour) structure of the
states. Since the spectrum and the helicity amplitudes do
not allow to discriminate among the various models, is im-
portant to study other observables, like the form factors,
which depend strongly on details of the wave functions.

5 Form factors

All electromagnetic form factors (transverse, longitudinal
and scalar) of interest can be expressed in terms of two
elementary spatial matrix elements [1]

F (k) = 〈f |U |i〉, Gµ(k) = 〈f |Tµ|i〉, (22)

Table 3. The helicity amplitudes for the nucleon resonances
calculated in our model with and without spin-dependent inter-
actions reported in column I and II respectively, in comparison
with the results of [32] (column KI) and the experimental data
from the PDG [33]. We consider only the resonances with a
4− or 3−star classification, for both their status and photo-

couplings. Units are 10−3 (GeV )−
1
2

Baryon Exp I II KI

N(1440) P11 p 1/2 −72± 9 −64 −53 −24
n 1/2 52± 25 43 36 16

N(1520) D13 p 1/2 −22± 8 −44 −41 −23
n 1/2 −62± 6 −12 −15 −45
p 3/2 163± 7 68 74 128
n 3/2 −137± 13 −67 −74 −122

N(1535) S11 p 1/2 68± 10 114 120 147
n 1/2 −59± 22 −77 −80 −119

N(1650) S11 p 1/2 52± 17 10 0 88
n 1/2 −11± 28 16 21 −35

N(1675) D15 p 1/2 18± 10 0 0 12
n 1/2 −50± 14 −30 −28 −37
p 3/2 18± 9 0 0 16
n 3/2 −70± 6 −43 −40 −53

N(1680) F15 p 1/2 −14± 8 −19 −17 0
n 1/2 27± 10 20 19 26
p 3/2 135± 17 17 17 91
n 3/2 35± 11 −1 0 −25

N(1710) P11 p 1/2 −6± 27 20 19 −47
n 1/2 16± 29 −7 −6 −21

Table 4. The same as in Table 3 for the ∆ resonances

Baryon Exp I II KI

∆(1232)P33 N 1/2 −141± 5 −106 −107 −103
N 3/2 −257± 8 −183 −185 −179

∆(1620)S31 N 1/2 30± 14 41 41 59
∆(1700)D33 N 1/2 114± 13 74 71 100

N 3/2 91± 29 76 74 105
∆(1905)F35 N 1/2 −37± 16 −7 −5 8

N 3/2 −31± 30 −24 −22 −33
∆(1950)F37 N 1/2 −85± 17 −13 −13 −50

N 3/2 −101± 14 −17 −16 −69

where i and f represent initial and final states and

U = e−ik
√

2
3λz , Tµ = imk0

√
2
3
λµe
−ik
√

2
3λz , µ = 0,±1.

(23)
In (23), (k0,k) is the virtual photon tetra-momentum,
with k = pf − pi taken to be in the z-direction. The Tµ
operator is the operator written in (20) after replacing p

m
with ik0r [35]. The form factors F (k) and Gµ(k) can all
be evaluated in explicit analytic form in this model. The
matrix elements of the operator U of (23) to be evaluated
are of the type∫

d3ρd3λψω′γ′(x)Y[γ′](ξ,Ωρ, Ωλ)

× e−iηkλzψωγ(x)Y[γ](ξ,Ωρ, Ωλ), (24)
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where η =
√

2
3 and the initial state is the ground state

given by

ψωγ(x)Y[γ](ξ,Ωρ, Ωλ) = [
(2g0)6

5(4!)
]1/2e−g0x

1√
4π

1√
4π

4√
π
,

(25)
with ω = 0, γ = 0 and g0 = 2

5τm.
The integrals of interest can be evaluated in terms of

two basic integrals:
(a) The integral representation of the ordinary Bessel func-
tions∫ π

0

dξsin2βξeiz cos ξ =
√
πΓ (β +

1
2
)2β

Jβ(z)
zβ

, (26)

from which one can derive, by taking derivatives with re-
spect to z, the related formula∫ π

0

dξsin2βξcosαξeiz cos ξ =

√
πΓ (β +

1
2
)2β

dα

dzα
[
Jβ(z)
zβ

](−i)α. (27)

Straightforward manipulations of these formulas lead, for
example, to∫ π/2

0

dξ sin2 ξ cos2 ξj0(z cos ξ) =
π

2
J2(z)
z2

. (28)

To obtain integrals involving jl(z cos ξ), one uses the re-
currence relations of the spherical Bessel functions

jl(z) = zl(−1
z

d

dz
)lj0(z). (29)

(b) The Laplace transform of the ordinary Bessel functions∫ ∞
0

dxxβJβ(ax)e−sx =
Γ (β + 1

2 )√
π

(2a)β

(s2 + a2)β+ 1
2
, (30)

from which one can obtain, by taking derivatives,∫ ∞
0

dxxβ+hJβ(ax)e−sx =

Γ (β + 1
2 )√

π
(2a)β(−1)h

dh

dsh
1

(s2 + a2)β+ 1
2
. (31)

Using these formulas we have, for example,∫ ∞
0

dxx3J2(ηkx)e−sx =
3
4
(2ηk)2

5
2

2s
(s2 + η2k2)

7
2
, (32)

For example using (28) and (32), one obtains the elastic
form factor

F0(k) =
1

[1 + ( ηk2g0
)2]

7
2
. (33)

All other form factors can be obtained in a similar way
and the analytical results are reported in Table 5.

In addition to the form factors F (k), one also needs
the form factors Gµ(k) of (22), (23). These form factors,

Table 5. The scalar form factors F (k) of (22) for transitions
to final states labelled by ω, γ, LPS3 . The initial state is 0, 0, 0+

S

and a = η
2g0

ω γ LPS3 〈ωγLPS3 |U |000
+
S 〉

0 0 0+
S

1

(1+k2a2)7/2

1 1 1−M −i
√

7( 5
6
)4( 7

6
)4 ka

(1+ 49
36 k

2a2)9/2

1 0 0+
S

√
7( 7

6
)5( 5

6
)4 (ka)2

(1+ 49
36 k

2a2)9/2

2 2 2+
S −

√
21√
2

( 5
7
)5( 9

7
)5 (ka)2

(1+ 81
49 k

2a2)11/2

2 2 2+
M

√
21√
2

( 5
7
)5( 9

7
)5 (ka)2

(1+ 81
49 k

2a2)11/2
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however, can be obtained from the previous ones, F (k), by
noting that the matrix elements of the operator Tz (µ = 0)
are related to those of U by

〈f |Tz|i〉 =
η′

iη

∂

∂k
〈f |U |i〉 (34)

where η′ = imk0η.
It is interesting to compare the form factors of Table

5 with those of the harmonic oscillator quark model. For
small k, both models have obviously the same behavior.
For very large k the non relativistic approximation is not
applicable but it is interesting to note that already for
intermediate values of k the two models exhibit different
behaviors. The h.o. form factors decrease as gaussians,
while the hyperCoulomb ones decrease as powers of k,
although the powers are not really coincident with the
observed ones. For example, the experimental elastic form
factor GpE decreases as

GpE(k) =
1

(1 + k2a2)2
, (35)

to be compared with (33) Another important property of
the form factors F (k), which is absent in the h.o. case,
is that the transition radius increases drastically with ω.
Already for ω = 1, the transition radius is 7

6a, i.e. 17%
larger than the radius a of the ground state ω = 0. The
drastic increase in the radii of the nucleon resonances is
at the basis of their Regge behavior, with linearly rising
trajectories, although the increase provided by this model
is somewhat smaller than what is needed to reproduce the
experimental data.

The transverse helicity amplitudes A1/2, A3/2, which
are combinations of the form factors F (k) and Gµ(k), as
functions of the momentum transfer, are reported in Figs.
3,4 and 5 and compared with the experimental data and
the h.o. results. We limit ourselves to the transition to the
low-lying resonances since, because of the approximations
we have made, they are better reproduced.
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Fig. 3. The helicity amplitudes Ap3/2,A
p
1/2, in the Breit frame

for the excitation of the D13(1520) resonance. The full curve is
the complete result of our model, while the dashed curve is the
result without spin-dependent interactions. The experimental
data are taken from [35]

We present the results with and without the spin-
dependent interactions (16, 17). In general the effect of
the SU(6)-breaking on the helicity form factors is small
apart from some few cases, such as the S11(1650), where
in absence of spin dependent interactions the transition
amplitude for the proton would be identically zero.

In Fig. 3 we report the results for the proton helicity
amplitudes of the D13(1520)-resonance. The curves with
and without the spin-spin interactions are quite the same.
The behaviour at medium momentum transfer is quite
well reproduced, while at low Q2 there are problems, spe-
cially for the strength of the A3/2-amplitude. Also the
h.o. curves obtained with the value of the α-parameter
(α = 0.41GeV , corresponding to a confinement radius of
the order of 0.5fm) which reproduces the helicity ampli-
tudes and in particular the A3/2-amplitude for D13(1520)-
resonance [13,14], exhibit a lack of strength at low Q2,
while the Q2-behaviour of A1/2 is far from the data.

In Fig. 4 we report the results for the proton helicity
amplitudes of the S11(1535)-resonance, and the conclu-
sions are similar as for Fig. 3, in particular again there
are problems with the behaviour at low Q2.

In Fig. 5 we give the results for the S11(1650)-resonance.
For this resonance the spin-spin mixing is determinant
since otherwise the transition amplitude would be zero.

The results reported in Figs. 3, 4 and 5 show clearly
that the transition form factors depend strongly on the
quark wave functions and so they can provide a sensitive
test of quark dynamics.

6 Discussion and conclusions

In this article we have studied a simple three-body model
of non-strange baryons. The model reproduces, although

Fig. 4. The same as in Fig. 3 for the excitation of the
S11(1535) resonance

Fig. 5. The same as in Fig. 3 for the excitation of the
S11(1650) resonance

not exactly, three of the features of the baryon phenomenol-
ogy: the power-law behaviour of the form factors, the near
degeneracy of 1−M and 0+

S states and the increase in tran-
sition radii with increasing excitation energy. It has also
drawbacks which come from the approximations we have
done. In particular one should reproduce better the higher
part of the spectrum, the low Q2-behaviour of the transi-
tion form factors and take into account relativistic correc-
tions, for example following the lines of [10]. In any case,
this simple model can be considered as a starting point
for more refined investigations.

This work was supported in part by D.O.E., Contract DE-
FG02-91-ER 40608, and in part by I.N.F.N.

Appendix A

In Tables 6 and 7, we give the explicit form of the three-
quark states with both positive and negative parity of in-
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Table 6. Three-quark states with positive parity. For simplicity of notation, we have omitted the coupling to the total angular
momentum L of the second column

Resonance LPS3 S T SU(6) configurations

P11 0+
S

1
2

1
2

ψ00Y[0]00ΩS
0+
S

1
2

1
2

ψ10Y[0]00ΩS
0+
S

1
2

1
2

ψ20Y[0]00ΩS
0+
M

1
2

1
2

ψ22
1√
2
[Y[2]00ΩMS + Y[2]11ΩMA]

2+
M

3
2

1
2

ψ22
1√
2
[ 1√

2
(Y[2]20 − Y[2]02)φMS + Y[2]11φMA]χS

P13 2+
M

1
2

1
2

ψ22
1√
2
[ 1√

2
(Y[2]20 − Y[2]02)ΩMS + Y[2]11ΩMA]

2+
M

3
2

1
2

ψ22
1√
2
[ 1√

2
(Y[2]20 − Y[2]02)φMS + Y[2]11φMA]χS

0+
M

3
2

1
2

ψ22
1√
2
[Y[2]00φMS + Y[2]11φMA]χS

2+
S

1
2

1
2

ψ22
1√
2
[Y[2]20 + Y[2]02]ΩS

F15 2+
M

1
2

1
2

ψ22
1√
2
[ 1√

2
(Y[2]20 − Y[2]02)ΩMS + Y[2]11ΩMA]

2+
M

3
2

1
2

ψ22
1√
2
[ 1√

2
(Y[2]20 − Y[2]02)φMS + Y[2]11φMA]χS

2+
S

1
2

1
2

ψ22
1√
2
[Y[2]20 + Y[2]02]ΩS

F17 2+
M

3
2

1
2

ψ22
1√
2
[ 1√

2
(Y[2]20 − Y[2]02)φMS + Y[2]11φMA]χS

P31 2+
S

3
2

3
2

ψ22
1√
2
[(Y[2]20 + Y[2]02]χSφS

0+
M

1
2

3
2

ψ22
1√
2
[Y[2]00χMS + Y[2]11χMA]φS

P33 0+
S

3
2

3
2

ψ00Y[0]00χSφS
0+
S

3
2

3
2

ψ10Y[0]00χSφS
0+
S

3
2

3
2

ψ20Y[0]00χSφS
2+
S

3
2

3
2

ψ22
1√
2
[Y[2]20 + Y[2]02]χSφS

2+
M

1
2

3
2

ψ22
1√
2
[ 1√

2
(Y[2]20 − Y[2]02)χMS + Y[2]11χMA]φS

F35 2+
M

1
2

3
2

ψ22
1√
2
[ 1√

2
(Y[2]20 − Y[2]02)χMS + Y[2]11χMA]φS

2+
S

3
2

3
2

ψ22
1√
2
[Y[2]20 + Y[2]02]χSφS

F37 2+
S

3
2

3
2

ψ22
1√
2
[Y[2]20 + Y[2]02]χSφS

terest in this article. In these Tables, the second, third
and fourth columns show the angular momentum, LPS3

,
the spin, S, and isospin, T . States are shown in the last
column. They are written in terms of the hyperradial wave
functions, ψωγ , of Table 2, of the hyperspherical harmon-
ics, (Y[γ])S3 , of Table 1, of the spin states, χMS , χMA, χS ,
defined as

χMS = |((1
2
,
1
2
)1,

1
2
)
1
2
>, (1)

χMA = |((1
2
,
1
2
)0,

1
2
)
1
2
>, (2)

χS = |((1
2
,
1
2
)1,

1
2
)
3
2
>, (3)

and of the isospin states φMS , φMA, φS , defined in a sim-
ilar way. In order to simplify the notation, the following
combinations of spin and isospin wave functions with def-
inite S3 symmetry are used

ΩS =
1√
2
[χMAφMA + χMSφMS ], (4)

ΩMS =
1√
2
[χMAφMA − χMSφMS ], (5)

ΩMA =
1√
2
[χMAφMS + χMSφMA], (6)

ΩA =
1√
2
[χMAφMS − χMSφMA], (7)

Table 7. Three quark states with negative parity

Resonances LPS3 S T States

S11 1−M
1
2

1
2

ψ11
1√
2
[Y[1]10ΩMA + Y[1]01ΩMS ]

1−M
1
2

1
2

ψ21
1√
2
[Y[1]10ΩMA + Y[1]01]ΩMS

1−M
3
2

1
2

ψ11
1√
2
[Y[1]10φMA + Y[1]01φMS ]χS

1−M
3
2

1
2

ψ21
1√
2
[Y[1]10φMA + Y[1]01φMS ]χS

D13 1−M
1
2

1
2

ψ11
1√
2
[Y[1]10ΩMA + Y[1]01ΩMS ]

1−M
1
2

1
2

ψ21
1√
2
[Y[1]10ΩMA + Y[1]01]ΩMS

1−M
3
2

1
2

ψ11
1√
2
[Y[1]10φMA + Y[1]01φMS ]χS

1−M
3
2

1
2

ψ21
1√
2
[Y[1]10φMA + Y[1]01φMS ]χS

D15 1−M
3
2

1
2

ψ11
1√
2
[Y[1]10φMA + Y[1]01φMS ]χS

1−M
3
2

1
2

ψ21
1√
2
[Y[1]10φMA + Y[1]01φMS ]χS

S31 1−M
1
2

3
2

ψ11
1√
2
[Y[1]10χMA + Y[1]01χMS ]φS

1−M
1
2

3
2

ψ21
1√
2
[Y[1]10χMA + Y[1]01χMS ]φS

S33 1−M
1
2

3
2

ψ11
1√
2
[Y[1]10χMA + Y[1]01χMS ]φS

1−M
1
2

3
2

ψ21
1√
2
[Y[1]10χMA + Y[1]01χMS ]φS

The coupling of the orbital, L, and spin, S, angular mo-
mentum to the total angular momentum J is not shown
in these Tables. The color part, a SU(3) singlet, is also
omitted for simplicity.



   

E. Santopinto et al.: Nucleon form factors in a simple three-body quark model 315

References

1. R. Bijker, F. Iachello and A. Leviatan, Ann. Phys. (N.Y.)
236, 69 (1994)

2. S. Capstick and B.D. Keister, Phys. Rev. D51, 3598 (1995)
3. F. Cardarelli, E. Pace, G. Salmé and S. Simula, Phys. Lett.
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5. A. Valcarce, P. González, P. Fernández and V. Vento,
Phys. Lett. B367, 35 (1996)

6. Z. Dziembowski, M. Fabre de la Ripelle and Gerald A.
Miller, Phys. Rev. C53, R2038 (1996)

7. L. Ya. Glozman and D. O. Riska, Phys. Rep. 268, (1996);
L. Ya. Glozman, Z. Papp and W. Plessas, Phys. Lett. (in
print)

8. M. Benmerrouche, N. C. Mukhopadhyay and J.-F. Zhang,
Phys. Rev. Lett. 77, 4716 (1996)

9. N. Isgur and G. Karl, Phys. Rev. D18, 4187 (1978); D19,
2653 (1979); D20, 1191 (1979)

10. S. Capstick and N. Isgur, Phys. Rev. D 34,2809 (1986)
11. M.M. Giannini, Rep. Prog. Phys. 54, 453 (1991)
12. M. Warns, W. Pfeil and H. Rollnik, Phys. Rev. D42, 2215

(1990)
13. L. A. Copley, G. Karl and E. Obryk, Phys. Lett. 29, 117

(1969)
14. R. Koniuk and N. Isgur, Phys. Rev. D21, 1868 (1980)
15. G. Morpurgo, Nuovo Cimento 9, 461 (1952); Yu. A. Si-

monov, Sov. J. Nucl. Phys. 3, 461 (1966)
16. J. Ballot and M. Fabre de la Ripelle, Ann. of Phys. (N.Y.)

127, 62 (1980)
17. P. Hasenfratz, R.R. Horgan, J. Kuti and J.M. Richard,

Phys. Lett. B94, 401 (1980)
18. L. Heller, in ”Quarks and Nuclear Forces”, eds. D.C. Vries

and B. Zeitnitz, Springer Tracts in Modern Physics 100,
145 (1982)

19. J. Carlson, J. Kogut and V.R. Pandharipande, Phys. Rev.
D27, 233 (1983)

20. M.M. Giannini, Nuovo Cimento A76, 455 (1983); D.
Drechsel, M.M. Giannini and L. Tiator, in ”The Three-
Body Force in the Three-Nucleon System”, eds. B.L.
Berman and B.F. Gibson, Lecture Notes in Physics 260,
509 (1986); Few-Body Syst. Suppl. 2, J.-L. Ballot and M.
Fabre de la Ripelle eds., 448 (1987)

21. E. Santopinto, M.M. Giannini and F. Iachello, in ”Symme-
tries in Science VII”, ed. B. Gruber, Plenum Press, New
York, 445 (1995); F. Iachello, in ”Symmetries in Science
VII”, ed. B. Gruber, Plenum Press, New York, 213 (1995)

22. M. Fabre de la Ripelle and J. Navarro, Ann. Phys. (N.Y.)
123, 185 (1979)

23. J.-M. Richard and P. Taxil, Ann. Phys. (N.Y.) 150, 3267
(1983)

24. J.-L. Basdevant and P. Boukraa, Z. Phys. C 30, 103 (1986)
25. A. M. Badalyan,Phys. Lett. B199,267 (1987)
26. J. Leal Ferreira and P. Leal Ferreira, Lett. Nuovo Cimento

vol. III, 43 (1970)
27. H.J. Lipkin, Rivista Nuovo Cimento I (volume speciale),

134 (1969)
28. A. M. Perelemov and V. S. Popov, Sov. J. Nucl. Phys. 6,

819 (1966)
29. P. Morse and H. Feshbach, Methods of Theoretical Physics,

Mc Graw-Hill, New York (1953)
30. Yu. A. Simonov, Sov. J. Nucl. Phys. 3, 461 (1966); 7, 722

(1968)
31. M.I. Haftel and V. B. Mandelzweig, Ann. Phys. (N.Y.)

150, 48 (1983)
32. H. Høgaasen and J.-M. Richard, Phys. Lett. B124, 520

(1983)
33. M. Campostrini, K. Moriarty and C. Rebbi, Phys. Rev.

D36, 3450 (1987)
34. R.M. Barnett et al. (Particle Data Group), Phys. Rev.

D54, 1 (1996)
35. R. McClary and N. Byers, Phys. Rev. D28, 1692 (1983);

F. Iachello and D. Kusnezov, Phys. Rev. D45, 4156 (1992)
36. V. Burkert, private communication


