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Abstract This chapter focuses on the general theory of the electron transport
properties of carbon nanotubes, yielding an overview of theoretical models. It is
organized in five sections describing the results of the research activity performed
in electronic/electrical properties modelling. The first section, in addition to describ-
ing the scope of the review and providing an introduction to its content, yields
as well a general introduction on carbon nanotubes. Sect. ‘Electronic Structure of
Single-Wall Nanotubes’ describes the general theory of the electron transport in
carbon nanotubes, starting from the band structure of graphene. Sect. ‘Quantum
Transport in Carbon Nanotubes’ focuses on the quantum transport in carbon nan-
otubes, including ballistic transport, Coulomb-blockade regime, Luttinger Liquid
theory. Sect. ‘Results and Experiments’ reports results and experimental evidence
of the models decribed. Finally, Sect. ‘Superconducting transition’ addresses the
issue of superconductivity transitions in carbon nanotubes.

Introduction

In the last 20 years progresses in technology allowed for the construction of several
new devices in the range of nanometric dimensions. The well known Moore predic-
tion states that the silicon-data density on a chip doubles every 18 months. So we are
going toward a new age when the devices in a computer will live on the nanometer
scale and will be ruled by the Quantum Mechanics laws.

Recently several scientists proposed a new carbon based technology against the
usual silicon one. The allotropes of carbon, carbon nanotubes, single atomic lay-
ers of graphite (graphene), fullerene molecules and diamond have emerged recently
as new electronic materials with unique properties. In this sense the discovery of
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carbon nanotubes in 1991 [1] opened a new field of research in the physics at
nanoscales [2]. Thus carbon nanotubes have become very promising in the field of
molecular electronics, in which atoms and molecules are envisaged as the building
blocks in the fabrication of electronic devices.

Hystory and Structure

The existence of single-walled carbon tubes was pointed out in 1976 [3] but the
subject seems to have become prominent after the discovery of fullerene in 1985 [4]
and the identification of nanotubes by Iijima in 1991 [1].

Carbon nanotubes (CNs) are basically rolled up sheets of graphite (hexagonal
networks of carbon atoms) forming tubes that are only nanometers in diameter and
have length up to some microns (see Fig. 1. top). Several experiments in the last
15 years have shown their interesting properties [5–7]. The nanometric size of CNs,
together with the unique electronic structure of a graphene sheet, make the electronic
prop erties of these one-dimensional (1D) structures highly unusual.

CNs may also display different behaviors depending on whether they are single-
walled carbon nanotubes (SWNTs) or multi-walled carbon nanotubes (MWNTs)
that are typically made of several (typically 10) concentrically arranged graphene
sheets (see Fig. 1. left bottom). Thus SWNT can be thought of as the fundamental
cylindrical structure, and these form the building blocks of both multi-wall nano-
tubes and the arrays of single-wall nanotubes, also bundles. Bundles typically con-
tain many tens of nanotubes and can be considerably longer and wider than the
nanotubes from which they are formed. This could have important toxicological

Fig. 1 The structure of a SWNT can be conceptualized by wrapping a one-atom-thick layer of
graphite called graphene into a seamless cylinder. The way the graphene sheet is wrapped is repre-
sented by a pair of indices (n,m) called the chiral vector. The integers n and m denote the number of
unit vectors along two directions in the honeycomb crystal lattice of graphene. (Bottom left) Multi
Wall Nano Tubes : several (typically 10) concentrically arranged graphene sheets (Russian doll)
(Bottom right) Ropes of SWCNTs Triangular lattice of 5–100 SWCNT
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Fig. 2 Armchair and ZigZag nanotubes. The CN is made by coiling a graphene sheet about two
points connected by the vector �w. (Top) In the case of armchair the vector �w is known as �w =
(n · a1)+ (n · a2), or �w = (n, n). (Bottom) The second nanotube, the ZigZag one, is made by coiling
a graphene sheet with a vector (n · a1) + (0 · a2), or (n, 0). Notice that analogous ZigZag CN is
obtained with a wrapping vector (n,−n)

consequences. The strong tendency of both SWCNT or MWCNT to bundle together
in ropes is a consequence of attractive van der Waals forces analogous to forces that
bind sheets of graphite [8]. In Ref. [8] the authors found that the individual SWNTs
are packed into a close-packed triangular lattice with a lattice constant of about 17 Å
the density, lattice parameter, and interlayer spacing of the ropes was dependent on
the chirality of the tubes in the mat [9] (see Fig. 2).

Synthesis and Characterization

CNs vary significantly in length and diameter depending on the synthetic procedure.
Lengths are generally dependent on synthesis time but are typically tens of microns,
although significantly shorter and longer nanotubes have been made [10, 11].
An individual SWNT has typical dimensions L :1 μm and R :1 nm while MWCNT
generally range from 10 nm to 200 nm in diameter [12].

Structure of a Single Wall CN

A few key studies have explored the structure of carbon nanotubes using high-
resolution microscopy techniques. These experiments have confirmed that nan-
otubes are cylindrical structures based on the hexagonal lattice of carbon atoms
that forms crystalline graphite.

Three types of nanotubes are possible, called armchair, zigzag and chiral nano-
tubes, depending on how the two-dimensional graphene sheet is ‘rolled up’ (see
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Fig. 1). The different types are most easily explained in terms of the unit cell of a
carbon nanotube, the smallest group of atoms that defines its structure [13].

There are many ways of choosing the lattice vectors, but some are more comfort-
able to work with than others. In Fig. 1 we have chosen a1 and a2 to be two upright
secants of a isosceles triangle within two hexagons. In Cartesian coordinates the
lattice vectors can be written as,

a1 = a0

2
(3,
√

3) = a

2
(
√

3, 1), a2 = a0

2
(3,−√3) = a

2
(
√

3,−1)

where a0≈ 1.42Å is the carbon-carbon distance and a = √3a0. The so-called
chiral (or wrapping) vector of the nanotube, �w, is defined by

�w = mwa1 + nwa2,

where nw and mw are integers. The roll up vector, �w, (also called the Chiral
vector �Ch) determines the circumference of the carbon nanotube. In fact the radius,
R, is simply the length of the chiral vector divided by 2π , and we find that

R = |(mw · a1)+ (nw · a2)|
2π

.

Another important parameter is the chiral angle, which is the angle between
�w and a1. When the graphene sheet is rolled up to form the cylindrical part of the
nanotube, the ends of the chiral vector meet each other. The chiral vector thus forms
the circumference of the nanotube’s circular cross-section, and different values of n
and m lead to different nanotube structures. Armchair nanotubes are formed when
nw = mw and the chiral angle is 30◦ (see top figure). Zigzag nanotubes are formed
when either n or m are zero and the chiral angle is 0◦. All other nanotubes, with
chiral angles intermediate between 0◦ and 30◦, are known as chiral nanotubes. The
properties of nanotubes are determined by their diameter and chiral angle, both of
which depend on �w.

Thus values of nw and mw determine the chirality, or ‘twist’ of the nanotube. The
chirality in turn affects the conductance of the nanotube, its density, its lattice struc-
ture, and other properties. As we demonstrate below SWNT is considered metallic
if the value nw − mw is divisible by three. Otherwise, the nanotube is semicon-
ducting. Consequently, when tubes are formed with random values of nw and mw,
we would expect that two-thirds of nanotubes would be semi-conducting, while the
other one-third would be metallic, which happens to be the case.

Electronic Structure of Single-Wall Nanotubes

As we discussed above the electronic properties of CNs depend on their diameter,
chiral angle (helicity) parameterized by the roll-up vector �w and an applied magnetic
field. Hence it follows that some nanotubes are metallic with high electrical
conductivity, while others are semiconducting with relatively low band gaps.
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Band Structure of Graphene

We describe here the band structure of carbon nanotubes by the technique of project-
ing the band dispersion of a 2D graphite layer into the 1D longitudinal dimension
of the nanotube. The 2D band dispersion of graphene can be found in [14]. It con-
sists of an upper and a lower branch that only touch at the corners of the hexagonal
Brillouin zone. Thus, when the system is at half-filling, the metallic properties derive
from a pair of inequivalent Fermi points, around which there is conical dispersion
for the modes of the graphene sheet.

The 2D layer in graphite, known as graphene was largely studied in recent years
[15] also because of the isolation of single layer graphene by Novoselov et al. [16].
One of the most interesting aspects of the graphene problem is that its low energy
excitations are massless, chiral, Dirac fermions. In neutral graphene the chemical
potential crosses exactly the Dirac point. This particular dispersion, that is only valid
at low energies, mimics the physics of quantum electrodynamics (QED) for massless
fermions except by the fact that in graphene the Dirac fermions move with a speed
vF which is 300 times smaller than the speed of light, c. Hence, many of the unusual
properties of QED can show up in graphene but at much smaller speeds [17–19].
Dirac fermions behave in very unusual ways when compared to ordinary electrons if
subjected to magnetic fields, leading to new physical phenomena [20, 21] such as the
anomalous integer quantum Hall effect (IQHE) measured experimentally [22, 23].

Graphene has a honeycomb structure as shown in Fig. 3. The structure is not a
Bravais lattice but it can be seen as a triangular lattice with a basis of two atoms per
unit cell. Of particular importance for the physics of graphene are the two points

Fig. 3 (Top.Left) Lattice structure of graphene, made out of two interpenetrating triangular
lattices (a1 and a2 are the lattice unit vectors, and δi, i = 1, 2, 3 are the nearest neighbor vectors)
(Bottom.Left) corresponding Brillouin zone. The Dirac cones sit at the K and K′ points. (Top.Right)
Energy bands for finite v t =2.7 eV and t′ = 0, the cusps appear at the six corners of the first
Brillouin zone as enphasized in panel (Bottom.Right) where the density plot of the energy levels in
a graphite sheet is reported
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K and K′ at the corners of the graphene’s Brillouin zone (BZ). These are named
Dirac points. Their positions in momentum space are given by:

K =
(

2π

3a
,

2π

3
√

3a

)

, K′ =
(

2π

3a
,− 2π

3
√

3a

)

. (1)

The three nearest neighbors vectors are given by, δ1 = a
2 (1,
√

3), δ2 = a
2 (1,−√3)

and δ3 = −a(1, 0), while the six second-nearest neighbors are located at: δ
′
1 =

±a1, δ
′
2 = ±a2, δ

′
3 = ±(a2 − a1).

The Tight-Binding Approach

The tight-binding Hamiltonian for electrons in graphene considering that electrons
can hop both to nearest and next nearest neighbor atoms has the form,

H = −t
∑

〈i, j〉,σ

(
a†
σ , ibσ , j + h.c.

)
− t′

∑

〈〈i, j〉〉,σ

(
a†
σ , iaσ , j + b†

σ , ibσ , j + h.c.
)

, (2)

where ai,σ (a†
i,σ ) annihilates (creates) an electron with spin σ (σ =↑,↓) on site

Ri on sub-lattice A (an equivalent definition is used for sub-lattice B, see Fig. 2),
t (≈ 2.8 eV) is the nearest neighbor hopping energy (hopping between different
sub-lattices). Next we neglect t′ (≈ 0.1 eV) i.e. the next nearest neighbor hopping
energy (hopping in the same sub-lattice) [24]. The energy bands derived from this
Hamiltonian have the form [25]:

E(k) = ±t

√
√
√
√1+ 4 cos2

(√
3

2
kya0

)

+ 4 cos

(√
3

2
kya0

)

cos

(
3

2
kxa0

)

(3)

where the plus sign applies to the upper (π ) and the minus sign the lower (π∗) band.
It is clear from Eq. 3 that the spectrum is symmetric around zero energy. In Fig. 3.
Top.Right we show the full band structure of graphene.

The band structure close to one of the Dirac points shows clearly a conical
dispersion

E±(q) ≈ ±vF|q| (4)

where q = k − K is the momentum measured relatively to the Dirac points and vF

represents the Fermi velocity, given by vF=3ta/2, with a value vF; 1×106 m/s [25].
The most striking difference between this result and the usual case, ε(q) =

q2/(2m) where m is the electron mass, is that the Fermi velocity in Eq. 4 does not
depend on the energy or momentum: in the usual case we have v = k/m = √2E/m
and hence the velocity changes substantially with energy.

Since the basis of the honeycomb lattice contains two atoms, there are two sub-
lattices and two degenerate Bloch states at each Fermi point. If we choose the Bloch
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functions separately on each sublattice such that they vanish on the other, then we
can expand the electron operator in terms of the Bloch waves


σ (x, y) :
∑

pα

exp(−iαK · r)Fpασ (x, y) (5)

where α = ± labels the Fermi point, r = (x, y) lives on the sublattice p = ±
under consideration and Fpασ (x, y) denote slowly varying operators. Thus, we can
conclude that the low-energy excitations of the honeycomb lattice at half-filling are
described by an effective theory of two 2D Dirac spinors [14].

Band Structure of Carbon Nanotubes

Starting from the graphene band structure Eq. 3, after introducing periodic boundary
conditions due to the cylindrical geometry of the tube (i.e. the wrapping vector←−w ),
we can obtain the energy bands of a carbon nanotube.

From Graphene to Carbon Nanotubes

In this section we start from Eq. 3 and discuss first the general case of Chiral CNs
then the highly symmetric nanotubes, namely (1) the armchair (n, n) and (2) the
zig-zag (n, 0).

For the case of a chiral nanotube we can write the general condition

�w · �k = 2πm; m ∈ Z.

It follows that we can define a quantization rule,

√
3a

2
(mw + nw)kx + a

2
(mw − nw)ky = 2πm,

then

kx = 4πm√
3a(mw + nw)

+ (nw − mw)√
3(mw + nw)

ky = 4πm√
3an+

+ n−√
3n+

ky.

Substitution of the discrete allowed values for kx into Eq. 3 yields the energy
dispersion relations for the generic chiral tube,

Em(k) = ±t

√
√
√
√1+ 4 cos

(
2mπ

n+
+ n−

2n+
ky

)

cos

(√
3ky

2
a0

)

+ 4 cos2

(√
3ky

2
a0

)

.

(6)

In the case (1) |2πR| = n|(a1 + a2)| = n
√

3a. Thus due to the periodic boundary
condition along the x direction, the wavevector component kx is quantized,
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kx = m
2π

n
√

3a
; m ∈ Z

Substitution of the discrete allowed values for kx into Eq. 3 yields the energy
dispersion relations for the armchair tube

Em(k) = ±t

√
√
√
√1± 4 cos

(mπ

n

)
cos

(√
3 k

2
a0

)

+ 4 cos2

(√
3 k

2
a0

)

(7)

where −π < ka < π .
The case (2), i.e. a zigzag nanotube, is characterized by a wrapping vector in the

form (n, 0) or (n,−n), the latter case gives a simple quantization rule in the form

ky = m
2π

na
; m ∈ Z

so that

Em(k) = ±t

√

1+ 4 cos2

(

m
2π

n

)

± 4 cos

(
2π

n

)

cos

(
3

2
kxa0

)

, (8)

where −π/3 < kxa0 < π/3.
Thus we obtain that just 1/3 of the possible nanotubes are metallic when the con-

dition mw − nw = 3q, with q integer, is fulfilled. At half-filling, metallic nanotubes
have two Fermi points (see Fig. 3 Left) corresponding to large momenta

± Ks = ±(2π )/(3a0)

Here we choose a nanotube oriented as in Fig. 4. left, thus the low-energy
expansion Eq. 5 transforms correspondingly and the electron operator reads [26]


σ (ϕ, y) =
∑

pα

(2πR)−1/2 exp(−iαK · r)ψpασ (y) (9)

which introduces 1D fermion operators ψpασ (y) depending only on the longitudinal
coordinate y. The fact of having four low-energy linear branches at the Fermi level
introduces a number of different scattering channels, depending on the location of
the electron modes near the Fermi points.

In general, we can define an approximate one-dimensional bandstructure for
momenta near ±Ks

ε0(m,←−w , k) ≈ ±vF�

R

√
(

mw − nw + 3m

3

)2

+ R2(k ± Ks)
2 (10)

where R is the tube radius.
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Fig. 4 Band structure and density of states for a (10, 10) armchair nanotube within the zone-
folding model. The 1D energy dispersion relations are presented in the (−1; 1) energy interval in
units t : 2.9 eV. The Fermi level is located at zero energy. Band structure and density of states for a
(20, 0) zigzag nanotube within the zone-folding model. The Fermi level is located at zero energy

For a metallic CN (e.g. the armchair one with mw = nw) we obtain that the energy
vanishes for two different values of the longitudinal momentum ε0(±Ks) = 0. As we
discussed for graphene, the dispersion law ε0(m, k) in the case of undoped metallic
nanotubes is quite linear near the crossing values±Ks. The linear dispersion relation
holds for energy scales E < D, with the bandwidth cutoff scale

D : vF�/R ≈ 0.7 eV/R(nm−1),

which is a relevant quantity also to define a low-energy regime (kBT <D). The latter
regime is often met even at room temperature for usually small radius CNs.

Dirac Fermions Approach

Starting from Eq. 10 we can develop a Dirac-like theory for CNs obtained by taking
a continuum limit in which the momenta are much smaller than the inverse of the
C – C distance a0 [27] (the continuum limit also requires �2

ω >> aR so that lattice
effects can be disregarded). Thus we write the Hamiltonian, near a Fermi point, as

HD = vF

[
∧
α(π̂ϕ)+ ∧β π̂y

]

, (11)

where π̂ϕ = Ly
R = −i�

R
∂
∂ϕ

corresponds to the momentum along the circumference of
the nanotube while π̂y = p̂y±�Ks is the momentum along the axis. The Hamiltonian
above gives a Dirac like equation which has a solution in the spinorial form ψ̂ where

∧
α = α

(
0 i
−i 0

) ∧
β =

(
0 1
1 0

) ∧

 =

(
ψ↑
ψ↓

)

. (12)

Eq. 11 can be compared with the one obtained in [28]. For the metallic CN,
such as the armchair one, the problem in Eq. 11 has periodic boundary conditions
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i.e. 
(ϕ + 2π , y) = 
(ϕ), it follows that a factor eimϕ appears in the wavefunc-
tion while for semiconducting CNs (mw �= nw) we have to define quasiperiodic
boundary conditions i.e. 
(ϕ + 2π , y) = ω
(ϕ) [28] corresponding to a phase

factor in the wavefunction ei
(
m+mw−nw

3

)
ϕ (next we use m0 = mw − nw).

Thus we can trivially obtain the spinorial eigenfunctions as

∧

+ =

(
cos(γ )
sin(γ )

)

ei
(
m+mw−nw

3

)
ϕeiky;

∧

− =

(− sin(γ )
cos(γ )

)

ei
(
m+mw−nw

3

)
ϕeiky,

(13)

by choosing appropriately γ . The eigenenergies are given by Eq. 10.
Thus, in relation to the study of transport properties, often an important quantity

linked to the dispersion relation is the so-called effective mass of the charge carriers.
In semiconducting nanotubes, this quantity can be derived from the Eq. 10 as meff =
m + m0 and vanishes (massless Dirac Fermions) for the electrons belonging to the
lowest subband of a metallic CN. This concept has been used [29] to estimate the
charge mobility properties in semiconducting nanotubes.

The Density of States

The density of states (DOS) �N/�E represents the number of available states for
a given energy interval �E. This DOS is a quantity that can be measured experi-
mentally under some approximations. The shape of the density of states is known to
depend dramatically on dimensionality. In 1D, as shown below, the density of states
diverges as the inverse of the square root of the energy close to band extrema. These
spikes in the DOS are known as Van Hove singularities and manifest the confine-
ment properties in directions perpendicular to the tube axis. As carbon nanotubes
are one dimensional, their corresponding DOS exhibits a spiky behavior at energies
close to band edges as shown in Fig. 3. The position of these Van Hove singularities
can be analytically derived from the dispersion relations.

Magnetic Field and Landau Energy Bands of Carbon Nanotubes

The application of a uniform external magnetic field has profound consequences
on the electronic band structure of carbon nanotubes. There exist two cases of high
symmetry for the direction of the magnetic field with respect to the nanotube axis
(see Fig. 4).

When the magnetic field is applied parallel to the tube axis, electrons within the
nanotube are influenced by the electromagnetic potential, whose dominating effect
is to add a new phase factor, the Aharonov-Bohm quantum phase, to the quantum
wave function with subsequent modification of the associated momentum.

When a transverse magnetic field is present, in metallic tubes were found a sup-
pression of the Fermi velocity at half-filling and an enhancement of the density of
states while in semiconducting tubes the energy gap is suppressed.
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Fig. 5 (Left) Schematic draw of an isolated CN with the longitudinal axis along the y direction.
The two cases of high symmetry for the direction of the magnetic field with respect to the nanotube
axis: (Middle) the magnetic field is applied parallel to the tube axis, (Right) the magnetic field is
applied perpendicular to the tube axis

Here the electron properties of carbon nanotubes are studied using a model of a
massless Dirac particle on a cylinder [30]. As it was discussed by Lee and Novikov
[28] the problem possesses supersymmetry which protects low-energy states and
ensures stability of the metallic behavior in arbitrarily large fields. These features
qualitatively persist (although to a smaller degree) in the presence of electron inter-
actions. Here we propose a simplified version of the theory proposed in [28] also
if several works on the standard tight binding approach were presented in the last
years.

Transverse Magnetic Field

A cylindrical carbon nanotube with the axis along the y direction and B along z,
corresponds to

HD = vF

[
∧
α(π̂y)+ ∧β

(
π̂y − e

c
A
)]

, (14)

The minimal form of the coupling to external fields follows from the gauge
invariance while we choose the gauge so that the system has a symmetry along
the ŷ direction,

A = (0, Bx, 0) = (0, BR cos(ϕ), 0)

and we introduce the cyclotron frequency ωc = eB

mec
and the magnetic length �ω =√

�/(mωc).
It is customary to discuss the results in terms of two parameters, one for the scale of
the energy following from Eq. 10

�0 = �vFR , (15)
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the second one being the scale of the magnetic field

ν ≡ πR22π�2
ω = πR2B�0 where �0 = hce. (16)

Here we can calculate the effects of the magnetic field by diagonalizing Eq. 14, after
introducing the trial functions

_
ψ s,m,k(ϕ, y) = Nei(ky+(m+m0)ϕ)(αs + βs sin(ϕ)+ γs cos(ϕ)

)
. (17)

Results are reported in Fig. 6 for different CNs and values of the magnetic field.
From the expression of |
m,±k(ϕ, y)|2 we deduce a kind of ‘edge localization’ of

the opposite current, analogous to the one obtained for the QW [32] also for CNs.
Following the calculations reported in [28] for a metallic CN we can easily calcu-

late the linear dispersion relation changes near the band center ε = 0. Thus, the mag-
netic dependent energy can be written, near the Fermi points k : Ks, in terms of ν as

ε(|k − Ks|) = ±�|k − Ks| (vFI0(4ν)) . (18)

This describes a reduction of the Fermi velocity �
−1dε/dk near ε = 0 by a factor

I0(4ν).
Hence, the magnetic dependent Fermi wavevector follows

kF(εF , ν, 0) ≈ Ks +
(
εF

�vF

)

I0(4ν),

where the second term in the r.h.s. depends on B as

kF = Ks ± k0 + k(B) ≈ Ks ± k0(1+ 4ν2 + ...)→ k(B) : 4k0ν
2,

where k0 =
(
εF
�vF

)
.

Fig. 6 In the x-axis the wavevector in unit (ky − Ks)R (πyR/�). (left) Bandstructure of a non-
metallic CN with (red lines) and without (black dashed lines) the transverse magnetic field
(ν = 0.5). The main consequence of B is the reduction of the semiconducting gap. (Middle and
right) Bandstructure of a metallic CN with (red lines) and without (black dashed lines) the trans-
verse magnetic field. The main consequence of B at intermediate fields is the rescaling of the Fermi
velocity, while for quite strong fields a flat zone appears near πy = 0. We know that the magnetic
parameter ν ≈ 0.2 for B : 5T and R ≈ 50 nm [31]
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In Fig. 6 we show how the bandstructure can be modified by the presence of a
transverse magnetic field. On the left we show that for a semiconducting CN the
main consequence of B is the reduction of the semiconducting gap. On the right we
note that for metallic CNs that the gap vanishes and we get massless subbands cross-
ing each other at zero energy. The flat region near Ks correspond to the insurgence
of Localized Landau levels.

The closure of the gap at a magnetic field B < 5 T is consistent with the results for
semiconducting carbon nanotubes in [33]. From there we can infer that the magnetic
field needed to close the gap of a nanotube with radius R = 10 nm must be of the
order of 10 T. This field strength would be reduced by a factor of 4 after doubling
the nanotube radius, keeping the same ratio of R/�ω.

The evolution of the band structure of the thick nanotubes considered here is
quite different from that of carbon nanotubes with typical radius (≈ 1 nm) in strong
magnetic fields. The latter have been investigated in [34], where typical oscillations
have been reported in the low-energy levels of carbon nanotubes with R ≈ 1 nm
as the magnetic field is increased to ratios of R/�ω = 3. The reason why the low-
energy levels do not stabilize at increasing magnetic field can be traced back to the
fact that, for such thin carbon nanotubes, there is no regime where the continuum
limit with aR/�2

ω = 1 can be realized.

Edge States, Landau Levels and Hall Effect

In the section above we discussed the effects of an external magnetic field on the
bandstructure of a CN. Here, following Refs. [35, 36] we discuss how, for thick
carbon nanotubes in a transverse magnetic field, the transport properties can be gov-
erned by the states localized at the flanks of the nanotube, which carry quantized
currents in the longitudinal direction.

The effects of a transverse magnetic field on the transport properties of the car-
bon nanotubes were investigated making use of the description of the electronic
states in terms of Dirac fermion fields [35, 36] i.e. the discussed continuum limit.
It follows that the results reported in Fig. 6.right are valid for thick CNs while in
the cases of thin CNs where the low-energy levels do not get stabilized at increas-
ing magnetic field, by the time that we have R ≥ �ω, the magnetic length cannot
be much larger than the C – C distance, so that a quantum Hall regime cannot
exist in thin carbon nanotubes. This can be also appreciated in the results of cuni
[37], where the density of states of several carbon nanotubes is represented at very
large magnetic fields, with a marked difference between the cases of thin and thick
nanotubes. It has been shown for instance that the density of states for nanotube
radius R ≈ 14 nm already resembles that of the parent graphene system, with clear
signatures of Landau subbands in the low-energy part of the spectrum.

Thus we conclude that for nanotubes with a radius R ≈ 20 nm, in a magnetic field
of ≈ 20 T, the band structure shows a clear pattern of Landau levels. This opens
the possibility of observing the quantization of the Hall conductivity in multi-walled
nanotubes, σxy.

In the case of graphene, it has been shown that σxy has plateaus at odd multiples
of 2e2/h, as a consequence of the peculiar Dirac spectrum [20, 21]. In Refs. [35, 36]
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was obtained that the different topology of the carbon nanotubes leads instead to
a quantization in even multiples of the quantity 2e2/h, with steps in σxy which are
doubled with respect to those in graphene.

Regarding the spatial distribution, there is also a clear correspondence between
the localization of the states in the angular variable ϕ and the value of the current.
This can be appreciated from the analysis of the eigenstates of the Hamiltonian
(see Eq. 17, Fig. 6 of [35], where the angular distribution of states from the lowest
Landau subband for B = 20 T or the schematic plot in Fig. 7).

Thus the role of the magnetic field is to separate left-moving and right-moving
currents at opposite sides of the tube. The localization of the current in the states of
the dispersive branches opens the possibility to observe the quantization of the Hall
conductivity in thick carbon nanotubes.

Therefore the Hall conductivity, defined by σxy = I/VH , must have a first plateau
as a function of the filling level, with a quantized value given by the spin degeneracy
and the doubling of the subbands

σxy = 4
e2

h
(19)

As the filling level is increased, the situation changes when the Fermi level starts
crossing the bumps with parabolic dispersion

The contribution of each inner dispersive branch to the Hall conductivity turns
out to be then smaller than the quantized value from the outermost edge states.
Consequently, an approximate quantization of σxy is observed above the first plateau,
as shown in Fig. 6.right, with steps according to the degeneracy of the subbands:

σxy ≈ (2+ 4n)2
e2

h
. (20)

Fig. 7 Each eigenfunction is in general localized around a certain value of the angular variable ϕ.
We observe, for instance, that the states at k = 0 have wave functions localized at ϕ = 0 or ϕ = π ,
with the contribution to the current from the left component compensating exactly that from the
right component. For positive (negative) longitudinal momentum, the states in the flat zero-energy
level are localized at angles between 0 and π/2 (3π/2), or between π and π/2 (3π/2), depending
on the subband chosen. For the states in the dispersive branches, the eigenfunctions are centered
around π/2 (for a right branch) or 3π/2 (for a left branch). (Right) Plot of the Hall conductivity (in
units of e2/h) as a function of the position of the Fermi level εF in the band structure for a sharp
voltage drop in the bulk of the nanotube (adapted from [35])
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Magnetic Field along the Axis of the SWCNT

As we discussed above a magnetic field along the axis of the SWCNT also modifies
the band structure. One way to see this is to add an Aharonov-Bohm flux term to the
quantization condition

The cylindrical carbon nanotube with the axis along the y direction and B along y,
corresponds to

HD = vF

[
∧
α(π̂ϕ − �

R

�(B)

�0
)+ ∧β

(
π̂y − e

c
A
)]

, (21)

As we discussed above the boundary conditions in the ϕ direction are periodic for
the metallic case and quasiperiodic for the dielectric case. In the presence of a par-
allel magnetic field the problem remains separable and thus the wave function can
be factorized in just the same way as in the case of vanishing magnetic field. One
again finds 1D subbands with the spectrum of Eq. 10, with an additive mass term,

ε0(m, w, k) ≈ ±vF�

R

√
(

mw − nw + 3m

3
+ �(B)

�0

)2

+ R2(k ± Ks)
2 (22)

Thus in the presence of a parallel field the gapless m = 0 branch of the metallic
nanotube spectrum acquires a gap [40, 41]. Interestingly, there is no threshold for
this effect, since the gap forms at arbitrarily weak field. The gap size is 2� =
2|�(B)

�0
|�vF

R . One notes that the field-induced gap appears not at the Fermi level but
at the center of the electron band. Thus it affects the metallic NT properties only for
electron density sufficiently close to half-filling.

The magnetic field basically shifts the quantization lines perpendicular to their
direction. Because of the small diameter of the nanotubes the period to shift one
quantization line to the next by the field is several thousands Tesla. However, effects
due to the modification (small shifts) of the band structure with common laboratory
accessible fields as B < 10 T can easily be observed in low temperature experiments.

As we show in Fig. 8 a metallic armchair SWCNT can thus be made semicon-
ducting by applying a magnetic field while for semiconducting SWCNT, the two
lowest subbands are shifted in opposite directions by the field. Such a field, by
inducing backscattering between right and left electron modes, opens a minigap
at the band center. This gap, linear in the field (see Fig. 8.right), is given by the
magnetic flux scaled by the flux quantum, (πR2B/�0), times the semiconducting
gap size. Effects of parallel field on multi-walled NT have been reported in [42].
Electronic properties are also sensitive to mechanical distortion, such as twisting,
bending, or squashing, [43–47] as well as to external electric fields [48, 49].

Aharonov-Bohm Effect

In addition to the periodic band-gap oscillations, discussed above, the Aharonov-
Bohm effect more generally affects the whole subband structure, as evidenced by
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Fig. 8 In the x-axis the wavevector in unit (ky − Ks)R (πyR/�). (left) Bandstructure of a metallic
CN with (red lines) and without (black dashed lines) the magnetic field (in unit φ/φ0). This is a
metallic tube at zero magnetic flux but a gap opens up once a finite flux is applied and increases
with the flux. (Middle) Bandstructure of a semiconducting CN with (red lines) and without (black
dashed lines) the parallel magnetic field. (Right) The energy gap modified by applying a finite
magnetic flux threading the tube: for a metallic CN the band gap opens and increases linearly
with B, to reach a maximum value at half the quantum flux φ/φ0 = 1/2. Further, the band gap,
�E is linearly reduced until it finally closes back when the field reaches one quantum flux. The
behaviour of a semiconducting CN is analogous and is represented by a shifted curve in the plain
φ −�E [33, 38, 39]

Van Hove singularity splitting and shifts [50–52]. In the Aharonov-Bohm effect
[53, 54] a beam of quantum particles, such as electrons, is split into two partial
beams that pass on either side of a region containing a magnetic field, and these
partial beams are then recombined to form an interference pattern. The interference
pattern can be altered by changing the magnetic field – even though the electrons do
not come into contact with the magnetic field see Fig. 9.

Thus the large diameter of MWNTs enables one to investigate quantum-
interference phenomena in a magnetic field and especially the AB effect that not
only reveals that electrons are waves, but also demonstrates that the vector poten-
tial not the magnetic field plays a basic role. For the study of this phenomenon, a
magnetic field of several Tesla was applied along the nanotube axis. The electrical
resistance measurements showed pronounced oscillations with a period of h/2e, as
in Fig. [9]. The oscillations are associated with the ‘weak localization’, a quantum-
mechanical manifestation of coherent backscattering of electrons, which arises from
interference contributions adding up constructively in zero field. Backscattering is
thereby enhanced, leading to a resistance larger than the classical Drude resistance.
This observation has given compelling evidence that the phase coherence length,
can exceed the circumference of the tube.

In Ref. [55] magnetoresistance measurements on individual multi-walled nan-
otubes, which display pronounced resistance oscillations as a function of magnetic
flux were reported (see Fig. 9.right). It was found that the oscillations were in good
agreement with theoretical predictions for the Aharonov-Bohm effect in a hollow
conductor with a diameter equal to that of the outermost shell of the nanotubes.

More recently experiments on magnetoconductance in ballistic multiwalled car-
bon nanotubes threaded by magnetic fields as large as 55 T. In the high temperature
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Fig. 9 In the standard Aharonov-Bohm effect the magnetic flux through the solenoid changes the
relative phase of the electron waves in paths 1 and 2, leading to the formation of an interference
pattern on the screen. When the flux is changed, the interference pattern shifts on the screen.
(middle) Imagine a carbon nanotube placed in a magnetic field with its axis parallel to the field.
Since nanotubes are cylindrical conductors, the electrons can propagate in either the clockwise or
the anticlockwise direction. These two ‘paths’ interfere, resulting in a periodic modulation of the
electrical resistance as the magnetic flux through the tube is changed. In a carbon nanotube, the two
paths are clockwise and anticlockwise around the nanotube, and the shift in the interference pattern
manifests itself as a change in the electrical resistance along the nanotube as a function of magnetic
field (bottom). The magnetic field at the peaks can be related to the quantum of magnetic flux and
the cross-section of the nanotube. This effect is relatively robust and can be observed even if the
electron transport in the nanotube is diffusive. In the right panel the measured magnetoresistance
R(B) at different temperatures T for a MWNT in a parallel magnetic field B, from [55]

regime (100◦K), giant modulations of the conductance, mediated by the Fermi level
location, are unveiled. The experimental data, consistent with the field-dependent
density of states of the external shell, gave a first unambiguous experimental
evidence of Aharonov-Bohm effect in clean multiwalled carbon nanotubes [56].

For what concerns SWNTs, as we showed above, theoretically the AB effect
manifests itself in a SWNT by periodically modifying its band structure with a
period of 1 �0 in a magnetic flux (see Fig. 8.right) and about 1,000 T in field.
However in a recent letter [57] it was shown that relatively low magnetic fields
applied parallel to the axis of a chiral SWNT are found to cause large modulations
to the p channel or valence band conductance of the nanotube in the Fabry-Perot
interference regime. Beating in the Aharonov-Bohm type of interference between
two field-induced nondegenerate subbands of spiraling electrons is responsible for
the observed modulation with a pseudoperiod much smaller than that needed to
reach the flux quantum �0 through the nanotube cross section. Thus was shown that
single-walled nanotubes represent the smallest cylinders exhibiting the Aharonov-
Bohm effect with rich interference and beating phenomena arising from well defined
molecular orbitals reflective of the nanotube chirality.
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Spin Orbit Coupling in Carbon Nanotubes

The Spin Orbit interaction is a quantum relativistic effect due to the attractive
potential of neighboring carbon atoms. It is given by

HSO = �

4m2c2 (∇V × p) · σ ,

where V(r) is the atomic potential, m the free electron mass, p the electron
momentum and σ the Pauli′s spin matrix.

Recently it has been proposed that a small gap can open on the two Dirac
points of graphene due to spin-orbital coupling (SOC) [58], which at the same
time makes the system a spin-Hall insulator [59] with quantized spin Hall conduc-
tance. However it was shown [60] that while the spin-orbit interaction in graphene
is of the order of 4 meV, it opens up a gap of the order of 10−3meV at the Dirac
points, thus the predicted quantum spin Hall effect in graphene can only occur at
unrealistically low temperature. The SOC effects was recently largely investigated
[61, 62] also in CNs. In some papers was shown that local curvature of the graphene
sheet induces an extra spin-orbit coupling term, thus the effect of SOC on derived
materials of graphene like CNs can give a significant contribution.

We report here some results presented in a recent paper [63] and in agreement
with previous calculations [62]. As we discussed above a continuum model for the
effective spin orbit interaction in graphene can be derived from a tight-binding
model which includes the π and σ bands and the combined effects of the intra-
atomic spin orbit coupling (�) and curvature was analyzed. Thus was shown that
local curvature of the graphene sheet induces an extra spin-orbit coupling term
�curv ∝ �, similar to the Rashba interaction due to the electric field.

Although the spin-orbit coupling for flat graphene is rather weak, some signif-
icant effects can be found in CNs, especially when their radius is quite small in
fact curvature effects on the scale of the distance between neighboring atoms could
increase the strength of the spin-orbit coupling at least one order of magnitude
with respect that obtained for a flat surface. In a curved graphene sheet, a hopping
between the orbitals in the π and σ bands is induced [62]. This hopping terms break
the isotropy of the lattice and lead to an effective anisotropic coupling between the
π and σ bands in momentum space.

Here we start from Eq. 11. We use cylindrical coordinates, y,φ, and define the
spin orientations |↑〉, |↓〉 as parallel and antiparallel to the y axis. Thus we introduce
in the boundary ν ≡ (mw − nw + 3m)/3. After integrating over the circumference
of the CN

∫
dφ, the Hamiltonian of a CN including SOC reads

HS−O R

( |Aτ 〉
|Bτ 〉

)

=
⎛

⎝
0 �(k − iν/R)1̂+ τ i�Rπσ̂z

�(k + iν/R)1̂− τ i�Rπσ̂z 0

⎞

⎠

⎛

⎝
|Aτ 〉
|Bτ 〉

⎞

⎠

(23)
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where the τ = ±1 corresponds to the K(K′) Dirac point, |Aτ 〉 are envelope functions
associated to the K and K′ points of the Brillouin zone and corresponding to states
located at the A and B sublattices, respectively. Notice that H has to be taken as
a 4 × 4 Matrix, while 1̂ is the identity in the space of the spin. The basis states
|Aτ 〉 and |Bτ 〉 are also spinors in spin subspace where the matrix ŝz acts on with the
spin orientations |↑〉, |↓〉 defined along the nanotube axis. This is different from the
approach reported in [62] where the spins are defined perpendicular to the nanotube
surface. However the spin-orbit term i�Rπ ŝz is equivalent to the term proportional
to σ̂y obtained by Ando [62] while the the results obtained by applying Eq. 23 are
in agreement with the ones reported in [61].

It follows that an energy gap π�R appears also for metallic CNs at low energies
[62, 64]. This gap can be seen as a consequence of the Berry phase gained by the
electron after completing a closed trajectory around the circumference of the CN
under the effect of SOC (�R) [62]. As a further effect �R can also give rise to a
small spin splitting [62, 64]

εq = ±�vF

R

√

z2 + (q2R2 + ν2)+ 2νz�ŝz, (24)

where q = k ± Ks and z = π R�R
�vF

. Now we want focus on the role of the curvature
in small radius CNs. In fact it results that in absence of an external electric (Rashba)
field (E =0). For a single wall nanotube of radius R we get R�R : 6.5 meVÅ
(see [63]) to be compared to �vF : 5 eVÅ.

This effect can modify in a significant way the Fermi velocity for small
radius CNs. Here we limit ourselves to the case of metallic CNs and to the lowest
band so that, from Eq. 24 we obtain

ṽF(εF) = ∂ε

�∂k
= vF

√

1−
(
π�R

εF

)2

, (25)

Fig. 10 (Left) Bandstructure of a metallic CN modified by the SOC. (Right) The renormalized
Fermi velocity for three different metallic CNs as (10, 10) (R : 7Å), (6, 6) ((R : 4Å) and (3, 3)
(R : 2Å) armchair ones
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where εF can be taken as the doping level. The renormalized Fermi velocity for
three different metallic CNs as (10, 10), (6, 6) and (3, 3) armchair ones is plotted in
Fig. 9 where also the corrections to the banstructure are reported.

Quantum Transport in Carbon Nanotubes

Ballistic Transport

When the length of the conductor is smaller than the electronic mean free path, then
the electronic transport is ballistic. This ballistic regime refers to the transport of
electrons in a medium where the electrical resistivity due to the scattering, by the
atoms, molecules or impurities in the medium itself, is negligible or absent.

Conductance Quantization

The ballistic one-dimensional wire is a nanometric solid-state device in which the
transverse motion (along ϕ for the CN in Fig. 5) is quantized into discrete modes,
and the longitudinal motion (y direction for the for the CN in Fig. 5) is free. In
this case, electrons propagate freely down to a clean narrow pipe and electronic
transport with no scattering can occur. In this case each transverse wave guide mode
or conducting channel contributes G0 = e2/h(≈ 12.9 k�) to the total conductance.
Calculations indicate that conducting single-shell nanotubes have two conductance
channels [39, 40, 65]. This predicts that the conductance of a single-wall nanotube
is independent of diameter and length, i.e. according to the Landauer formula [66],

G(E) = 2e2

h
N⊥(E). (26)

This value accounts for the contribution of the two spin projections and the two
propagating modes of the nanotubes, while N⊥(E) is the energy-dependent number
of available quantum channels.

Thus in the case of perfect (reflection less) or ohmic contacts between the CNT
and the metallic voltage probes the expected energy-dependent conductance is easily
obtained, from band structure calculations, or from the DOS, by counting the num-
ber of channels at a given energy. As we show in Fig. 11 a metallic nanotube present
two quantum channels at the Fermi energy E = 0, or charge-neutrality point, result-
ing in G(0) = 2G0. At higher energies, the conductance increases as more channels
become available to conduction.

Thus in the ideal case CNs conduct current ballistically and do not dissipate heat.
The nanotubes are several orders of magnitude greater in size and stability than other
typical room-temperature quantum conductors.

The quantization of the conductance has been observed at room temperature in
fibers of multiwall nanotubes [68]. The experimental method involved measuring
the conductance of nanotubes by replacing the tip of a scanning probe microscope
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Fig. 11 (Right) Density of states and ideal ballistic conductance for a metallic nanotube. (Left)
Schematic diagram of a SWNT device illustrating the multiple electron reflection that gives rise
to the observed interference pattern. Below T = 10◦K oscillations in ∂I/∂V which are quasiperi-
odic in Vg due to resonant tunneling. Average differential conductance around 3.2e2/h. Adapted
from [67]

with a nanotube fiber. The conductance of arc-produced MWNTs is one unit of
the conductance quantum G0. Since multiwall nanotubes consist of several con-
centrically arranged single-wall nanotubes, one would not expect them to behave
as one-dimensional conductors. If adjacent carbon layers interact as in graphite,
electrons would not be confined to one layer. The results of [68] suggest, however,
that the current mainly flows through the outermost layer. However the coefficent
of the conductance quantum was found to have some suprising integer and non-
integer values, such as 0.5G0. Thus in a more recent letters [69] the authors, using
a scattering technique calculated the ballistic quantum conductance and found that
interwall interactions not only block some of the quantum conductance channels, but
also redistribute the current nonuniformly over individual tubes across the structure.
these results provide a natural explanation for the unexpected integer and noninteger
conductance values reported for multiwall nanotubes in [68].

Some other experiments on metallic tubes have measured only a single channel
G0 at low bias, instead of the two theoretically predicted channels. Several theoret-
ical papers have proposed an interpretation in terms of the hybridization between
carbon and metal orbitals at the contact [70–77]. For higher bias voltage between
conducting probes, in order to explain the experimental observation of limited turn-
on current with increasing bias voltage, was supposed that the modifications of
bands along the tube axis produce additional backscattering analogous to a Bragg
reflection [78].

In more recent experiments was shown that also single-walled carbon nanotubes
are 1D conductors that exhibit ballistic conduction [67, 79–82]. In Ref. [83] was
shown a nonlinear resistance vs distance behavior as the nanotube is probed along
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its length. This is an indication of elastic electronic transport in one-dimensional
systems. This has been related to the ballistic transport in single wall nanotube.

Fabry-Perot Interference

In the ballistic regime the discussed wave nature of the propagating electrons yields
also some interesting interference effects as the famous Fabry-Perot interference,
light interference in cavity between multiply reflected light waves (see Fig. 10).
In this case an analogous quantum interference can be observed between multiply
reflected electron waves.

The latter interference becomes increasingly important, leading to dramatic
changes in device properties when the size of a device becomes comparable to
the electron coherence length [84–91], in a typical quantum ballistic regime which
replaces the classical diffusive motion of electrons. The classical-to-quantum tran-
sition in device behaviour suggested the possibility for nanometer-sized electronic
elements that make use of quantum coherence [84, 85, 90, 91] and among these CNs
were promising candidates for realizing such device elements.

In Ref. [67] an example of a coherent molecular electronic device whose
behaviour is explicitly dependent on quantum interference between propagating
electron waves – a Fabry–Perot electron resonator based on individual single-
walled carbon nanotubes with near-perfect ohmic contacts to electrodes. In these
devices, the nanotubes act as coherent electron waveguides [68, 92, 93], with
the resonant cavity formed between the two nanotube–electrode interfaces. The
results were explained by using a theoretical model based on the multichannel
Landauer–Buttiker formalism [94–96] to analyze the device characteristics and find
that coupling between the two propagating modes of the nanotubes caused by elec-
tron scattering at the nanotube–electrode interfaces is important. in this model the
nanotube is considered as a coherent waveguide with two propagating modes.

Thus in Ref. [67] a clear signature of interference effects was measured in the
∂I/∂V plots as a function of V and Vg measured at low temperatures. The data
clearly indicated that the electrical behaviour of these nanotube devices is distinct
from those reported that exhibited a Coulomb-blockade behaviour. An accurate data
analysis provided experimental evidence that the electron scattering occurs mostly
at the nanotube–metal interface and that electrons pass through the nanotube bal-
listically. A schematic diagram of a SWNT device illustrating the multiple electron
reflection that gives rise to the observed interference pattern is reported in Fig. 11.

Coulomb-Blockade Regime

For low contact resistances transport is mainly determined by quantum interference
discussed above whereas for high contact resistances, a nanotube can behave as a
quantum dot, in which Coulomb blockade determines the transport properties, Here
we discuss the latter regime in detail.
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The Coulomb-Blockade Regime: General Theory

When two contacts not highly transparent are attached to a small device (next island
or Quantum Dot (QD)), the measurements of the conductance and the differential
conductivity reflect the strong Coulomb repulsion in the island. For temperatures
that are typically below 1◦K, the zero-bias conductance shows oscillations as a func-
tion of the gate voltage. This is characteristic of the so-called Coulomb blockade
(CB) regime [97, 98], and the gate voltage between two peaks is related to the energy
required to overcome the Coulomb repulsion when adding an electron between the
barriers created by the contacts [99, 100]. Thus in these devices, because the ther-
mal energy kBT is below the energy for adding an additional electron to the device
(μN = E(N)−E(N−1)), low bias (small Vsd) transport is characterized by a current
carried by successive discrete charging and discharging of the dot with a just one
electron.

This phenomenon, known as single electron tunneling (SET or quantized charge
transport), was observed in many experiments in vertical QDs at very small tem-
perature [101–103]. In this regime the ground state energy determines strongly the
conductance and the period in Coulomb Oscillations (COs). COs correspond to the
peaks observed in conductance as a function of gate potential (Vg) and are crudely
described by the Coulomb Blockade mechanism [104]: the N− th conductance peak
occurs when [105] αeVg(N) = μN where α = Cg

C�
is the ratio of the gate capacitance

to the total capacitance of the device (see Fig. 12).
The peaks and their shape strongly depend on the temperature as explained by

the Beenakker formula for the resonant tunneling conductance [104, 106]

G(Vg) = G0

∞∑

q=1

Vg − μq

kB T sinh
(

Vg−μq
kB T

) (27)

here μ1, . . . ,μN represent the positions of the peaks.

Microscopic Models

Here we introduce a simple microscopic model, which was developed for a metallic
CN but can be easily extended to general CNs.

In a previous section we introduced the energy dispersion (Eq. 10) ε(�w, m, k) by
assuming an ideal CN of infinite length. When we take into account a CN between
two contacts at a fixed distance (L) we can assume L as the CN length. It follows the
quantization in the dispersion relation due to the finite longitudinal size of the tube,
obtained by replacing the continuous values of k with the discrete values kn = nπ/L.
The longitudinal quantization introduces a parameter which also gives a thermal
limit for the atomic like behavior: in fact k wave vectors have to be taken as a
continuum if kBT is as a critical value εc = vF(h/L) and as a discrete set if the
temperature is below (or near) εc.

Thus we can write the single electron energies near the Fermi points as
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ε �wn,m,p,s → εk ≈ vF�

(
|nπ

L
− αKs|

)
≡ vFk,

the expression in the right corresponding to the lowest subband of a metallic CNs.
Thus we introduce different operators for the electrons belonging to each branch:
right going operators c†

R,k,s
and left going ones c†

L,k,s
for electrons with k > 0 (k < 0).

In terms of these operators the free and interaction Hamiltonians can be written as

H0 = vF

∑

k,s

kc†
R,k,s

cR,k,s + vF

∑

k,s

kc†
L,k,s

cL,k,s (28)

Hint = 1

L

∑

k,k′,q,s,s′

(
Vs,s′

k,p (q)c†
k+q,sc

†

p−q,s′cp,s′ck,s

)
. (29)

Here ck ≡ cR,k if k > 0 and ck ≡ cL,k if k < 0, while Vs,s′
k,p (q) is the Fourier transform

of the electron electron interaction.
Starting from the Hamiltonian above it is possible to take into account both the

correlation effects and the influence of the long range component of the e–e interac-
tion. However a short ranged interaction model [107] can simplify the calculations
of the energies of the electrons in the QD. The Hamiltonian obtained by summing

Fig. 12 (Left) The Model with linearized subbands near the Fermi points for a metallic CN.
(Right) When the contacts are not highly transparent the conductance and the differential con-
ductivity reflect the strong Coulomb repulsion in the CNs. (Right) In nanometric devices, when
the thermal energy kBT is below the energy for adding an additional electron to the device
μN = E(N) − E(N − 1) Thus the low bias (small Vsd) transport is characterized by a current
carried by successive discrete charging and discharging of the device with just one electron. It fol-
lows that the ground state energy determines strongly the conductance and the period in Coulomb
Oscillations (COs).These COs correspond to the peaks observed in conductance as a function of
gate potential Vg. The N-th conductance peak occurs when αeVg(N) = μN . The Addition Energy
needed to place an extra electron in the device is analogous to the electron affinity for a real atom
EA

N = μN+1 − μN
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Eqs. 28 and 29 in this approach just depends on two interaction parameters [107],
J and V0 so that

H =
∑

n,ζ ,p,s

εn,ζ ,pn̂n,ζ ,p,s + V0
N(N + 1)

2
− J

∑

n,ζ ,p,s

∑

n′,ζ ′,p′,s
δs,s′ n̂n,ζ ,p,sn̂n,ζ ,p,s (30)

Symmetries in the Bandstructure. For a metallic CN near each Fermi point we
obtain that the Hamiltonian above is represented by a typical bandstructure with
linear branches depending on k = k + αKs (α = ±1 labels the Fermi point).
After the quantization, in the ideal case, we obtain shells with an 8-fold degeneracy
(due to σ (spin symmetry), α (K,−K lattice symmetry), ζ ((k − K), (K − k)) (see
Fig. 13.C.left).

However some asymmetries in the bandstructure were both predicted and
observed. In order to take into account the strong asymmetries measured we
modify the dispersion relation. A first correction has to be introduced because of
the ‘longitudinal incommensurability’: in general K is not a multiple of π/L so
K = (N + δN)πL with δN < 1 and the energy shift is �ε = vF

hδN
L . A second cor-

rection is due to the subband mismatch (δSM). The single electron energy levels are:

εl,σ ,p = �vF|lπ
L
+ pK| + (1− p)

2
δSM (31)

where p = ±1.

Fig. 13 (Left) The dispersion relation and the quantized levels. The boxes in the figure represent
energy levels and can be filled by a pair of electrons with opposite spins. (a) The general case with-
out any degeneracy. (b) The fourfold degeneracy case. (c) The eightfold degeneracy case. (Left) A
simple scheme for the aufbau which takes in account the spin in the dot. (Top) The degenerate case
with the spin period =, 1/2, 1, 1/2, 0. (Bottom) The non degenerate case with spin period 0, 1/2
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Each choice of parameters gives a different degeneracy for the quantum levels:
8-fold degeneracy corresponds to δSM = 0 and K = nπL ; 4-fold degeneracy is found
if we put just δSM = 0 and 2 fold degeneracy in the general case.

Next we just consider particles near the same Fermi point and do not take into
account the labels α. Obviously we have to consider also α − α′ interaction for
particles near two different Fermi points.

Experiments and Theoretical Results about Coulomb Blockade

Many experiments showed Coulomb Oscillations in Carbon Nanotubes e. g. in 1997
Bockrath and coworkers [97] in a rope below about 10◦K observed dramatic peaks
in the conductance as a function of the gate voltage that modulated the number of
electrons in the rope. These typical Coulomb blockade peaks in the zero bias con-
ductance allowed to investigate the energy levels of interacting electrons. In fact
in CB a CN behaves as an artificial atom and reveals its shell structure [98]. In
this sense the measurements reported in [108] (see Fig. 14.left) for clean ‘closed’
nanotube dots showed complete Coulomb blockade and enable to deduce some
properties from the addition energy of SWCNT. This ‘addition energy’, EA(n) is
the energy needed to place an extra electron (the n-th) in a QD, defined analo-
gously to the electron affinity for a real atom. It was extracted from measurements
as EA ∝ �Vg. Thus was possible discuss the role which the Coulomb interaction
could play in a 1D at small temperatures(T = 0.1÷ 0.3◦K).

In Fig. 14.left, the small bias experimental conductance dI/dV as a function of
gate voltage is shown. The SET prevails as revealed by the fine structure of the

Fig. 14 (Left) Conductance vs gate voltage for a nanotube quantum dot at T = 300 mK with
evident Coulomb blockade peaks. Spacings �Vg of the peaks in. The index n counts the added
electrons relative to an arbitrary zero. For clarity only even n’s are indicated. (Right) A greyscale
plot (darker = more positive) of dI/dV vs Vg and V at T = 100 mK. The index n counts electrons
added relative to the leftmost diamond. From Refs. [108, 109]
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conductance spectrum. Each conductance peak represents the addition of an extra
charge to the nanotube. The periodicity of the peaks is related to the size of the
coherent conducting island. In the case of an irregular conductance spectrum, the
nanotube is believed to be split into a series of conducting parts separated by local
tunneling contacts.

The overall diagram of conductance of a QD as a function of bias and gate volt-
age generally appears as a diamond shaped structure referred to as the Coulomb
diagram (see Fig. 14.top.right). For a fixed gate voltage, the current increases step
wise with increasing bias voltage, producing the excited-state spectrum. Each step in
the current is related to a new higher-lying energy level that enters the bias window.
Within each diamond, the electron number of the nanotube is fixed and the current
vanishes. The boundary of each diamond represents the transition between N and
N + 1 electrons, and the parallel lines outside the diamonds correspond to excited
states. Such a plot is well understood within the constant-interaction model (Eq. 30).

Some significant deviations from this simple picture were, however
observed [110]. The ground-state spin configuration in a nanotube was determined
by studying the transport spectrum in a magnetic field [111]; for a metallic CN the
total spin of the ground state alternates between 0 and 1/2 as successive electrons
are added, demonstrating a simple shell-filling, or even-odd, effect, i.e., successive
electrons occupy the levels in spin-up and spin-down pairs (see Fig. 13.right). The
semiconducting case was analyzed in [112]. In Ref. [113] the authors used magnetic
field effect to lift the orbital degeneracy thus they were able to estimate some value
of the orbital magnetic moment.

The CB measurements on suspended single-wall carbon nanotubes have also
shown spectacular signatures of phonon assisted tunneling, mediated by stretching
modes [114].

Effects of long range interaction. In Ref. [115] the effects of the long range
terms of the interaction in a SWNT were investigated and the results were com-
pared with the experiments at very low temperature T [108]. Thus was explained
the observed damping in the addition energy for a SWNTs [108] at T : 200mK as
an effect of the long range of the e–e repulsion.

In order to investigate the effects on low dimensional electron systems due to
the range of electron electron repulsion, was introduced a model for the interac-
tion which interpolates well between short and long range regimes. This model
predicts oscillations in the addition energy due to the Hund′s Rule quite similar
to the ones observed in QDs (usually the Interaction between the electrons with
momenta near the 2 Fermi Points is very small so that we have two independent
4-fold Degenerate Hamiltonians). The oscillations periodicity is 4 for the Model
(8 for a system with two Fermi points, see Fig. 13.right). The oscillations ampli-
tude is due to an exchange term corresponding to the short range interaction and the
effect of a long range interaction is a damping of the oscillations when the num-
ber of electrons in the System increases (compare Fig. 15.left with the theoretical
predictions in Fig. 15.right).

Asymmetries in the bandstructures The calculations above were based on the
symmetric subbands. However the real band structures of measured CN’s can show
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Fig. 15 On the left the analytical Aufbau results for the addition energy versus the number of elec-
trons of a four fold degeneracy model corresponding to different values of the range (long range
black, short range dashed red line). We show how the damping in the oscillations is due to a long
range interaction while it does not appear for a short range model. The predictions can be com-
pared with the measured addition energy in the experiment of [118]. (Right) COs conductance vs
gate voltage at different temperatures calculated following the classical CB theory. Theoretical cal-
culations show that the fine structure peaks are appreciable just for very low temperatures (bottom
black line)

some differences with respect to the ideal case discussed above. In fact some exper-
iments in recent years do not find this high symmetry as result and some different
hypotheses in order to explain this discrepancy were formulated.

As was discussed in [115] this symmetry has relevant effects on the Aufbau of the
CN’s shells i.e. on the spin oscillations (see Fig. 15). In the experiments reported in
[109] two different shell filling models are put forward: the first one, when the sub-
band mismatch dominates, predicts that the spin in the SWCNT oscillates between
S = 0 and S = 1/2 while when the subband mismatch is negligible the spin in the
SWCNT oscillates between S = 0, S = 1/2 and S = 1 (see Fig. 13.right). In Ref.
[108] the authors say ‘the sole orbital symmetry is a two-fold one, corresponding to
a K-K′ subband degeneracy and resulting from the equivalence of the two atoms in
the primitive cell of graphene structure’.

A secondary effect of the asymmetry in the Bandstructure is related to the posi-
tions of the CB peaks in the plot Vg−G. Thus experimentally we can understand the
symmetry properties of a CN by observing the grouping of the peaks in the conduc-
tance versus gate potential. Thus in the experiment reported in [108] no four-fold
grouping was observed because degeneracy was lifted by a mixing between states
due either to defects or to the contacts. Nevertheless a different experiment [109]
displays conductance peaks in clusters of four, indicating that there is a four fold
degeneracy (see Fig. 14.right.bottom and compare with Fig. 15.right where also the
temperature dependence according the Beenakker formula is included).

More recently spin states in carbon nanotube quantum dots have been revealed
in various systems with the Kondo effect [116–118] and the simple shell
structures [119–121]. These experiments allowed a comparison with the predicted
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two or four-electron shell structures, depending on the relation between the
zero-dimensional level spacing and the subband mismatch. In Ref. [119] low-
temperature transport measurements have been carried out on single-wall carbon
nanotube quantum dots in a weakly coupled regime in magnetic fields up to 8
Tesla. Four-electron shell filling was observed, and the magnetic field evolution of
each Coulomb peak was investigated, in which magnetic field induced spin flip and
resulting spin polarization were observed. Excitation spectroscopy measurements
have revealed Zeeman splitting of single particle states for one electron in the shell,
and demonstrated singlet and triplet states with direct observation of the exchange
splitting at zero-magnetic field for two electrons in the shell, the simplest example
of the Hund’s rule. The total spin in an individual single-wall carbon nanotube quan-
tum dot was also studied in [122] by using the ratio of the saturation currents of the
first steps of Coulomb staircases for positive and negative biases. The current ratio
reflects the total-spin transition that is increased or decreased when the dot is con-
nected to strongly asymmetric tunnel barriers. The total spin states with and without
magnetic fields can be also traced by this method.

Spin-orbit interaction Recently also the effects of the Spin-orbit interaction and
anomalous spin relaxation was investigated in carbon nanotube quantum dots in
order to propose the CN QD as devices for the spintronics. In this sense in a recent
papers [123] was shown that the CNT Double Quantum Dot has clear shell struc-
tures of both four and eight electrons, with the singlet-triplet qubit present in the
four-electron shells. In Ref. [123] the authors observed inelastic co-tunneling via
the singlet and triplet states, which they used to probe the splitting between singlet
and triplet, in good agreement with theory.

Luttinger liquid

Transport in 1 Dimension – Electronic correlations have been predicted to domi-
nate the characteristic features in quasi one dimensional (1D) interacting electron
systems. This property, commonly referred to as Tomonaga-Luttinger liquid (TLL
or LL) behaviour [124–126], has recently moved into the focus of attention by
physicists, also because in recent years several electrical transport experiments for
a variety of 1D devices, such as semiconductor quantum wires [127] (QWs) and
carbon nanotubes (CNs) [128, 129] have shown this behaviour.

In a 1D electron liquid Landau quasiparticles are unstable and the low-energy
excitations take the form of plasmons (collective electron-hole pair modes): this
is known as the breakdown of the Fermi liquid picture in 1D. The LL state has
two main features: (1) the power-law dependence of physical quantities, such as
the tunneling density of states (TDOS), as a function of energy or temperature;
(2) the spin-charge separation: an additional electron in the LL decays into decou-
pled spin and charge wave packets, with different velocities for charge and spin. It
follows that 1D electron liquids are characterized by the power-law dependence of
some physical quantities as a function of the energy or the temperature. Thus the
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tunneling conductance G reflects the power law dependence of the DOS in a small
bias experiment [130, 131]

G = dI/dV ∝ Tαbulk (32)

for eVb = kBT , where Vb is the bias voltage, T is the temperature and kB is
Boltzmann′s constant. The exponent αbulk known as bulk critical exponent, can be
calculated in several different ways as we discuss below.

The Luttinger Model and the Bosonization Approach

A Tomonaga-Luttinger liquid is a theoretical model describing interacting electrons
in a one-dimensional conductor [132–134]. The typical Luttinger model starts from
the hypothesis that the Fermi surface consists of two Fermi points, in the neigh-
borhood of which the dispersion curve can be approximated by straight lines with
equations

εk ≈ vF(|k| − kF) ≡ vFk. (33)

Here we introduce the creation (annihilation) operators for the electrons â†
k,s with

fixed momentum and spin, and we rewrite the Hamiltonian in Eqs. 28 and 41 in
the limit of short range interactions. The scattering processes are usually classified
according to the different electrons involved and the coupling strengths labeled with
g are often taken as constants. In this case, as discussed in detail by Solyom [132],

we can substitute Vs,s′
k,p (q) with 8 constants (here we limit to 6 ones because we

neglect the Umklapp scattering as we explain below). In general we should take
into account the dependence on k, p and q, however in a model with a bandwidth
cut-off, where all momenta are restricted to a small region near the Fermi points,
the momentum dependence of the coupling is usually neglected. Thus the kinetic
energy takes the form

H0 = vF

∑

k,s

(
(k − kF)a†

+,k,sa+,k,s + (−k − kF)a†
−,k,sa−,k,s

)

= 2πvF

L

∑

q>0,α=±,s

ρα,s(q)ρα,s(−q),
(34)

where density operators for spin projections s =↑,↓ have been introduced:

ρ±,s(q) =
∑

k

a†
±,k+q,sa±,k,s . (35)

Interaction For what concerns the electron-electron interaction, the momentum

conservation allows only for four processes, corresponding to Vs,s′
k,p (q) in Eq. 29:
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1. the Forward Scattering in the same branch, gs,s′
4 for k and p in the same branch

and small q (transferred momentum);

2. the Forward Scattering involving two branches gs,s′
2 for where k and p are

opposite and q is small;

3. the Backward Scattering (gs,s′
1 ) which involves electrons in opposite branches

with large transferred momentum (of order 2kF).

4. the Umklapp scattering (gs,s′
3 ) additional process significant just at half-filling.

Thus in our case we neglect gs,s′
3 since the sample is assumed to be doped.

Here we take in account just two types of interaction. First, the “backward scat-
tering” (kF, s;−kF, t) → (−kF, s; kF, t) which for s �= t cannot be rewritten as an
effective forward scattering. The corresponding Hamiltonian is

Hint,1 = 1

L

∑

k,p,q,s,t

g1a†
+,k,sa

†
−,p,ta+,p+2kF+q,ta−,k−2kF−q,s. (36)

And, of course, there is also the forward scattering

Hint,2 = 1

2L

∑

q,α,s,t

(
g2(q)ρα,s(q)ρ−α,t(−q)+ g4(q)ρα,s(q)ρα,t(−q)

)
. (37)

Exact Solution. The full Hamiltonian above, H0 + Hint defines the simplest
model for interacting electrons in 1D. A simple solvable case is the Tomonaga-
Luttinger model [124, 125], where only forward scattering g2 is taken into account
(g1= g3= g4= 0). It has been solved by Mattis and Lieb [126], who showed that
this model describes a particular type of system where the conventional Fermi sur-
face, defined in terms of a step in the momentum distribution, does not exist for
arbitrarily small g2. Haldane [135] later extended their analysis to a more general
situation and coined the term ‘Luttinger liquid’ in analogy with the Fermi liquid.

The usual diagonalization of the Tomonaga- Luttinger hamiltonian is based on
the so-called bosonization scheme. The density operators ρ(q) act like Bose cre-
ation and annihilation operators of elementary excitations with energy vFq and
momentum q.

Several important quantities can be exactly calculated for the LL model, includ-
ing the momentum distribution function [126] and various response functions [132],
which generally exhibit power-law behavior [134, 136, 137].

All properties of a TL liquid can be described in terms of only two effective
parameters per degree of freedom which take over in 1D the role of the Landau
parameters familiar from Fermi liquid theory.

In particular the low-energy properties of a homogeneous 1D electron system
could be completely specified by the TL coefficients corresponding to the interaction
(gs,σ

i ) and the kinetic energy (vF) in the limit of ideal TL liquid.
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Four TL parameters, depending on g and vF , characterize the low energy prop-
erties of interacting spinful electrons moving in one channel: the parameter Kν

fixes the exponents for most of the power laws and vν is the velocity of the long
wavelength excitations: ν = ρ for the charge and ν = σ for the spin. The param-
eters [138] Kρ and vρ/σ are easily obtained as functions of gs,σ

i and vF by various
techniques found in textbooks [132].

Kν =
√
πvF + gν4 − gν2
πvF + gν4 + gν2

(38)

vν =
√
[

vF + gν4
π

]2

−
(

gν2
π

)2

(39)

α = 1

2

[(

vF + gσ4
π

)
1

vσ
+
(

vF + gρ4
π

)
1

vρ
− 2

]

(40)

where gσi = 1
2 (gp

i − g⊥i ) and gρi = 1
2 (g9

i + g⊥i ). Here α denotes the bulk critical
exponent which characterizes many properties of the transport behaviour of a 1D
device (e.g. the zero bias conductance as a function of T\,). Notice that g4 leads to
a small renormalization of the Fermi velocity, which is usually neglected.

The model described above, with linear branches and constant interaction in
momentum space is known as TL model and corresponds to a very short range
interaction (Dirac delta). The presence of a long range interaction in a 1D electron
system introduces in the model an infrared divergence and is quite difficult to solve.
Next we discuss the solutions for the case of Carbon Nanotubes obtained with a
Renormalization Group approach and a Dimensional Crossover.

Low-Energy Theory for Correlated Carbon Nanotubes

A formal description of the LL in CNs was developed at the end of 1990s because
CNs display complex quasi-1D characteristics, which are required to reconsider and
extend the basics of LL theory. In fact in CNs the Fermi surface is described by
four points of the Brillouin zone, instead of the two points found for a single chan-
nel. Moreover the transport properties of a CN depend also on the diameter and
chirality. Thus the LL theory was first developed for a metallic armchair SWCN
[139]. There the low-energy theory including Coulomb interactions is derived and
analyzed. It describes two fermion chains without interchain hopping but coupled
in a specific way by the interaction. The strong-coupling properties were studied by
bosonization, and consequences for experiments on single armchair nanotubes were
discussed.

The electronic properties of carbon nanotubes are due to the special bandstructure
of the π electrons in graphite [25, 27] as we discussed in Sect. “Electronic Structure
of Single-Wall Nanotubes”. The Fermi surface for a metallic CN, obtained start-
ing from Eq. 10, consists of two distinct Fermi points αK with α=±. As usually
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here the y-axis points along the tube direction and the circumferential variable is
0 ≤ φ ≤ 2π . As we discussed above since the basis of graphite contains two carbon
atoms, there are two sublattices p = ± shifted by the vector �d = (0, d), and hence
two degenerate Bloch states at each Fermi point αKs. The quantization of transverse
motion gives the ‘mass’ meff [26], according the Dirac fermions approach, which
vanishes for the lowest subband of a metallic CN.

Because the excitation of other transversal bands costs energy, the bandwidth
cutoff scale D we take in account just the lowest subband in the limit of linear
dispersion as shown in Fig. (12.left). Thus, the non interacting part of Hamiltonian
is a massless 1D Dirac Hamiltonian [26, 27]

H0 = −v
∑

pασ

p
∫

dy ψ†
pασ ∂yψ−pασ . (41)

Electron electron interaction. In order to introduce electron electron repulsion
we have to introduce the Coulomb interactions mediated by a screened potential.
Thus we start from the unscreened Coulomb repulsion(a0; a) in a wrapped 2D
geometry

V0(y− y′,ϕ − ϕ′) = e2/κ
√

(y− y′)2 + 4R2 sin2(ϕ − ϕ′)
. (42)

The Fourier transform V̂0(q) reads

V̂0(q) ≈ e2/κ√
2

[

K0

(
qR

2

)

I0

(
qR

2

)]

. (43)

Here the effects of electrons trapped in nonpropagating orbitals were incorporated
in terms of a dielectric constant κ , K0(q) denotes the modified Bessel function of
the second kind, I0(q) is the modified Bessel function of the first kind. The nanotube
radius R yields a natural Ultra Violet (UV) cutoff (for q ≈ 2π

R ) of the interaction.
We can also define a 1D potential V0 (the 1D limit of the complete interaction)

and the corresponding Fourier transform V0(k) for |kR| = 1,

V0(y) = 2e2

κπ

√
a2

0 + y2 + 4R2
K

⎛

⎝ 2R
√

a2
0 + y2 + 4R2

⎞

⎠ ;

V0(k) = e2

κ
[2| ln(kR)| + π ln 2] . (44)

with the complete elliptic integral of the first kind K(z).
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Scattering processes Thus we rewrite the coefficients gαi written for the short
range interaction in Fourier transform by analyzing the scattering processes allowed
for a CN. Thus we now distinguish four processes associated with the Fermi points
α = ±:

1. the ‘forward scattering’ (αFS) where α1 = α4 and α2 = α3
2. the ‘backscattering’ (αBS) with α1 = −α2 = α3 = −α4 while
3. at half-filling there could be an additional ‘Umklapp’ process (αUS) character-

ized by α1 = α2 = −α3 = −α4 which we neglect in what follows.
4. In CNs an additional ‘Forward scattering’ term (f) which measures the differ-

ence between intra- and inter-sublattice interactions, can be introduced following
[139, 140]. This term is due to the hard core of the Coulomb interaction. i.e. it
follows from the unscreened short range component of the interaction.

These processes are different from the conventional ones discussed above since they
do not necessarily mix right- and left-moving branches but rather involve different
Fermi points.

Forward Scattering The αFS interaction couples only the total 1D charge
densities,

H(0)
αFS =

1

2

∫

dydy′ρ(y)V0(y− y′)ρ(y′) , (45)

with ρ(y) =∑
pασ ψ

†
pασψpασ . If we now introduce an infra red cut off given by the

CN′s length, L as k ≥ qc = 2π
L we can define g2 ≈ V0(qc).

Obviously the continuum argument (used obtaining V(q) as a Fourier Transform
in Eq. 29) plays for |x| >> a while for |x| ≤ a, an additional FS term arises due to
the hard core of the Coulomb interaction,

H(1)
αFS = −f

∫

dx
∑

pαα′σσ ′
ψ†

pασψ
†

−pα′σ ′ψ−pα′σ ′ψpασ (46)

with f /a = γ e2/R. Evaluating f on the wrapped graphite lattice yields

γ =
√

3a

2πκa0

⎡

⎣1− 1
√

1+ a2/3a2
0

⎤

⎦ ≈ 0.1 . (47)

This process was not analyzed in term of the gi in the LL classical approach. In
the language of a Hubbard model, we have f /a = U − V where U = e2/R is the
on-site and V the nearest-neighbor Coulomb interaction. According to Eq. 47, this
difference is small compared to U.

Backward scattering. Thus we discuss αBS contributions. Since the discussed
Fourier Transform involves a rapidly oscillating factor exp[2iKx(x − x′)], these are
local processes which do not resolve sublattices,
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HαBS = b

2

∫

dy
∑

pp′ασσ ′
ψ†

pασψ
†

p′−ασ ′ψp′ασ ′ψp−ασ . (48)

Estimating the coupling constant we obtain b ≈ f , while for well-screened short-
ranged interactions, one has b >> f . In terms of gi we have b = g1 = V0(2Ks).

Bulk Critical exponent in CNs. For this LL model in the metallic armchair tube,
a single interaction parameter, g,

1

g
= K =

√

1+ g2

(2πvF)
≈
√

1+ U0(qc)

(2πvF)
,

will drive the power-law temperature-dependent for eV = kBT and voltage-
dependent for eV = kBT tunneling conductances.

Thus the critical exponent can be written in terms of g as

αbulk = 1

4
(g+ 1/g− 2) , (49)

which depends just on the forward scattering part of the interaction. Here U0 can
be read as the charging energy, whereas vFh/2L is the single-particle level spacing.
The charging energy follows from the capacitive properties of the metal-nanotube
junction and from the electronic structure, so that no universal value can be derived.

Accordingly, the low-temperature conductance dI/dV ∝ Vαbulk , while the linear
conductance becomes G(T) ∝ Tαbulk .

The conductance suppression at low temperature or bias has been shown to
become even more dramatic for tunneling into the end of a long nanotube, with
an exponent that we will calculate in a following section.

In order to estimate the value of the critical exponent we can follow the
calculation of Egger and Gogolin [139, 141], where was obtained

g =
{

1+ 8e2

πκ�v
[ln(L/2πR)+ 0.51]

}−1/2

. (50)

Thus, g is a function of the interaction strength and g< 1 corresponds to a repulsive
interaction. In the experiments [129], bulk tunneling was measured fitting the high-
temperature data, α ≈ 0.34 corresponding to a value of g ≈ 0.22, in agreement with
theoretical estimates [139, 140, 142].

Multi-wall carbon nanotubes and doping. The low-energy theory for multi-
wall carbon nanotubes including the long-ranged Coulomb interactions, internal
screening effects, and single-electron hopping between graphite shells was derived
and analyzed by bosonization methods. Characteristic Luttinger liquid power laws
are found for the tunneling density of states, with exponents approaching their Fermi
liquid value only very slowly as the number of conducting shells, N, increases.

The bulk critical exponent was calculated by using bosonization techniques [143]
and was obtained
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αbulk ≈ 1

4 N

(

KN + 1

KN
− 2

)

, (51)

where

1

KN
≈
√

1+ NU0(qc)

(2πvF)
.

Afterwards the tunneling density of states of doped multiwall nanotubes including
disorder and electron-electron interactions was computed and a non-conventional
bahaviour was found [144]. In Ref. [144] this behaviour was explained in terms of
a particularly effective and non-conventional Coulomb blockade (CB) for tunneling
into a strongly interacting disordered metal.

The discussed explanation in terms of conducting shells does not agree with the
measurements of the conductance which usually refer to the outer layer,also if the
electronic properties are influenced by the interaction with inner metallic cylinders.
Moreover MWNTs use to be significantly doped, which leads to the presence of a
large number of subbands at the Fermi level [152] (see Fig. 16.left). Thus the number
N in Eq. 51 is often assumed to be the number of subbands crossing the Fermi level.

The contribution of a large number of modes at low energies has then an appre-
ciable impact on the enhancement of observables like the tunneling density of states.
This issue is relevant for the investigation of the nanotubes of large radius that are
present in the MWNTs, which may have a large N. Experiments reported in [153],
where measurements of the tunneling conductance have been carried out in doped
MWNTs, with a number of subbands at the Fermi level N ≈ 10 − 20 (in the outer
layer).

Fig. 16 The degree of doping in CNTs corresponds to the position of the Fermi energy. From a
measurement of the conductance as a function of a gate voltage, which shifts the Fermi energy,
we can argue the doping level. Nanotubes can be turned to n-type semiconducting by potassium
Doping in a Vacuum, Vacuum Annealing or Electrostatic Doping while re-exposure to air reverts
NT to p-type [145]. In fact several groups have concluded that charge transfer from oxygen to
the nanotube leads to p-doping [146–149] while n-doping can be obtained by direct doping of the
tube with an electropositive element such as potassium [150, 151]. In MWNTs the experimental
conditions refer to a situation where Ns = 5 : 10 and the suppression of tunnelling in MWNT can
be softened by increasing the doping level
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We conclude that by doping carbon nanotubes it is possible to alter significantly
the electronic, mechanical and chemical properties of the tubes.

RG Approach to the Luttinger Liquid

In Refs. [154–158], was introduced a Renormalization group (RG) method, in order
to study the low-energy behaviour of the unscreened e–e repulsion in CNs. In some
of these papers a dimensional regularization approach was presented, useful, when
dealing with effects of the long-range Coulomb interaction. As we discuss below
this method allows to avoid the infrared singularities arising from the long-range
Coulomb interaction at D = 1.

Generalized Interaction

From the theoretical point of view, a relevant question is the determination of the
effects of the long-range Coulomb interaction in CNs. It is known that the Coulomb
interaction is not screened in one spatial dimension [159], although usually the e–e
interaction is taken actually as short-range (TL model). Thus a dimensional regu-
larization approach [160] was developed in order to analyze the low energy effects
of the divergent long-range Coulomb interaction in one dimension. The interaction
potential in arbitrary dimensions now reads

UD(r−r′) =
∫ 2π

0

∫ 2π

0

cDdϕdϕ′

4π2|r̄ − r̄′|u0 (ϕ, k) u0 (ϕ, p) u0
(
ϕ′, (k + q)

)
u0
(
ϕ′, (p− q)

)

= cD

|r − r′| . (52)

Here r is a vector in the D dimensional space and
_
r is a vector in D+ 1 dimensions.

As it is known, the Coulomb potential 1/|r| can be represented in three spatial
dimensions as the Fourier transform of the propagator 1/k2

1

|r| =
∫

d3k

(2π )3
eik·r 1

k2
. (53)

If the interaction is projected onto one spatial dimension, by integrating for instance
the modes in the transverse dimensions, then the Fourier transform has the usual
logarithmic dependence on the momentum [154]. We choose instead to integrate
formally a number 3 − D of dimensions, so that the long-range potential gets the
representation

1

|x| =
∫

dDk

(2π )D eikx c(D)

|k|D−1
, (54)

where c(D) = �((D− 1)/2)/(2
√
π)3−D.
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RG Solution for D=1

The starting Hamiltonian for the interacting 1D system is analogous to the sum of
Eqs. 41 and 45,

H =
∫ �

0

dp

(2π )
ψ+(p)ε(p)ψ(p)+

∫ �

0

dp

(2π )
ρ(p) U0(p) ρ(−p) (55)

where ρ(p) are density operators made of the electron modes ψ(p), and U0(p) corre-
sponds to the Fourier transform of the 1D interaction potential. Here it also present
an Ultra Violet cut-off, �, that can be estimated as the order of the bandwidth D.

In writing Eq. 55, were neglected backscattering processes that connect the two
branches of the dispersion relation. This is justified, in a first approximation, as
for the Coulomb interaction the processes with small momentum transfer have a
much larger strength than those with momentum transfer≈ 2kF . The backscattering
processes give rise, however, to a marginal interaction.

The one-loop polarizability �0(k,ωk) is given by the sum of particle-hole
contributions within each branch

�0(k,ωk) = vFk2

|v2
Fk2 − ω2

k |
. (56)

The effective interaction is found by the Dyson equation (see Fig. 16.right)

Ueff (k,ωk) = U0(k)

1− U0(k)�0(k,ωk)
, (57)

so that the self-energy follows: �eff = G0Ueff = G0Ueff = G0U0
1−U0�0

.
In the spirit of the GW approximation, vF can be assumed as a free parameter

that has to match the Fermi velocity in the fermion propagator after self-energy
corrections.

The polarization gives the effective interaction Ueff as in Eq. 57 which incorpo-
rates the effect of plasmons in the model. We compute the electron self-energy by
replacing the Coulomb potential by the effective interaction

i�(k, iωk) =i
e2

2π

∫ Ec

−Ec

dp

2π

∫ +∞

−∞
dωp

2π

1

i(ωp + ωk)− vF(p+ k)
U0(p)

1− e2

π

vFp2

v2
Fp2 + ω2

p

U0(p)

.
(58)

This approximation reproduces the exact anomalous dimension of the electron field
in the Luttinger model with a conventional short-range interaction [157]. The only
contributions in (58) depending on the bandwidth cutoff are terms linear in ωk an k.
There is no infrared catastrophe at ωk ≈ vFk, because of the correction in the slope
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of the plasmon dispersion relation, with respect to its bare value vF . The result that
we get for the renormalized electron propagator is

G−1(k,ωk) = Z−1

 (ωk − vFk)−�(k,ωk)

≈ Z−1

 (ωk − vFk)+ Z−1


 (ωk − vFk)
∫

dp

|p|
(1− f (p))2

2
√

f (p)
(
1+√f (p)

)2
+ . . . , (59)

where f (p) ≡ 1 + U0(p,ωc)/(2πvF) and Z1/2

 is the scale of the bare electron field

compared to that of the cutoff-independent electron field


bare(Ec) = Z1/2

 
 . (60)

The first RG flow equations, obtained analogously to the more general Eq. 67
obtained below, becomes

Ec
d

dEc
log Z
 (Ec) =

(
1−√f (Ec)

)2

8
√

f (Ec)
. (61)

As it is known [156], the critical exponent can be easily obtained from the right side
of Eq. 61 in the limit of log(Ec)→ 0. If we assume U(q) as a constant, g2, it results

√
f (q) =

√

1+ g2

(2πvF)
= K.

However as we discussed above the forward scattering involves small momentum
transferred, q, thus if we suppose q = qc (q→ qc is a limit for the natural infrared
cutoff), we obtain g2 = U(qc). Hence, as it is clear from a comparison with Eqs. 49
and 61,

αZ =
(
1−√f (qc)

)2

8
√

f (qc)
= 1

4

(

K + 1

K
− 2

)

.

Dimensional Regularization Near D=1

A different approach was proposed in [155], where was developed an analytic con-
tinuation in the number of dimensions, in order to regularize the infrared singularity
of the long-range Coulomb interaction at D = 1 [161]. The aim of this approach
was to find the effective interaction between the low-energy modes of CNs, which
have quite linear branches near the top of the subbands (KS). For this purpose it
needs to introduce the analytic continuation to a general dimension D of the linear
dispersion around each Fermi point, i.e. the Hamiltonian
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H = vF

∑

ασ

∫ �

0
dp|p|D−1

∫
d�

(2π )D ψ+ασ (p) σ · p ψασ (p)

+ e2
∫ �

0
dp|p|D−1

∫
d�

(2π )D ρ(p)
c(D)

|p|D−1
ρ(−p),

(62)

where the σi matrices are defined formally by {σi, σj} = 2δij. Here ρ(p) are den-
sity operators made of the electron modes ψασ (p), and c(D)/|p|D−1 corresponds to
the Fourier transform of the Coulomb potential in dimension D. Its usual logarith-
mic dependence on |p| at D = 1 is obtained by taking the 1D limit with c(D) =
�((D− 1)/2)/(2

√
π )3−D.

A self-consistent solution of the low-energy effective theory has been found in
[154, 155, 162] by determining the fixed-points of the RG transformations imple-
mented by the reduction of the cutoff �. The Renormalization Group theory with
a dimensional crossover starts from Anderson suggestion [163] that the Luttinger
model could be extended to 2D systems. The dimensional regularization approach
of Refs. [154, 155, 162] overcomes the problem of introducing such an external
parameter.

A phenomenological solution of the model was firstly obtained [154, 155, 162],
carrying a dependence on the transverse scale needed to define the 1D logarithmic
potential, which led to scale-dependent critical exponents and prevented a proper
scaling behavior of the model [154, 155, 162, 164].

The long-range Coulomb interaction may lead to the breakdown of the Fermi liq-
uid behavior at any dimension between D = 1 and D = 2, while the CN description
lies between that of a pure 1D system and the 2D graphite layer. Then an ana-
lytic continuation is introduced in the number D of dimensions which allows to
carry out the calculations needed, in order to accomplish the renormalization of the
long-range Coulomb interaction at D→ 1.

In the vicinity of D = 1, a crossover takes place to a behavior with a sharp
reduction of the electron quasiparticle weight and the DOS displays an effective
power-law behavior, with an increasingly large exponent. For values of D above the
crossover dimension, a clear signature of quasiparticles at low energies is obtained
and the DOS approaches the well-known behavior of the graphite layer.

As in the previous section the one-loop polarizability �0(k,ωk) is given by the
sum of particle-hole contributions within each branch. Now it is the analytic contin-
uation of the known result in Eq. 56, which we take away from D = 1, in order to
carry out a consistent regularization of the Coulomb interaction

�0(k,ωk) = b(D)
v2−D

F k2

|v2
Fk2 − ω2

k |(3−D)/2
, (63)

where b(D) = 2√
π

�((D+1)/2)2�((3−D)/2)

(2
√
π )D

�(D+1)
. The effective interaction is found by the

Dyson equation in Eq. 57, so that the self-energy �eff follows. After dressing
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the interaction with the polarization (63), the electron self-energy is given by the
expression

�(k,ωk) = −e2
∫ Ec/vF

0
dp|p|D−1

∫
d�

(2π )D

∫
dωp

2π

G(k − p,ωk − ωp)
−i

|p|D−1

c(D) + e2�(p,ωp)
. (64)

At general D, the self-energy (64) shows a logarithmic dependence on the cutoff at
small frequency ωk and small momentum k. This is the signature of the renormal-
ization of the electron field scale and the Fermi velocity. In the low-energy theory
with high-energy modes integrated out, the electron propagator becomes

1

G
= 1

G0
−� ≈ Z−1(ωk − vF σ · k)− Z−1f (D)

∞∑

n=0

(−1)ngn+1
(

n(3− D)

n(3− D)+ 2
ωk

+
(

1− 2

D

n(3− D)+ 1

n(3− D)+ 2

)

vF σ · k

)

hn(D) log(�), (65)

where g = (2b(D)c(D)e2)/vF , f (D) = 1

2Dπ (D+1)/2�(D/2)b(D)
and hn(D) =

�(n(3− D)/2+ 1/2)

�(n(3− D)/2+ 1)
. The quantity Z1/2 represents the scale of the bare electron

field compared to that of the renormalized electron field for which G is computed.
The effective coupling g is a function of the cut off with an initial value obtained

carrying out an expansion near D = 1 [156],

g0(D) = c(D)
e2

vF
≈ e2

π2vF

1

D− 1
. (66)

The renormalized propagator G must be cutoff-independent, as it leads to observable
quantities in the quantum theory. This condition is enforced by fixing the depen-
dence of the effective parameters Z and vF on �, as more states are integrated out
from high-energy shells. We get the differential renormalization group equations

�
d

d�
log Z(�) = −f (D)

∞∑

n=0

n(3− D)(−g)n+1

n(3− D)+ 2
hn(D) = −γ (g), (67)

�
d

d�
g(�) = −f (D)

2(D− 1)

D
g2
∞∑

n=0

(−g)n (3− D)n+ 1

(3− D)n+ 2
hn(D) = −β(g). (68)

For D = 1 the function in the r.h.s. of Eq. 68 vanishes, so that the 1D model has
formally a line of fixed-points, as it happens in the case of short-range interaction.
In the crossover approach shown in this section, the effective coupling g is sent to
strong coupling in the limit D→ 1, and the behavior of the RG flow in this regime
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remains to be checked. The dependence on D of the functions appearing in the RG
equations shows itself in the form of D − 1 and D − 3 factors, revealing that these
are the two critical dimensions, corresponding to a marginal and a renormalizable
theory, respectively.

In order to approach the limit D → 1, we have to look for the asymptotic
dependence on D of the functions appearing in the RG equations. We will see that
this dependence appears as D − 1 and D − 3 factors, revealing that these are the
two critical dimensions, corresponding to a marginal and a renormalizable theory,
respectively.

Starting with the function β(g), we need to carry out the sum at the right-hand-
side of Eq. 67. This is given in terms of the hypergeometric special functions [156].
However the β function near D = 1 can be approximated with the simple function
of g and d to first order in D− 1,

β(g) ≈ − f (D)

4

2(D− 1)

D

√
πg

(

1− 1√
1+ g

)

. (69)

The γ function can be expressed in the form

γ (g) = f (D)

4

3− D

2
gTD(g) (70)

where the series TD(g) is available on tables. For D = 1 it has the simple expression

T1(g) = √π 2
√

g+ 1− g− 2

g
√

g+ 1
(71)

The scaling of the electron wave function near D = 1 is therefore given by

γ (g) ≈ f (D)

4

√
π

(

2−√1+ g− 1√
1+ g

)

(72)

This coincides formally with the anomalous dimension that is found at D = 1 in the
exact solution of the Luttinger model, what provides an independent check of our
RG approach to the 1D system.

The dimensional crossover approach allows to calculate the critical exponent also
in the case of a divergent interaction for D→ 1. The DOS computed at dimensions
between 1 and 2 displays an effective power-law behavior which is given by n(ε) :
Z(ε)|ε|D−1, for several dimensions approaching D = 1. Then by introducing the
low-energy behavior of Z(ε) in order to analyze the linear dependence of log(n(ε))
on x = − log(�) it can be obtained

log(n(ε)) ≈ log Z(ε)+ (D− 1) log(|ε|) ≈ (αZ − (D− 1)) x ≡ αDx. (73)
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Here αZ can be easily written starting from Eq. 67, if we limit ourselves to a simple
first order expansion near x = 0 with (log(Z) ≈ γ (g0)x), where g0 is the initial value
of the coupling (see Eq. 66)

αZ ≈ T1(
√

1+ g0)g0
(3− D)f (D)(D+ 1)

8
. (74)

The analytic continuation in the number of dimensions allows to avoid the infrared
singularities that the long-range Coulomb interaction produces at D = 1, providing
insight, at the same time, about the fixed-points and universality classes of the theory
in the limit D→ 1.

In order to compare the results of this approach with experiments, as in [156], a
lower bound for the exponent of the DOS can be obtained by estimating the min-
imum of the absolute value of αD, for dimensions ranging between D = 1 and
D = 2. The evaluation can be carried out starting from Eqs. 73 and 74. A minimum
value for |αD| as a function of D, by introducing the expression of g0(D) in Eq. 66,
was obtained. From Fig. 17 we can see that the maximum value for αD (αM) corre-
sponds to a dimension between 1 and 1.2. If the number of subbands is increased,
then the value of |αM| decreases while the corresponding dimension approaches 1.

Doping in Multi Wall Carbon Nanotubes. In the case of doped MWNTs the
effect of having a number N of subbands crossing the Fermi level, which multiply
consequently the number of electron fields and terms in the hamiltonian has to be

Fig. 17 (Left) α as a function of the dimension, and we choose the maximum value of this function
between D = 1 and D = 2 as an estimate of the critical exponent. We find a value for α in the usual
undoped nanotube that reproduces the anomalous exponent measured experimentally (α ≈ −0.3),
corresponding to a dimension for the crossover between 1.1 and 1.2. (Right) Inset in a, dI/dV curves
taken on a bulk-contacted rope at temperatures T = 1.6 K, 8 K, 20 K and 35 K. Inset in b, dI/dV
curves taken on an end-contacted rope at temperatures T = 20 K, 40 K and 67 K. In both insets, a
straight line on the log–log plot is shown as a guide to the eye to indicate power-law behaviour. The
main panels a and b show these measurements collapsed onto a single curve by using the scaling
relations described in the text. The solid line is the theoretical result fitted to the data by using as a
fitting parameter. The values of resulting in the best fit to the data are = 0.46 in a and = 0.63 in b.
From [165]
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incorporated. Thus the analytic continuation to general dimension D of the one loop
polarizability becomes

�(k,ωk) = 2Nb(D)
v2−D

F k2

|v2
Fk2 − ω2

k |(3−D)/2
. (75)

The equations presented above have to be rewritten by including the number of
subbands so that αD in Eq. 73 becomes

αD ≈ g0T1(g0)
(3− D)f (D)(D+ 1)

8 N
− (D− 1). (76)

In [156] was obtained, in the limit of large N and small values of D− 1,

αZ ≈ − f (D)(3− D)(D+ 1)

8 N

√
π g0, (77)

and was obtained that αZ vanishes at large N as : 1/
√

N, and it diverges at D → 1
as 1/
√

D− 1.

Results and Experiments

Experimental Evidence of LL Behavior

In the last decade several transport and photoemission studies provided evidence
for the existence of the TLL state in CNs. In these studies, power-law behavior
of temperature and bias dependent conductivity and a power-law Fermi edge was
observed, respectively.

The non-Ohmic behavior of the conductance at low bias voltage, the so called
zero-bias anomaly (ZBA), is a clear signature of a tunneling contact between a
Fermi liquid and a strongly correlated system. Thus evidence of LL behavior in
CNs has been found in many experiments [129, 165], where a measurement of the
temperature dependence of the resistance was carried out, above a crossover tem-
perature Tc[166]. In Fig. 16.right are reported measurements of the conductance of
bundles (‘ropes’) of SWNTs as a function of temperature and voltage that agree
with predictions for tunnelling into a Luttinger liquid. In particular, we find that
the conductance and differential conductance scale as power laws with respect to
temperature and bias voltage, respectively, and that the functional forms and the
exponents are in good agreement with theoretical predictions [165]. In these exper-
iments (e.g. [129]), bulk tunnelling was measured fitting the high-temperature data,
α ≈ 0.34 corresponding to a value of g ≈ 0.22, in agreement with with theoretical
estimates [139, 156].

Power-law conductance behavior with exponent values in the range of theoretical
predictions was also found for crossed metallic junctions of SWNTs [167], giving
confidence in the manifestation of a Luttinger liquid state in small-diameter SWNTs.
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Alternatively, by means of angle-integrated photoemission measurements of
SWNTs, some power-law behavior of the spectral function and intensities was also
found to be in good agreement with LL model predictions [168].

Also the Nuclear magnetic resonance (NMR) can be a powerful method to char-
acterize correlated states of materials as it is sensitive to the density of states near
the Fermi edge. Recently experiments by Singer et al. [169] showed a deviation
from Fermi-liquid behavior in carbon nanotubes with an energy gap evident at low
temperatures.

Effects of Doping. The effect of doping was taken in account in [152]. There
was explored the electric-field effect of carbon nanotubes (NTs) in electrolytes. Due
to the large gate capacitance, Fermi energy shifts of order ±1V can be induced,
enabling to tune NTs from p to n-type. Consequently, large resistance changes are
measured. The measurements of a power law behaviour were also carried out in the
MWNTs by studying the tunneling of electrons into the CN. Nanotube/electrode
interfaces with low transparency as well as nanotube/nanotube junctions created
with atomic force microscope manipulation have been used. The tunneling conduc-
tance goes to zero as the temperature and bias are reduced, and the functional form
is consistent with a power law suppression of tunneling as a function of energy.
The exponent depends upon sample geometry. It has been reported that the values
of the critical exponent αbulk measured in 11 different samples range from 0.24 to
0.37 [153].

This variation can be accounted for within the RG approach reported above by
assuming that a large number of subbands, Ns is involved (N = 2 to N = 10).
Thus the effect of doping was studied in the suppression of tunneling observed in
MWNTs, incorporating as well the influence of the finite dimensions of the system.
The scaling approach reported above allowed to encompass the different values of
the critical exponent measured for the tunneling density of states in carbon nan-
otubes. Thus was predicted that further reduction of αbulk should be observed in
multiwalled nanotubes with a sizeable amount of doping.

From a theoretical point of view, in the case of nanotubes with a very large radius,
was found a pronounced crossover between a high-energy regime with persistent
quasiparticles and a low-energy regime with the properties of a one-dimensional
conductor.

Magnetic field effects on Luttinger Liquid behaviour. The effects of a trans-
verse magnetic field B, acting on CNs were also investigated in the last years.
Theoretically, it is predicted that a perpendicular B field modifies the DOS of a
CN [40], leading to the Landau level formation as we discussed above. In a recent
letter Kanda et al. [170] examined the dependence of G on perpendicular B fields
in MWNTs (see Fig. 18). They found that, in most cases, G is smaller for higher
magnetic fields, while αBulk is reduced by a factor 1/3 to 1/10, for B ranging from 0
to 4 T. Following the calculation proposed for a semiconducting quantum Wire [32]
the effects of transverse magnetic field were analyzed in large radius CNs [157]. The
presence of B �= 0 produces the rescaling of all repulsive terms of the interaction
between electrons, with a strong reduction of the backward scattering, due to the
edge localization of the electrons. Our results imply a variation with B in the value
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Fig. 18 (Left) Perpendicular magnetic field dependence of the G − T data for two gate voltages
Vg = 4.7V (a), and 2.6V (b). In both cases, the data follow the power-law behavior, and the
exponent depends on the magnetic field (from [170]. Critical exponents versus the magnetic field
dependent parameter, v, for a large radius CN: αbulk is calculated following Eq. 51, αend is calcu-
lated following Eq. 79. The magnetic field rescales the values of the Fermi velocity and the strength
of e–e interaction. It follows that the effects of a transverse magnetic field also involve the value of
K. Thus, we predict a reduction of the critical exponents αbulk and αend , by giving magnetic field
dependent exponents for the power law behaviour of the conductance

of αBulk, which is in fair agreement with the value observed in transport experiments
[170].

In order to obtain the critical exponent it is possible to calculate U0(q,ωc) start-
ing from the eigenfunctions 
0,kF (ϕ, y) and the potential in Eq. 42. We focus our
attention on the forward scattering (FS) terms. We can obtain g2, FS between oppo-
site branches, corresponding to the interaction between electrons with opposite
momenta, ±kF , with a small momentum transfer ≈ qc. The strength of this term
reads

g2 = U0(qc, B, kF ,−kF)

= c0

N2(v)

[

K0

(
qcR

2

)

I0

(
qcR

2

)

+ u2(v)K1

(
qcR

2

)

I1

(
qcR

2

)]

,

where Kn(q) denotes the modified Bessel function of the second kind, In(q) is the
modified Bessel function of the first kind, while N2 and u2 are functions of the
transverse magnetic field, as was discuss in the appendix of [171].

By introducing into Eq. 51 the calculated values of g2 and g4, it follows that the
bulk critical exponent is reduced by the presence of a magnetic field, as we show in
Fig. 18.

Intramolecular Devices

Impurity. Since 1995 intramolecular devices have also been proposed which should
display a range of other device functions [172–177]. For example, by introducing
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a pentagon and a heptagon into the hexagonal carbon lattice, two tube segments
with different atomic and electronic structures can be seamlessly fused together
to create intramolecular metal–metal, metal–semiconductor, or semiconductor–
semiconductor junctions. Electrical transport SWNTs with intramolecular junctions
was measured and was demonstrated that a metal–semiconductor junction behaves
like a rectifying diode with nonlinear transport characteristics. In the case of a
metal–metal junction, the conductance appears to be strongly suppressed and it dis-
plays a power-law dependence on temperatures and applied voltage, consistent with
tunneling between the ends of two Luttinger liquids [129].

From a theoretical point of view the power-law behaviour characterizes also the
thermal dependence of G when an impurity is present along the 1D devices. The
theoretical approach to the presence of obstacles mixes two theories corresponding
to the single particle scattering (by a potential barrier VB(r)) and the TLL theory
of interacting electrons. The single particle scattering gives the transmission, prob-
ability, |t|2, depending in general on the single particle energy ε. Hence, following
[134, 136], the conductance, G, as a function of the temperature and |t| can be
obtained

G ∝ |t(ε, T)|2 ≡ |t(ε)|2T2αend
,

(78)

where we introduced a second critical exponent [171], αend

αend ≈ 1

2

(
1

K
− 1

)

. (79)

The results obtained in [129] agreed with theoretical prediction.
Intrinsic Quantum Dot. Experiments [178, 179] show transport through an

intrinsic quantum dot (QD) formed by a double barrier within a 1D electron sys-
tem, allowing for the study of the resonant or sequential tunneling. The linear
conductance typically displays a sequence of peaks, when the gate voltage, Vg,
increases. Thus also the double-barrier problem has attracted a significant amount
of attention among theorists [180–187], in particular for the case of two identical,
weakly scattering barriers at a distance d. In general, the transmission is non-zero
for particular values of the parameters corresponding to a momentum kF , such that
cos(kFd/2) = 0. It follows that, although in a 1D electron system for repulsive
interaction the conductance is suppressed at zero temperature by the presence of
one impurity (1D metal becomes a perfect insulator), the presence of an intrinsic
QD gives rise to some peaks in the conductance at T = 0 corresponding to the
perfect transmission. This resonant scattering condition corresponds to an average
particle number between the two barriers of the form ν+1/2, with integer ν, i.e. the
“island” between the two barriers is in a degenerate state. If interactions between
the electrons in the island are included, one can recover the physics of the Coulomb
blockade [188].

The power-law behaviour characterizes also the thermal dependence of G in
the presence of an IQD. A first theory about the transport through an IQD is
known as Uncorrelated Sequential Tunneling (UST), where an incoherent sequential
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tunneling is predicted. It follows the dependence of the peaks of the conductance
according to the power law

Gmax ∝ Tαend−1.

However in order to explain the unconventional power-law dependencies in the mea-
sured transport properties of a CN [178, 179], a different mechanism was proposed
[178, 183], namely, correlated sequential tunneling (CST) through the island. The
temperature dependence of the maximum Gmax of the conductance peak, according
to the CST theory, yields the power law behaviour

Gmax ∝ Tαend−end−1 = T2αend−1. (80)

Recently a lot of theoretical work has been carried out on the double impurity prob-
lem in TLL systems. In an intermediate temperature range εc << kBT << �dot,
where εc is the Infra Red cut-off energy and�dot is the level spacing of the dot, some
authors [184, 185] predict a behaviour according to the UST, while others [187]
find results in agreement with the CST theory. In a recent paper [189] the authors
discussed how the critical exponent can depend on the size of the dot and on the
temperature, by identifying three different regimes, i.e. the UST at low T, a Kirchoff
regime at intermediate T (Gmax ∝ T2αend ) and a third regime for T >> �dot, with
Gmax ∝ T−1. Thus, in their calculations, obtained starting from spinless fermions
on the lattice model, no evidence of CST is present.

Then, the problem of the transport through a Quantum Dot formed by two
intramolecular tunneling barriers along the MWNT, weakly coupled to Tomonaga-
Luttinger liquids is studied, including the action of a strong transverse magnetic
field B. There were predicted [30] the presence of some peaks in the conductance
G versus B, related to the magnetic flux quantization in the ballistic regime (at
a very low temperature, T ) and also at higher T, where the Luttinger behaviour
dominates. The temperature dependence of the maximum Gmax of the conductance
peak according to the Sequential Tunneling follows a power law, G ∝ Tγe−1 with
γe linearly dependent on the critical exponent, αend, strongly reduced by B as shown
in Fig. 18.right.

Intermediate Regimes and Crossover

Crossover from Luttinger liquid to Coulomb Blockade regime. Now we discuss
the experimental data reported in a recent letter by Kanda et al. [170], in which
the intermediate regime has been explored measuring the zero-bias conductance at
temperatures where the thermal energy becomes comparable to the level spacing in
the discrete single-particle spectrum. In Ref. [170] the authors have reported a sys-
tematic study of the gate voltage dependence of the LL-like behaviour in MWNTs,
showing the dependence of the exponent α on gate voltage, with values of α ranging
from 0.05 to 0.35. The main results of [170] are as follows:
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1. the gate-voltage (Vg) dependence of the exponent α below 30 K exhibits periodic
oscillations; the characteristic Vg scale for α variation, �Vg, is around 1 V;

2. changes in the exponent α are observed in the plots of the conductance at an
inflection temperature T∗ ≈ 30 K, for values of Vg corresponding to peaks of α.

In their letter, Kanda et al. do not find plausible the explanation of the mentioned
features starting from a LL description of the MWNTs. In this respect, Egger has
considered in [143] a model for MWNTs composed of a number NSH of ballistic
metallic shells. The author has discussed there a low-energy theory for the MWNTs
including long-ranged Coulomb interactions and internal screening effects. The the-
ory may be also extended to include the effect of a variable number of conducting
modes modulated by the doping level. However, Kanda et al. rule out the possibility
that the change in the number of subbands at the Fermi level may be at the origin
of the features observed in their experiment, as long as the subband spacing is too
large to be consistent with the period of the oscillations.

Then, Kanda et al. turn to a different kind of theory that considers the MWNT
as a diffusive conductor. Egger and Gogolin [144] have calculated the TDOS
of doped MWNTs including disorder (with mean free path l smaller than the
radius R) and electron-electron interactions. MWNTs may display an effective
and nonconventional CB arising from tunneling into a strongly interacting disor-
dered metal, leading to LL-like zero-bias anomalies: the exponent becomes α =
(R/2π�Dν0) log(1+ν0U), where D is the diffusion constant, ν0 = Ns/2π�vF is the
noninteracting density of states depending on the number of subbands Ns and the
Fermi velocity vF , and U0 is an effectively short-ranged 1D interaction. Substituting
these parameters by pertinent values yields an estimate α; R/Nsl, that is near the
experimentally observed values.

Kanda and coworkers conclude that this second theory better explains the exper-
imental results, by assuming that the mean-free path l may fluctuate with the gate
voltage. This is based on the theoretical work by Choi et al. [190], that have studied
the effects of single defects on the local density of states via resonant backscattering.
However, the argument of Kanda et al. has not addressed the question of how a ran-
dom distribution of defects may produce the oscillations observed in the experiment.
We believe otherwise that the dependence of the α exponent on the gate voltage is
in correspondence with a definite periodic structure of the single-particle density of
states.

A theoretical approach was developed in [191, 192] to the low-energy proper-
ties of 1D electron systems aimed to encompass the mixed features of Luttinger
liquid and Coulomb blockade behavior observed in the crossover between the two
regimes. For this aim the Luttinger liquid description was extended by incorporat-
ing the effects of a discrete single-particle spectrum. The intermediate regime is
characterized by a power-law behavior of the conductance, but with an exponent
oscillating with the gate voltage, in agreement with recent experimental observa-
tions. This construction also accounts naturally for the existence of a crossover in
the zero-bias conductance, mediating between two temperature ranges where the
power-law behavior is preserved but with different exponent.
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Crossover from Fabry-Perot to Coulomb Blockade regime. For good contact,
the SWCNT acts as an electron wave guide creating resonances at certain energies
and can be regarded as an open quantum dot with the resonances corresponding to
the broad energy levels. As we discussed above in the opposite limit (CB regime) of
very low transparency, the electrons are forced to tunnel one by one and the energy
levels sharpens due to their longer life time.

An intermediate regime also exists in which the electron number on the dot is
still fixed but significant cotunneling is allowed. This leads to different kinds of
Kondo effects related to the total excess spin [193–195] and/or the orbital degree of
freedom on the SWCNT quantum dot [196, 197].

The transition between these regimes was reported in [198] where the authors
discussed how transport evolves from being wave-like transmission known as Fabry-
Perot interference to single particle-like tunneling of electrons or holes. In the
intermediate regime four Coulomb blockade peaks appear in each Fabry-Perot res-
onance, which is interpreted as entering the SU(4) Kondo regime. A bias shift of
opposite polarity for the Kondo resonances for one electron and one hole in a shell
is in some cases observed.

Superconducting Transition

The Superconductivity behaviour in low dimensional systems is a quite interesting
question since 40 years ago Mermin and Wagner [199] proved a famous theorem
stating that it is impossible for abrupt phase transitions with long-range order to
occur in 1- or 2-D systems at finite temperature. Thus CNs are among the best can-
didates for investigating the possibility of (quasi)1D superconductivity. In general
CNs do not show superconducting properties but some recent experiments found
that they can can superconduct by showing also high superconducting transition
temperature, Tc ≈ 10◦ K. [200, 201].

Experimental Evidence of Superconductivity in CNs

The field of SC in nanotubes started experimentally with the discovery of a strong
proximity-induced SC in isolated or bundled SWNTs connected to superconduct-
ing leads [202, 203]. Proximity-induced superconductivity in single-walled carbon
nanotubes below 1◦ both in a single tube 1 nm in diameter and in crystalline ropes
containing about 100 nanotubes, was observed [202]. In these experiments, the CNs
were assumed to be in the normal, N, state but with a phase coherence length Lφ and
a thermal length LT larger than the superconducting coherence length, allowing
for the SNS junction to sustain a very high supercurrent below the lead transition
temperature.

Measurements on ropes of single-walled carbon nanotubes (SWNT) in low-
resistance contact to non-superconducting (normal) metallic pads were reported in
[204]. It was found a 2 orders of magnitude resistance drop below 0.55◦K, which
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is destroyed by a magnetic field of the order of 1 T, or by a dc current greater
than 2.5 μA. These features suggested the existence of intrinsic superconductiv-
ity in ropes of SWNT. Then in Ref. [205] were reported low-temperature transport
measurements on suspended single-walled carbon nanotubes (both individual tubes
and ropes) that indicated the presence of attractive interactions in carbon nanotubes
which overcome Coulomb repulsive interactions at low temperature, and enabled
investigation of superconductivity in a one-dimensional limit never explored before.

In 2001, ultra-small-diameter single wall nanotubes (USCN), with diameter of
≈ 0.4 nm, have been produced inside the channels of a zeolite matrix. Possible
metallic geometries compatible with such a small radius are the armchair (3, 3)
and the zig-zag (5, 0) ones. The ultra-small diameter of these tubes induces many
unusual properties, such as a superconducting transition temperature Tc ≈ 15◦K
[200], much larger than that observed in bundles of larger diameter tubes [204].

In MWNTs, where disorder and impurities can play a central role, supercur-
rents have been even harder to achieve. Enhanced conductance was observed near
zero bias, which was interpreted in terms of multiple Andreev reflections in the
presence of inelastic processes [206]. On the other hand, proximity induced super-
current has been observed [207] also in an individual, diffusive MWNT using
bulk(side)-contacted samples with Ti/Al contacts [208].

In Ref. [201] it was reported that there is a superconducting phase in entirely
end-bonded MWNTs with a transition temperature Tc ≈ 12◦K. The TEM images
showed a MWNT with an outer diameter of 2Ro = 7.4 nm, and inner diameter of
2Ri < 2 nm (R < 1 nm) while the emergence of this superconductivity is highly
sensitive to the junction structures of the Au electrode/MWNTs and Tc depends on
the numbers of electrically activated shells.

More recently a gradual magnetization drop with an onset temperature (Tc) of
18 23 K has been found in the honeycomb arrays of multiwalled CNTs (MWNTs)
showing a slight resistance decrease due to superconductivity [209]. The disap-
pearance of the Meissner effect after destroying the array structure suggested that
intertube coupling of MWNTs in the honeycomb array is a dominant factor for the
mechanism.

Theoretical Approach

The superconducting phase in 1D systems enters into competition with another
type of quantum order, the charge-density-wave (CDW) phase, an instability very
specific to 1D systems (while the SC one occurs irrespective of the dimension).

While the SC transition induces the creation or destruction of electron (Cooper)
pairs, the CDW is induced by the spontaneous formation of electron-hole
excitations.

The Phase Diagram and Breakdown of a Luttinger Liquid

Effective field theory was solved in practically exact way by Egger and Gogolin
[139]. As we discussed above, they analyzed a (10, 10) SWNT, next CN10. Thus
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they showed that both g1 and f scale as 1/R and in CN10 they are much smaller than
g2 [139] but at low temperature their effects should be included. In [139] this has
been realized by means of a renormalization group calculation. The main result is
the existence of two different crossover temperatures, namely

kTf = De−
2πvF

f and kTb = De
− 2πvF

g1

associated to the dominance of f and g1 respectively. Below these temperatures the
Luttinger liquid breaks down and a (quasi-) long-range order phase appears. Thus
the presence of a SC phase due to the effect of the short range g1 and f was predicted,
but at very low temperatures (Tb ≈ 0.1 m◦K and Tf ≤ Tb).

This behaviour can be summarized in the phase diagram reported in Fig. 19.
Calculations for a CN10 predict that 1D superconductivity is the dominant instability
only at T < 1 m◦K with screened interactions thus a purely electronic mechanism is
not sufficient. Moreover for long-ranged interactions (which is the case of nanotubes
in typical conditions), we have Tf ≈ Tb, while for short-ranged interactions it results
Tf < Tb. In the latter case a superconducting instabilty is predicted at T ≈ Tf if the
Luttinger liquid parameter g is larger than 1/2.

Starting from these results a pure electronic mechanism which gives
Superconductivity needs:

i) Screening of the forward scattering, g2 (long range effect g > 0.5)
ii) Increasing of the backward scattering, g1 (short range effect Tb)

iii) Relevant effects from the lattice (high value of the corresponding tempera-
ture, Tf )

Fig. 19 The transition temperature for CN10 with the typical long-range interaction is estimated
to be Tf : Tb : 1 mK, i.e. a value certainly hard to be observed. This is due to the smallness of g1
and f (compared to g2), since they scale as 1/R and are sizeable only for very thin tubes. (left) We
assume that all shells of an entirely end bonded MWNT are resistors in a parallel connection. For
T > Tc the current is due to the flow of electrons in the outermost shells with the typical behaviour
of a Luttinger Liquid. For T < Tc a superconducting transition is allowed in the innermost shell;
thus the transport is due to Cooper pairs
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Some Phonon Based Theories

Many studies about the electron-phonon interaction focused on isolated tubes and
in particular on the possible occurrence of a Peierls instability [210]. Such an
instability is always expected to occur in 1D systems. Thus the coupling to long-
wavelength acoustic modes such as twistons or radial breathing modes (derived from
the transverse acoustic modes of graphite) was studied as a means to induce a CDW
instability.

Superconductivity in carbon nanotube ropes – In order to explain supercon-
ductivity in the experiment of [205] was derived and analyzed the low-energy theory
of superconductivity in carbon nanotube ropes [211]. The rope was modelled as
an array of metallic nanotubes, taking into account phonon-mediated as well as
Coulomb interactions, and arbitrary Cooper pair hopping amplitudes between dif-
ferent tubes. Quantum phase slips are shown to cause a depression of the critical
temperature Tc below the mean-field value, and a temperature-dependent resistance
below Tc. Thus was found a signature of the presence of attractive phonon-mediated
interactions in carbon nanotubes, which can even overcome the repulsive Coulomb
interactions [212].

According Ref. [213], the critical supercurrents found in experiments on the
proximity effect of [202] can be explained by the presence of a short-range attrac-
tive interaction coming from the coupling to the elastic modes of the nanotube. In
a further letter [214], the autor discussed the strong suppression of single-particle
hopping between neighboring nanotubes in a disordered rope and conclude that
the tunneling takes place in pairs of electrons, which are formed within each nano-
tube due to the existence of large superconducting correlations. Thus a model was
developed to account that the single-particle hopping between neighboring nano-
tubes in a rope is strongly suppressed [215] because the different helical structure
of the nanotubes leads to the misalignment of their lattices.

Thus the effect of superconductivity does not rely exclusively on the properties
of the individual nanotubes in agreement with the discussed priciple that any cor-
relation in a 1D system can only develop a divergence at zero temperature [216].
Moreover was demonstrated [217] that the interaction among a large number of
metallic nanotubes favors the appearance of a metallic phase in the ropes, inter-
mediate between respective phases with spin-density-wave and superconducting
correlations. These arise in samples with about 100 metallic nanotubes or more,
where the long-range Coulomb interaction is very effectively reduced and it may be
overcome by the attractive interaction from the exchange of optical phonons within
each nanotube.

Later were introduced the renormalization of intratube interactions and the effect
of intertube Coulomb screening. Thanks to this aproach was possible to study both
the limits of thin and thick ropes ranging from purely one-dimensional physics to
the setting of 3D Cooper-pair coherence [218].

Superconductivity in small-diameter carbon nanotubes. The SC and instabli-
ties were investigated in CNs of small radius in order to explain the results of [200].
According to [219] the Luttinger liquid behavior breaks down in the undoped (3, 3)
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nanotubes at low temperatures, due to the appearance of soft modes in the sector of
current excitations. The instabilities that may lead to the breakdown of the Luttinger
liquid in the small-diameter (5, 0) nanotubes were analyzed in [219]. There the
authors focused on the competition between the effective interaction mediated by
phonon exchange and the Coulomb interaction also by analyzing the effects of
screening.

The softening of phonons by electron-phonon interactions and the Peierls transi-
tion was also studied in the specific case of small tubes [220, 221]. The increase of
the coupling with radius was shown to lead to a Peierls distortion at several hundred
Kelvin mediated by 2kF phonons in the (3, 3) armchair case [220, 221].

Electronic instabilities of doped multi-walled nanotubes. In doped multi-
walled nanotubes each shell has in general a manifold of Fermi points, thus an
analysis based on the scale dependence of the different scattering processes, showed
that a pairing instability arises for a large enough number of Fermi points as a
consequence of their particular geometric arrangement. The instability is enhanced
by the tunneling of Cooper pairs between nearest shells, giving rise to a transition
from the Luttinger liquid to a superconducting state in a wide region of the phase
diagram [222].

Isolated Single wall nanotube. Thus most of the studyes concluded that the sor-
rounding environment plays a central role on the SC transition of a CN. Thus in
isolated nanotubes, Coulomb repulsion should easily overcome the attractive inter-
action mediated by phonons. However in [223], using a one-loop renormalization
group method the authors concluded that a SC order may dominate in the (5, 0) tube
provided that the electron-phonon interaction is strong enough. Moreover a possible
dominant triplet-state superconducting instability was suggested to arise from the
specific three-band topology at the Fermi level of isolated (5, 0) tubes [224].

Other Theories

A different mechanism of carbon nanotube superconductivity that originates from
edge states which are specific to graphene was proposed in [225]. Using on-site and
boundary deformation potentials which do not cause bulk superconductivity, was
obtained an appreciable transition temperature for the edge state.

In Ref. [226] the issue was discussed, whether a superconducting behavior in
small radius carbon nanotubes can arise by a purely electronic mechanism by a com-
parison between two different approaches, (1) the first one based on the Luttinger
Model, (2) the second one, which emphasizes the role of the lattice and short range
interaction, developed starting from the Hubbard Hamiltonian. By using the latter
model a transition temperature of the same order of magnitude as the measured one
was predicted.

By a Luttinger liquid-like approach, one finds enhanced superconducting corre-
lations due to the strong screening of the long-range part of the Coulomb repulsion.
It was shown that the presence of many nanotubes inside the zeolite matrix of the
experiment in [200] provides a strong screening of the long range component of the
electron-electron interaction (g2), mainly due to the presence of electronic currents
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in neighboring nanotubes, while the short range components (f and g1) have to
remain almost unchanged.

This allows for the occurrence of a sizable superconducting instability within
the Luttinger liquid approach. Based on this finding, the autors performed a detailed
analysis on the resulting Hubbard-like model, and calculated transition temperatures
of the same order of magnitude as the measured ones [226].

In the experiment of [201] the authors claim that almost all the shells of the
MWNTs are electrically active. Such a high quality of the contacts seems to be cru-
cial, in order to observe the superconducting transition at such a high temperature.
Moreover the clear power-law of the conductance observed for T > Tc is consistent
with the Luttinger liquid character of the normal state. Therefore the observed sharp
breakdown of the power-law at Tc is an indication that an approach based on the
superconducting instability of the Luttinger liquid is well posed.

Moreover, as we discussed above, in a typical transport experiment, only the
outermost shell of the MWNT becomes electrically active. As a consequence the
conducting channel is not efficiently screened and retains a strong 1D character. On
the other hand, the activation of the internal shells gives a large dielectric effect, due
to intra- and inter-shell screening, and at the same time it provides an incipient 3D
character, which is crucial for establishing the superconducting coherence.

In Ref. [227], as reported in Fig. 19, all contacted shells can carry the normal
current as resistors in parallel connection and at T > Tc, the electrons flow in each
shell. It is however clear that the conductance G is mainly given by the outermost
shells, because they have more conducting channels due to larger radius. For what
concerns T < Tc, the theory predicts that superconductivity is favored in the inner
part of the MWNT, where the radius of the shells is reduced, in particular, in the
innermost shell which is able to support the transport of Cooper pairs. This scenario
is in line with the prediction [228, 229] of an increase in pair binding energy with
decreasing nanotube radius.

Notice that both the doping and the screening of long-range part of the electron-
electron repulsion, needed to allow the SC phase, are related to the intrinsically 3D
nature of the environment where the CNs operate [230].
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