
Adding Instruments and Workflow support to
existing Grid Architectures

D. J. Colling1, L. W. Dickens1, T. Ferrari2, Y. Hassoun1, C. A. Kotsokalis3,
M. Krznaric1, J. Martyniak1, A. S. McGough1 and E. Ronchieri2

(1) Imperial College London,
(d.colling,luke.dickens,y.hassoun,marko.krznaric,

janusz.martyniak,andrew.mcgough)@imperial.ac.uk

(2) INFN, Italy,
(Tiziana.Ferrari,Elisabetta.Ronchieri)@cnaf.infn.it

(3) GRNET, Greece,

ckotso@grnet.gr

Abstract. Many Grid architectures have been developed in recent years.
These range from the large community Grids such as LHG and EGEE
to single site deployments such as Condor. However, these Grid architec-
tures have tended to focus on the execution of executables. Application
scientists are now seeking to deploy their entire workflows onto these
Grids, which will require the addition of instruments onto the Grid along
with support for workflow technologies. We propose here a set of high
level services which may be used on-top of these existing Grid architec-
tures such that the benefits of these architectures may be exploited along
with the new functionality of workflows.

1 Introduction

As the Grid is becoming more significant to the application scientist, they now
seek to perform ever more complex work with it. Initially they have sought to run
computationally expensive executables over the Grid. Hence the Grid has evolved
(in general) as a batch submission system (for example [1, 6, 14, 18]. However, as
their confidence has grown with the Grid they now seek to orchestrate the whole
of their scientific process on the Grid. This will often require use of scientific
equipment along with the storing and/or processing of instrument output. This
process may be repeated many times before the scientist obtains the results that
they desire. The way in which these tasks are performed and the way in which
they interact with each other can be described in terms of a workflow.

By adding instruments into the Grid we not only increase the requirements on
the Grid to support workflows but also increase the requirement for many other
functionalities. Many of these are well known to the Grid community, although
in general these are not widely supported yet.

Workflows are not a new concept to the application scientist. Many have
their own ad-hoc ways of performing workflows. In general these often require
much human intervention, thus they are eager to automate this process as much



2

as possible. However, the automated processing of workflows through a Grid
architecture needs to proceed in a timely manner and match any Quality of
Service (QoS) requirements the application scientist may have. To achieve this,
reservations become important, both for the instruments and the existing Grid
resources. Instruments are often in high demand, thus the ability to reserve time
on them becomes significant. Conversely when an experiment is run on such an
instrument, it is vitally important that the Grid resources are available to cope
with the results produced. In order to make reservations it is also essential to
provide a framework for the establishment of Service Level Agreements (SLAs).

In order to provide workflow support within the Grid it is possible to develop
a completely new architecture from the ground up. Although this does have
the advantage that the architecture can be defined to be workflow aware from
the outset, it does have the disadvantage of not reaping the benefits already
achieved from the existing Grid middlewares, such as wide acceptance within
the community or robustness evolved from community exposure and hardening.

In this paper we propose how to augment existing Grid middlewares with
workflow support. Through this we will use as much as possible of the existing
middleware, such as the ability to load-balance and schedule tasks or monitor
the running of these tasks. Workflow functionality is thus added as a higher level
service on top of the existing infrastructure.

We present in section 2 an overview of related work in this area. Section 3
describes the higher level services required to provide workflow and instrument
support to the existing Grid architectures while section 4 provides more specific
details for our work within the GRIDCC project. We conclude in section 5 and
describe how we intend to progress with this work.

2 Related Work

Many Gird workflow systems and tools exist: Askalon [9], DAGMan [16], Grid-
Flow [4], Gridbus Workflow [22], ICENI [11, 13], Pegasus [5], and Tiriana [17].
Yu and Buyya [23] present a detailed survey of existing systems and provide
a taxonomy which can be used for classifying and characterising workflow sys-
tems. We use elements of the taxonomy related to Quality of Service (QoS) and
workflow modelling for comparing our approach to other systems.

A prominent feature of adding instruments to the Grid is the need for real-
time remote control and monitoring of instrumentation. Users and applications
will be allowed to make Advance Reserrvation (AR) of computational resources
and instruments. AR quarantees availability of resources and instruments at
times specified [15]. In ICENI, the scheduling framework supports AR by using
the meta-data of application components together with corresponding historical
data stored for the purpose of performance analysis and enhancement [12, 21,
20]. This approach is also used in Pegasus, Gridbus Workflow and Askalon. Some
systems like Askalon, DAGMan, ICENI, GridFlow and Gridbus Workflow allow
users to define their own QoS parameters and to specify optimisation metrics
such as application execution time, desired resources and economical cost. Other



3

systems such as Pegasus and Triana do not. We are using a similar mechanism
for performance enhancement and estimation taking into account the real-time
QoS constraints.

3 The Architecture

In this section we outline a generic architecture which may be applied to many
of the existing Grid architectures. Figure 1 illustrates this generic architecture
for providing workflow and instrument support. The rest of this section out-
lines the requirements for each of the items in this generic architecture and the
functionality they should provide.

Planner

Existing Grid Architecture

Execution
Nodes

Storage
Nodes

Instrument
NodesAgreement

Service
Reservation

Service

Observer

Network

Fig. 1. The generic Architecture

Planner: The planner sits between the user environment and the Grid pro-
viding a stable interface for both application scientists and computer experts.

The planner accepts complex abstract workflows from the user describing a
application which needs to be executed along with any QoS requirements. QoS
may include requirements on total (or partial) runtime and/or maximum price.
When writing workflows, the user should generally not be concerned with choos-
ing specific resources, but rather with resource/service types. This not only hides
unnecessary detail, but also allows writing portable workflows for submission at
different sites and different times.

User-specified high-level constraints are then decomposed by the planner in
terms of a simple set of basic pattern behavior, [workflow patterns]. In order
to draw a quantitative picture of the system, the planner extracts performance
parameters about resources and then independently analyzes the information
to produce a concrete set of requirements. Equipped with the above parameters
from the available resources, the planner builds an optimal workflow and deploys
it using a workflow engine.



4

Observer: In an ideal world once the planner has finished its task the work-
flow can be deployed successfully to the selected resources and run as desired.
However, the nature of the Grid is that of an environment where resources may
appear and disappear without warning, network links break and tasks not per-
form as expected. This may be both to the advantage of a application scientists
workflow as well as a disadvantage.

The observer is designed to monitor not only the progress of the executing
workflow but also the state of the Grid. If the workflow is not operating as
expected (both in a good or a bad sense) then it can prompt the planner to alter
the workflow plan. Alternatively if the observer discovers new more appropriate
resource it can prompt the planner to make use of these.

Reservation Service: Advance reservation is one of the mechanisms used
to support reliable service levels, for a specific time interval in the future, by
a set of resources satisfying specific requirements. This mechanism is useful to
various mission-critical applications, for example to Grid applications for the
reservation of network bandwidth for bulk transfers, to Data Scheduling services
requiring storage space reservation prior to the start of a data transfer session,
and to workload management services to allocate computing power (e.g., to
high-priority execution tasks).

Instrument Node: The Instrument denotes a coherent collection of services
that provide all the functionality for controlling and monitoring of a physical
instrument. The main features of IE are:

1. Accessibility through standard interfaces.
2. Allowing for remote controlling and monitoring of physical instruments.
3. Providing exception handling mechanisms which, in case of exceptions, are

capable of protecting physical instruments from potential harm.
4. Supporting information and monitoring services to insure effective and suc-

cessful operation of the IE.

Existing Grid Architecture: has the role of allocating resources in such
a way that concurrent user requirements are efficiently satisfied. Assigning re-
sources with the aim to achieve optimal performance is known as the problem
of resource allocation or scheduling. Globus [14], Condor [10, 16, 19], gLite [7]
and Sun Grid Engine [8] are examples of middleware offering these capabilities.
Typically they will abstract the underlying grid into Execution Nodes and
Storage Nodes.

Security: As a remote, distributed and multiuser system, an interactive
GRID is subject to a wide variety of threats. In order to eliminate unauthenti-
cated and unauthorized access to the system a mechanism of secure information
exchange has do be developed. In general this is best achieved through the use
of certificates, based on user credentials, thus allowing for single sign-on to the
Grid. Users can then be first authenticated before checking to see if they are
authorised to use the particular service. In general non-symmetric key cryptog-
raphy is preferred due to its higher level of security. Though as interaction with
instruments may be time critical symmetric keys may be needed.



5

There are potential solutions available to achieve above requirements. The
widely used X.509 certificates might be utilised to allow secure resource access,
and when needed, a faster symmetric Kerberos cryptography system. A single
sign-on might be realised by using proxy certificates.

Agreement Service: In order to make use of reservations within the Grid
along with the ability to draw up SLA’s it is required to have some form of service
which can perform this task. This is carried out by the agreement service. This
service is capable of making multiple agreements between different Grid resources
which may or may not be concurrent.

4 Example Implementation Case: GRIDCC

Grid Enabled Remote Instrumentation with Distributed Control and Computa-
tion (GRIDCC) is a European project that aims at extending the current Grid
technologies which provide batch access to distributed computational and stor-
age resources, so these technologies include access to and control of distributed
instrumentation.

4.1 Use Cases

A number of Grid workflow use cases involving the interaction with instruments
have been identified in the framework of the GRIDCC project [2]. In this paper
we focus on on distributed intrusion detection and meteorological conditions
prediction. Other applications based on workflows involving the interactions with
instruments are the high energy physics and power Grids.

Intrusion detection is applied to network infratructures with the aim to de-
tect Denial of Service (DoS) attacks. In this case Instrument Elements (IEs) are
services responsible for collecting and processing large amounts of data gathered
by network routers. The corresponding workflow is relatively simple as it con-
tains one decision point and one endless loop. Firstly, data collected by routers
is processed by the IE, which performs data collection, sampling, aggregation
and filtering. Then, results are handed to a soft computing component which
performs additional processing to reduce the volume of collected data. Finally,
data is fed to a central decision-support system and a decision is made. If no
attack is detected, control is returned to the IE in order to let the processing
continue, otherwise the following tasks are performed in the system: process-
ing takes place to back-trace it; network devices are reconfigured accordingly;
the “reaction” phase of the workflow ends, while traffic processing on the IE
continues.

The meteorological use case concerns an application with the aim to use
meteorological data for whether prediction and alerting when extreme whether
conditions are expected. The meteorological workflow is more complex, as it in-
cludes a variety of Grid tasks and workflow patterns, such as advance reservation,
multiple decision points, branched output, nested loops, etc.



6

The upper-bounded time requirements of these two applications have to do
with the requirement to react urgently under an unusual situation: The presence
of an attack, or probabilistic model results indicating extreme whether condi-
tions.

4.2 The GRIDCC Architecture

Fig. 2. The GRIDCC Architecture

In this section, we give an account of the GRIDCC architecture. Figure 2
shows the overall structure of this architecture. More details are available in [2].
The GRIDCC architecture represents a realisation of the abstract architecture
depicted in Figure 1. The GRIDCC architecture constitute a set of components
each of which represents a set of services. There are services for planning and sub-
mitting workflows, services for maintaing and monitoring the tasks that make up
the workflow, agreement services for reserving resources, for monitoring and con-
trolling physical instruments and services dealing with security issues. GRIDCC
uses the EGEE-gLite packages [7] where the main components of the GRIDCC
architecture are:



7

The Virtual Control Room (VCR) which represents the user interface
that enables users to build and submit complex workflows.

The Instrument Element (IE) which represents a novel concept to the
GRIDCC project. A Local Problem Solver (LPS) is embedded within IE for
diagnosing and reacting to error conditions in such a way as to protect the
physical instrument from harm. Also, a performance Information and Monitoring
Service (IMS) is provided to ensure LPS reliability and successful operation of
the IE.

Compute and Storage Elements (CE & SE) are similar to those which
exit within other Grid projects.

The Execution Services (ES) which are responsible for the execution of
the user-defined workflows and maintaining the status of the tasks that make
up the workflow. The ES include: the Workflow Management System (WfMS)
for workflow management (which is decomposed here into the Planner and the
Observer), the Workload Management System (WMS) for logging and book-
keeping and service discovery, and the Agreement Service (AS) for reservation
management.

The Agreement Service (AS) which is responsible of handling resource
reservation requests and is invoked by the WMS. The AS controls the quality of
service by making resource reservation agreements with the available resources,
IEs, CEs or SEs. The AS attempts to satisfy a single resource reservation request
by invoking one or more resource service providers.

5 Conclusions and Future Work

We have implemented the GRIDCC workflow architecture which is capable of
taking a workflow deploying this to a workflow engine. The engine is then able
to submit the stages of the workflow to the existing (in this case gLite) Grid
middleware. We are now investigating techniques to manipulate the workflows
that are submitted in order to better meet the QoS requirements of the system.
We are looking into the techniques proposed in [3]. We are also developing the
agreement and reservation capabilities.

References

1. Project SGE. http://wwws.sun.com/software/gridware/.

2. The GridCC Architecture Version 1.1.4. http://www.gridCC.org, 2005.

3. A. S. McGough and J. Cohen and J. Darlington and E. Katsiri and W. Lee and S.
Panagiotidi and Y. Patel. An End-to-end Workflow Pipeline for Large-scale Grid
Computing. Accepted for inclusion in the Journal of Grid Computing.

4. J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. GridFlow: Workflow Management
for Grid Computing. In Proceedings of 3rd International Symposium on Cluster
Computing and the Grid (CCGrid), Tokyo, Japan. IEEE CS Press, Los Alamitos,
12–15 May 2003.



8

5. E. Deelman, J. Blythe, Y. Gil C. Kesselman, G. Mehta, K. Vahi, A. Lazzarini,
A. Arbree, R. Cavanaugh, and S. Koranda. Mapping Abstract Complex Workflows
onto Grid Environments. Journal of Grid Computing, 1(1):9–23, 2003.

6. EGEE. Enabling Grids for E-science. http://public.eu-egee.org/.
7. eGee gLite Lightweight Middleware for Grid Computing.

http://glite.web.cern.ch/glite/, 2005.
8. Sun Grid Engine. http://www.sun.com/software/grid/, 2005.
9. T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Seragiotto Jr, and H. L. Truong.

ASKALON: a tool set for cluster and Grid computing. Concurrency and Compu-
tation: Practice and Experience, 17(2-4):143–169, 2005.

10. M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle Workstations.
In Proceedings of 8th International Conference of Distributed Computing Systems
(ICDCS), Los Alamitos, CA, USA, pages 104–111. IEEE CS Press, 1988.

11. A. Mayer, S. McGough, N. Furmento, W. Lee, S. Newhouse, and J. Darlington.
ICENI Dataflow and Workflow: Composition and Scheduling in Space and Time. In
UK e-Science All Hands Meeting, Nottingham, UK, pages 894–900. IOP Publishing
Ltd, Bristol, UK, Sep. 2003.

12. S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington. Performance
Architecture within ICENI. In UK e-Science All Hands Meeting, Nottingham, UK,
pages 906–911. IOP Publishing Ltd, Bristol, UK, Sep. 2004.

13. S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington. Workflow
Enactment in ICENI. In UK e-Science All Hands Meeting, Nottingham, UK, pages
894–900. IOP Publishing Ltd, Bristol, UK, Sep. 2004.

14. Globus Project. http://www.globus.org, 2005.
15. S. Andreozzi and T. Ferrari and S. Monforte and E. Ronchieri. Agreement-based

Workload and Resource Management. In Proceedings of the 1st IEEE International
Conference on e-Science and Grid Computing, Melbourne, Australia, December
2005. IEEE Computer Society.

16. T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor - A Distributed Job
Scheduler. Beowulf Cluster Computing with Linux. The MIT Press, MA, USA,
2002.

17. I. Taylor, M. Shields, and I. Wang. Resource Management for the Triana Peer-
to-Peer Services. In J. Nabrzyski, J. M. Schopf, and J. Wȩglarz, editors, Grid
Resource Management - State of the Art and Future Trends, pages 451–462. Kluwer
Academic Publishers, 2004.

18. Condor Team. Condor Project Homepage. http://www.cs.wisc.edu/condor.
19. D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. Grid Computing:

Making the Global Infrastructure a Reality. John Wiley & Sons, NJ, USA, 2003.
20. L. Young and J. Darlington. Scheduling Componentized Applications on a Compu-

tational Grid. MPhil/PhD Transfer Report, Imperial College London, University
of London, 2004.

21. L. Young, S. McGough, S. Newhouse, and J. Darlington. Scheduling Architecture
and Algorithms within the ICENI Grid Middleware. In UK e-Science All Hands
Meeting, Nottingham, UK, pages 5–12. IOP Publishing Ltd, Bristol, UK, Sep. 2003.

22. J. Yu and R. Buyya. A Novel Architecture for Realizing Grid Workflow using
Tuple Spaces. In Proceedings of 5th IEEE/ACM International Workshop on Grid
Computing (Grid 2004), Pittsburgh, USA. IEEE CS Press, Los Alamitos, 8 Nov.
2004.

23. J. Yu and R. Buyya. A taxonomy of workflow management systems for grid com-
puting. GRIDS-TR-2005-1, Grid Computing and Distributed Systems Laboratory,
University of Melbourne, Australia, March 10, 2005.


