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Abstract In this paper we present exact closures of the 8-moment and the 9-moment
models for the charge transport in silicon semiconductors based on the maximum
entropy principle. The validity of these models is assessed by numerical simulations
of an n-+n-n+ device. The results are compared with those obtained from the nu-
merical solution of the Boltzmann Transport Equation both by Monte Carlo method
and directly by a finite difference scheme.

1 Introduction

Simulation of modern electronic devices requires increasingly accurate models of
charge transport in semiconductors in order to describe high-field phenomena such
as hot electron propagation, impact ionization and heat generation. Moreover, in
many applications in optoelectronics, it is necessary to describe the transient interac-
tion of electromagnetic radiation with carriers in complex semiconductor materials:
in these cases the characteristic times are of the order of the electron momentum or
the energy flux relaxation times. These are some of the main reasons of the necessity
of developing models which incorporate a number of moments of the distribution
function higher than those in the drift-diffusion and the energy transport models.

These extended models, generally called hydrodynamical models, are usually de-
rived from the infinite hierarchy of the moment equations of the Boltzmann Trans-
port Equation (BTE) by suitable truncation procedures. One of the most successful
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among these procedures is that based on the Maximum Entropy Principle (MEP)
[1], see [2] for a complete review both for Si and GaAs semiconductors.

The models differ for the number of moments which are used and they usually
comprise the balance equations of the electron density, the energy density, the av-
erage velocity, the energy flux and possibly also higher scalar and vector moments
which do not have an immediate physical interpretation. In this paper we present
the usual 8-moment model [3] together with a 9-moment model in which a further
scalar moment is added: that corresponding to the squared microscopic electron en-
ergy. The two models are assessed by applying them to the benchmark problem of
an n-+n-n+ silicon device.

2 Hydrodynamical Models with 8 and 9-Moments

In [3] we presented an 8-moment model for charge transport in semiconductors and
we assessed its validity. In principle, one can try to improve this model by adding
further scalar and vector moments as well as higher order tensor moments. Adding
the scalar moment nW2, one obtains a new model which is given by the following
system of balance equations

∂n
∂ t

+
∂ (nV i)
∂xi = 0, (1)

∂ (nV i)
∂ t

+
∂ (nUi j)

∂x j + neE j Hi j = nCV i , (2)

∂ (nW )
∂ t

+
∂ (nSi)
∂xi + neViE

i = nCW , (3)

∂ (nSi)
∂ t

+
∂ (nFi j)

∂x j + neE jG
i j = nCSi . (4)

∂ (nW2)
∂ t

+
∂ (nSi

2)
∂xi + 2neEi S

i = nCW2 , (5)

where e is the absolute value of the electron charge and E the electric field. The
macroscopic quantities, which are involved in the balance equations, are related to
the electron distribution function f (x,k,t) by the definitions

n =
∫

R3
f dk, electron density,

W =
1
n

∫
R3

E (k) f dk, average electron energy,

W2 =
1
n

∫
R3

E 2(k) f dk, average electron

energy square,
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V i =
1
n

∫
R3

f vidk, average velocity,

Si =
1
n

∫
R3

f viE (k)dk, energy flux,

Si
2 =

1
n

∫
R3

f viE 2(k)dk, flux of the electron

energy square,

Ui j =
1
n

∫
R3

f viv jdk, velocity flux,

Hi j =
1
n

∫
R3

1
h̄

f
∂
∂k j

(vi)dk, (no physical interpretation),

Fi j =
1
n

∫
R3

f viv jE (k)dk, flux of the energy

flux,

Gi j =
1
n

∫
R3

1
h̄

f
∂
∂k j

(E vi)dk, (no physical interpretation),

CV i =
1
n

∫
R3

C [ f ]vidk, velocity production,

CW =
1
n

∫
R3

C [ f ]E (k)dk, energy production,

CSi =
1
n

∫
R3

C [ f ]viE (k)dk, energy flux

production,

CW2 =
1
n

∫
R3

C [ f ]E 2(k)dk, electron energy

square production,

here E and k respectively are the electron energy in the conduction band and the
wave vector, and C [ f ] is the collision operator which appears at the left hand of the
BTE. These equations are coupled to the Poisson equation for the electric potential
φ

Ei = − ∂φ
∂xi

, (6)

∇ · (ε∇φ) = −e(N+ −N− −n), (7)

where ε is the electric permittivity and N+ and N− are the donor and acceptor density
respectively (which depend only on the position).

The system (1)–(5) is not closed since the fluxes S2,U,H,F,G and the produc-
tion terms CV,CW ,CS,CW2 have to be expressed as functions of the fundamental
variables n,V,W,S and W2. The closure can be achieved by means of MEP, using
the distribution function which maximizes missing information (entropy) in order to
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evaluate the unknown moments. This distribution function is called the maximum
entropy distribution function fME [1, 2]. The MEP approach leads to a constrained
optimization problem which is handled by resorting to the Lagrangian multipliers
method, see [2] and references therein. In the present case, the constraints consist
of the known moments n,V,W,S and W2 and they are used to express the Lagrange
multipliers in terms of these moments. Actually, this is a highly non-linear prob-
lem, which, in the past, has been solved by assuming the distribution function to be
slightly anisotropic and expanding it with respect to a suitable anisotropy param-
eter [2]. Recently [3] this problem has been solved numerically without resorting
to asymptotic procedures. In this way the model is expressed in terms of the La-
grangian multipliers and the constitutive relations are given by integral expressions
that do not allow an efficient numerical tabulation, but require the use of suitable
quadrature formulas with respect to the microscopic energy. The interested reader is
referred to [3] for the closure relations relative to the 8-moment model, the relations
referring to the further quantities appearing in (5) being completely analogous. At
the end apart from the Poisson equation, the resulting system is hyperbolic in the
physically relevant region of the field variables.

It is important to notice that in the numerical integration of the models problems
can arise due to the fact that there may exist moments that are not moments of the
maximum entropy distribution [4]. In fact the set of the moments generated by fME

is a convex cone M [5]. In the 8-moment case M is generated by the Lagrangian
multipliers such that

g(λW ,λ S) = λW −
√

1
2αm∗ ||λS|| > 0, (8)

while in the 9-moment case the cone is generated by the Lagrangian multipliers
which satisfy

λW2 > 0. (9)

Here α is the non-parabolicity factor, m∗ the electron effective mass, λW ,λ S and
λW2 are the Lagrange multipliers which correspond to W , S and W2, respectively.
The conditions are obtained by requiring the integrability of fME .

3 Simulation of an n-+n-n+ Device

We have tested the 8 and 9-moment models by numerically solving them in the 1-D
problem of an n-+n-n+ device, which is commonly used as a benchmark problem
[6]. In this case the systems have the following form

∂F (0)(Λ)
∂ t

+
∂F (1)(Λ)

∂x
= G(Λ ,E), (10)
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where Λ is the vector of the unknown Lagrange multipliers, F (0) is the vector of the
moments, F (1) is the vector of the fluxes and G is the vector of the sources which
takes into account both the effect of the scatterings that electrons suffer inside the
device and the driving effect of the electric field. (10) is solved by using a splitting
strategy, which consists of two successive steps [3]: the first step solves the system
without sources (convection step), while the second step solves the system with the
fluxes put equal to zero (relaxation step).

The convection step makes use of the Nessyahu–Tadmor scheme [7], which does
not require the explicit knowledge of the characteristic structure of the system and is
conservative and consistent. The latter two properties are necessary requirements for
having correct shock capturing methods. The relaxation system is a system of ordi-
nary differential equations, which can be solved by using an explicit Euler scheme.

The devices which have been considered are those reported in Table 1.

Table 1: Lc length of the channel, doping concentration (respectively in the n+ and n regions) and
Vb applied voltage

Channel length n+ n Vb

Lc (μm) (1017 cm−3) (1017 cm−3) Volt

0.2 10 0.1 1
0.1 10 0.1 1

The results of the two non-linear models presented here (indicated by 8 and 9-
moment NLMEP models respectively) have been compared with those obtained by
the direct solution of the BTE (DSBE), with Monte Carlo results (MC) and also with
those derived by means of the model in which the closure is based on the asymptotic
expansion (indicated as SLMEP model) [8]. The aim is threefold:

• to check the validity of the 8 and 9 moment models,
• to assess the relevance of the nonlinearity,
• to see if the integrability condition is always satisfied.

As regards the validity, we can say that the results of the 8-moment model are satis-
factory. In fact, as can be seen from Figures 1 and 2, which refer to devices with
channel length equal to 0.2μm and 0.1μm respectively, the 8-moment NLMEP
model gives the solutions closest to those obtained both with the MC method and the
direct integration of the BTE. This means that the anisotropy effects are not small
when the channel is short and there are high electric fields inside the device. The
solutions do not show any spurious oscillations which indicates that the assumed
boundary conditions are compatible with the solutions of the problem: we have
used Dirichlet conditions on the density and Neumann conditions on the Lagrange
multipliers corresponding to the remaining moments, which are the fundamental
variables of the model. Furthermore we also notice that the peak in the velocity near
the second junction almost disappears in accordance with MC and DSBE results.

As regards the integrability, the problem is subtle. In fact in the transient there are
wide oscillations which can bring the numerical solution out of the cone M . As can
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be seen from Figure 3 left, for a device with a channel length of 0.2μm this can be
tackled by improving the precision of the numerical integration with respect to the
microscopic energy in the closure relations. The numerical integration is effected
by using the Gauss–Legendre formula and passing from 140 nodes to 310 nodes
in the microscopic energy interval [0eV,1.6eV] the integrability is recovered. The
situation is different when the channel length is 0.1μm, in this case in fact there is
a region near the first junction, see Figure 3 right, where the integrability does not
improve even by increasing the number of nodes. The case of the 9-moment model is
worse; in fact, as can be seen from Figure 4 right below we do not have integrability,
independently on how precise the integration is. This is probably due to the fact
that additional Lagrangian multipliers, associated to new moments corresponding
to weight functions represented by powers of energy with an exponent greater than
one, are zero at equilibrium states which are, therefore, located at the boundary of
the realizability region. This implies that small perturbations can have both positive
and negative sign causing a loss of integrability and limiting the validity of the non-
linear models. As a consequence the solution of the 9-moment model, Figures 41−3,
is clearly unreliable.

4 Conclusion

In conclusion, the results, which we have obtained, make us affirm that a great at-
tention has to be payed to whether the integrability condition is satisfied when using
a completely non-linear model. The problem could be effectively solved by using a
better approximation for the energy bands, in which the Brillouin zone, instead of
being extended to all R

3 as for the Kane dispersion relation, is a limited region as in
the physical case.
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Fig. 1: Lc = 0.2 μm, stationary solution: 8 moment-NLMEP model (continuous line), SLMEP
model (dotted line), MC simulation (crossed line), direct Boltzmann integration (starry line) and
Baccarani Blotekjaer Wordeman (BBW) model (dashed-dotted line)
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Fig. 2: Lc = 0.1 μm, stationary solution: 8 moment-NLMEP model (continuous line), SLMEP
model (dotted line), MC simulation (crossed line), direct Boltzmann integration (starry line) and
BBW model (dotted line)
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Fig. 3: Lc = 0.2and0.1μm, integrability condition. Left: 140 nodes in the energy interval (in eV)
[0,1.55] (continuous line), 310 nodes in [0,1.6] (dashed-dotted line). Right: 490 nodes in [0,3.39]
(circles), 735 nodes in [0,3.39] (dashed-dotted line)
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Fig. 4: Lc = 0.2 μm, stationary solution: 8 moment-NLMEP model (dashed-dotted line), 9
moment-NLME model (continuous line). Integrability: plot of λW2 versus the position
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