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Abstract: The development of intelligent surveillance systems is an active research area. In this context, mobile 
and multi-functional robots are generally adopted as means to reduce the environment structuring and the 
number of devices needed to cover a given area. Nevertheless, the number of different sensors mounted on the 
robot, and the number of complex tasks related to exploration, monitoring, and surveillance make the design of the 
overall system extremely challenging. In this paper, we present our autonomous mobile robot for surveillance of 
indoor environments. We propose a system able to handle autonomously general-purpose tasks and complex 
surveillance issues simultaneously. It is shown that the proposed robotic surveillance scheme successfully 
addresses a number of basic problems related to environment mapping, localization and autonomous navigation, 
as well as surveillance tasks, like scene processing to detect abandoned or removed objects and people detection 
and following. The feasibility of the approach is demonstrated through experimental tests using a multisensor 
platform equipped with a monocular camera, a laser scanner, and an RFID device. Real world applications of the 
proposed system include surveillance of wide areas (e.g. airports and museums) and buildings, and monitoring of 
safety equipment.  
Keywords: surveillance; site security monitoring; intelligent control; robot sensing systems 

 
1. Introduction 

The increasing need for automated surveillance of indoor 
environments, such as airports, warehouses, production 
plants, etc. has stimulated the development of intelligent 
systems based on mobile sensors. Differently from 
traditional non-mobile surveillance devices, those based 
on mobile robots are still in their initial stage of 
development, and many issues are currently open for 
investigation (Everett, H., 2003), (DehuaI, Z. et al. 2007).  
The use of robots significantly expands the potential of 
surveillance systems, which can evolve from the 
traditional passive role, in which the system can only 
detect events and trigger alarms, to active surveillance, in 
which a robot can be used to interact with the 
environment, with humans or with other robots for more 
complex cooperative actions (Burgard, W. et al. 2000), 
(Vig, L. & Adams, J.A., 2007).  
In the last years, several worldwide projects have 
attempted to develop mobile security platforms.  
A notable example is the Mobile Detection Assessment 
and Response System (MDARS) (Everett, H. & Gage, D. 
W., 1999). The aim of this project was that of developing a 
multi- robot system able to inspect warehouses and 
storage sites, identifying anomalous situations, such as 
flooding and fire, detect intruders, and determine the 
status of inventoried objects using specialized RF 
transponders. In the RoboGuard project (Birk, A. & Kenn, 
H., 2001), a semi-autonomous mobile security device uses 
a behavior-oriented architecture for navigation, while 

sending video streams to human watch-guards. The 
Airport Night Surveillance Expert Robot (ANSER) 
(Capezio, F. et al. 2005) consists of an Unmanned Ground 
Vehicle (UGV) using non-differential GPS unit for night 
patrols in civilian airports and similar wide areas, 
interacting with a fixed supervision station under control 
of a human operator. A Robotic Security Guard (Duckett, 
T. et al. 2004) for remote surveillance of indoor 
environments has been also the focus of a research project 
at the Learning Systems Laboratory of AASS. The 
objective of this project was that of developing a mobile 
robot platform able to patrol a given environment, 
acquire and update maps, keep watch over valuable 
objects, recognize people, discriminate intruders from 
known persons, and provide remote human operators 
with a detailed sensory analysis.  
Another example of security robot is the one developed at 
the University of Waikato, Hamilton, New Zealand 
(Carnegie, D. A. et al. 2004). It is named MARVIN 
(Mobile Autonomous Robotic Vehicle for Indoor 
Navigation) and has been designed to act as a security 
agent in indoor environments. In order to interact with 
humans, the robot is provided with speech recognition 
and speech synthesis software as well as with the ability 
to convey emotional states, verbally and non-verbally. 
Following this trend, we developed a number of 
algorithms including both specific surveillance tasks, e.g. 
people and object detection (Milella, A., et al. 2007), (Di 
Paola, D. et al. 2007), (Marotta, C. et al. 2007), and basic 
navigation tasks, e.g. mobile robot localization and 
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environment mapping (Milella, A. et al. 2008a), to be used 
by an autonomous mobile robot for site monitoring 
applications.  
In this paper, we describe the implementation and 
integration of all these functionalities under a unique 
framework. The aim is that of developing a multisensor 
mobile platform able to autonomously navigate in the 
environment and perform surveillance activities. For the 
design of such a system, a major challenge is the 
integration of high-level decision-making issues with 
primitive simple behaviors for different operative 
scenarios. In our work, we tackle this problem by 
developing a modular and reconfigurable system capable 
of addressing simultaneously low-level reactive control, 
general purpose and surveillance tasks, and high level 
planning and sequencing algorithms. 
The paper also presents a set of experiments performed in 
the ISSIA-CNR Mobile Robotics Laboratory to test the 
overall system. The results suggest that the developed 
surveillance robot could be effectively employed in real-
world applications. 
The remainder of the paper is organized as follows. After 
an overview of the system architecture in Section 2, the 
basic localization and mapping tasks are detailed in 
Section 3. Section 4 provides a description of the specific 
surveillance tasks. Discussion and conclusions are drawn 
in Section 5. 

2. System Overview 

This section describes the three-layer architecture 
developed for the surveillance system. The component 
layout, depicted in Fig. 1, reveals the modular nature of 
the system. We propose a reconfigurable component-
based approach in which the three main components can 
be viewed as containers of dynamic libraries that can be 
configured for the particular scenario. More specifically 
we can select what primitive behaviors (e.g. avoid 
obstacles, wandering, go forward, etc.), complex tasks 
(e.g. robot localization with RFID and vision, detect 
 

 
Fig. 1. Block diagram illustrating the system architecture. 

removed or abandoned objects, detect people, etc.) and 
control algorithms (e.g. event detection, task sequencing, 
human operator interaction, etc.) have to start.  
To obtain this reconfigurable scheme a key role is played 
by the sensory data management sub-system. Each of the 
three main components, i.e. controller, executor, and 
supervisor, is connected with the sensory input. This 
information is used in different ways: at the highest level, 
sensory data are converted into events, which are used to 
control task executions; at the middle level, sensory data 
are used to monitor and control the execution of the task in 
progress; finally, at the lowest level, sensory inputs are 
used by active behaviors to perform the associated actions.  
The Controller performs control functions at the behavior 
level. This component contains all the behaviors needed 
to accomplish all possible tasks. Multiple behaviors can 
be executed at the same time, in case different tasks are 
active. Each behavior computes an output and when 
multiple behaviors are active at the same time, a 
predefined behavior arbitration algorithm (e.g. 
subsumption (Brooks, R.A., 1991), cooperative methods 
(Payton, D.W. et al. 1992), fuzzy logic (Cupertino, F. et al. 
2006)) is used to obtain the final control signal. In our 
implementation, we use an istance of a cooperative 
method, in which all behaviors are fused via vector 
summation. In particular, all active behaviors produce a 
motor output that contributes to the final control signal, 
using a gain parameter that represents the behavior 
priority. Moreover, the Controller interacts with the 
upper component in two ways: it receives the information 
about the activation and configuration of the behaviors to 
be performed (Behaviors To Activate, in Fig. 1); it sends 
the information about the behaviors that are currently 
being executed (Behaviors On Execution).  
The Executor handles the execution of the tasks as 
commanded by the upper level. Similarly to the 
Controller, this component is considered as a continuous-
state controller container. Each task can be viewed as a 
procedure to achieve a result. At the end of the task, the 
completion flag and the result is sent to the upper level. 
Two different classes of tasks are considered: Basic Tasks 
which are general purpose tasks (common for service 
robots) for environment mapping, safe navigation, global 
localization and path planning; and Surveillance Tasks 
which are specific algorithms for scene analysis, in 
particular for object and people detection. For each class 
of tasks, the Executor sends the corresponding commands 
to the Controller. Finally, the Executor sends, at each 
sample time, information about completed tasks (Tasks 
Completed, in Fig. 1). 
The Supervisor implements the high-level functionalities, 
monitoring the mission execution and generating events 
through the evaluation of sensory data. More specifically 
this module controls the execution of missions in 
progress (e.g. guaranteeing the satisfaction of precedence 
constraints), sends the configuration information about 
the tasks that must be started (Tasks To Start, in Fig. 1) to 
the Executor module and receives the information about 
the completed tasks. The Supervisor performs its work 
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Fig. 2. The robotic platform. 

using a discrete-event model of the domain, a task 
execution controller, and a conflict resolution strategy, 
which are described in detail in (Di Paola, D. et al. 2009). 
The proposed architecture is implemented using MARIE 
(Côté, C. et al. 2006), an open source robotic development 
framework, under GNU/Linux OS.  
The architecture was tested on commercial robotic 
platforms (PeopleBot and Pioneer P3-AT by MobileRobots 
Inc.). Fig. 2 shows the PeopleBot platform equipped with 
sonar and infrared sensors, a SICK LMS-200 laser range 
finder, an AVT Marlin IEEE 1394 FireWire monocular 
camera, and an RFID device. The latter consists of two 
circularly polarized antennas and a reader. The system has 
three processing units, the robot embedded PC and two 
additional laptops: a Pentium M @ 1.6 Ghz used for the 
vision processing on board the robot and a Pentium M @ 
1.5 Ghz used for application control and user interface. 
In the two following sections, basic and surveillance tasks 
are described. In particular, for each task, after a 
description of the developed algorithms, the results of 
experimental tests are shown. 

3. Basic Tasks : Mapping and Localization 

In this section, basic navigation tasks are described. These 
tasks are implemented using a set of algorithms that 
allow the robot to autonomously build a map of the 
environment, self-localize and navigate safely, using 
laser, RFID and vision data. 

3.1. RFID augmented mapping 
For a mobile robot to perform successfully surveillance 
tasks, it primarily needs a map of the environment. 
Environment mapping is a widely investigated topic in 
the mobile robotics field, and many methods are available 
in literature. Most of them use data acquired by an on 
board laser rangefinder. Here, we propose to augment a 
laser-based map, using an additional sensory input: i.e., 
passive RFID.  
In the last few years, passive RFID has been receiving 
great attention in object identification and tracking 
applications. Compared to conventional identification 

systems, such as barcodes, RFID tags offer several 
advantages, since they do not require direct line-of-sight 
and multiple tags can be detected simultaneously 
(Finkenzeller, K., 2003). 
Recently, RFID has appeared on the scene of mobile 
robotics, promising to contribute efficient solutions to 
data association problems in common navigation tasks 
(Hähnel, D. et al. 2004), (Tsukiyama, T., 2005), (Kulyukin, 
V. et al. 2004). Nonetheless, problems, like how to deal 
with sensitivity of the signal to interference and 
reflections, and missing tag range and bearing 
information are still open (Schneegans, S. et al, 2007).  
Our system tackles these issues based on a fuzzy logic 
approach. Specifically, we propose the use of fuzzy logic 
both to model the RFID device and to automatically 
localize passive tags wherever located in the 
environment, using a mobile robot equipped with a RF 
reader and two antennas.  
In Fig. 3 the RFID-augmented mapping process is 
illustrated. During the procedure of Simultaneous 
Localization And Mapping (SLAM) based on laser and 
odometry data, the reader interrogates the tags. As soon 
as a tag is detected the SLAM procedure is interrupted 
and the tag localization algoritm is triggered. After this 
phase, the tag ID and position are added to the map and 
then the SLAM procedure can continue. Details of the tag 
localization approach can be found in (Milella, A. et al. 
2008a). 
Using this technique, we built a map of our laboratory 
augmented with RFID tags (as depicted in Fig. 4). Tags 
define a set of objects and zones to monitor, and can be 
used to support robot navigation and surveillance tasks, 
as will be described in the next sections. 

3.2. Global localization: RFID and Vision 
For a mobile robot, it is primary to know its global 
position, in the environment, at every time instant. To 
obtain this fundamental information, we propose a global 
localization method that combines RFID and visual input 
from an onboard monocular camera (Milella, A. et al. 
2008b). 
The proposed approach assumes that RFID tags are 
distributed throughout the environment, along with 
visual landmarks. As soon as a tag is sensed, the bearing 
of the tag relative to the robot is estimated. Bearing 
information is, then, used to trigger a rotational 
movement of an onboard camera, so that it is oriented 
toward the visual landmark associated to the tag. This 
reduces computational complexity than the case of using 
the vision system only to search for landmarks in the 
whole environment. Once the image of the landmark has 
been acquired, computer vision methods are used to 
accurately estimate the robot pose. 
 

 
Fig. 3. RFID-augmented mapping process 



International Journal of Advanced Robotic Systems, Vol. 7, No. 1 (2010) 

 22 

 
Fig. 4. Map of the environment with RFID tags (red) and 
goal points (green). 

Fig. 5 illustrates the phases of the method for one of the 
tests. Specifically, Fig. 5(a) shows the robot at the first 
detection of the tag. A picture of the robot after rotation 
according to the result of tag bearing estimate is shown in 
Fig. 5(b). The result of landmark recognition and point 
feature extraction for localization is shown in Fig. 5(c).  
It is worth to note that the success of the localization 
procedure is related to the accuracy of tag bearing 
information, since the correct estimation of the tag 
bearing relative to the robot is a necessary condition to 
properly rotate the camera toward the visual landmark. 
Furthermore, poor lighting conditions and shadows may 
affect image segmentation causing the failure of the 
vision-based localization algorithm. Nevertheless, at least 
approximate robot pose information is always available 
thanks to the RFID system. 

4. Surveillance Tasks: Object and People Detection 

In this section, specific surveillance tasks are described. 
The main purpose of these tasks is to obtain information 
about environment changes in a predetermined area. In 
particular, we have developed two different classes of 
tasks, using a multisensor approach. The first one 
monitors the position of predefined objects or the 
presence of new ones, whereas the second one detects the 
presence of intruders reacting with predefined actions 
(e.g. following the person). 

4.1. Abandoned and removed object detection 
As described in the previous section, we assume that the 
surveillance system operates in an indoor environment in 
which RFID tags have been placed as goal-point markers. 
RFID tags may provide information about the 
surrounding region or instructions for the robot to 
perform a certain task.  
Once mapping is completed, the robot navigates 
throughout the environment to reach the goal-points. At 
each goal station, the robot stops and analyses the scene 
searching for abandoned or removed objects. The 
rationale behind this task is that of comparing the current 
scene with a stored one, regardless of small variations in 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 5.  Pictures of the robot at the first detection of the tag 
(a) and after rotation (b): in the final configuration (b), the 
robot is oriented so as the camera points toward the tag; 
(c) picture of the landmark acquired after rotation, with 
overlaid the result of landmark recognition and point 
feature extraction.  

the viewpoint of the scene. Visual information obtained 
from a monocular camera (Di Paola, D. et al. 2007) and 
input from a laser rangefinder (Marotta, C. et al. 2007) are 
employed. Sensorial information is analyzed using 
various filtering, clustering and preprocessing algorithms 
run in parallel. The outputs of the various algorithms are 
then passed to a fuzzy logic component, which performs 
sensor fusion and decide if scene changes have occurred. 

The vision module of this task works as follow. The 
Principal Component Analysis-Scale Invariant Feature 
Transform (PCA-SIFT) (Ke, Y. & Sukthankar, R., 2004) 
detects points of interest, referred to as keypoints, which 
are invariant to image scale and rotation, changes in the 
viewpoint, and variations of the illumination conditions. 
The keypoints extracted from both the current image and 
the stored one are matched to look for differences between 
the scenes. In addition, color-based image segmentation is 
performed by a histogram difference method, which uses 
hue (H) and saturation (S) planes. First, the HS histograms 
are built for each image, separately. In these histograms, 
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each bin maps a small range of hue and saturation values. 
In the difference histogram, obtained by the difference of 
the reference and the current histogram, respectively, 
positive bins indicate HS values in the current image that 
were not present in the reference one; conversely, negative 
bins indicate HS values in the reference image that are no 
longer present in the current one. Afterwards, selected 
positive and negative bins are back-projected onto the 
current and the stored scene, respectively. Finally, a 
clustering algorithm is used to group these pixels 
according to their relative distances. 
Similarly to the vision sensor, the laser sensor performs a 
matching between the local reference and the current 
range data to look for scene variations. This is achieved as 
follows. For each scene, several readings are taken and a 
median filter is applied. Due to localization errors, which 
cause the robot to stop at a slightly different point than 
the planned goal, at each goal point the scenes are always 
acquired from a slightly different viewpoint with respect 
to the reference scene. Hence, for the matching process to 
be properly performed, a registration technique has to be 
applied. At the end of the matching process, we get two 
kinds of information: the relative displacement between 
the two point clouds, due to the localization error of the 
robot; and the classification of the points belonging to the 
current scene into matched and unmatched points. The 
latter are also referred to as outliers and represent the 
variations occurred in the current scene with respect to 
the stored one. 
A validation of the matching process is performed, based 
on the ratio of the number of outliers to the total number 
of points in the current scene.  
Outliers are processed by a clustering technique. In this 
context a cluster is intended as a set of points close to 
each other and therefore probably belonging to one single 
object. Once clustering is completed, clusters with a small 
number of points are discarded. 
Integration of sensorial data is obtained using a fuzzy 
logic system that compares each cluster of one sensor 
with all the clusters from the other. The fuzzy system 
must determine if the compared clusters lie in the same 
area of the scene (in case this circumstance is detected, the 
clusters are considered as corresponding to the same 
object), and if the observed area corresponds to a scene 
variation. The final output of this algorithm is an index of 
likelihood that a scene variation occurred for each cluster 
in the merged set. 
In order to validate this particular surveillance task within 
the whole surveillance system we performed several 
experiments. We defined a set of zones to be monitored 
and corresponding goals within the geometrical map of the 
environment augmented with RFID tags. In the following, 
two goal positions are described. 
At the first goal, a new object (a fire extinguisher) is 
introduced, as shown in Fig. 6 (stored scene) and Fig. 7 
(current scene). The detection modules produce indexes 
corresponding to a new object, indicated on the figures. 
The values for vision and laser sensors are 0.672 and 
0.722, respectively. The fuzzy data fusion leads to a final 
likelihood index equal to 0.713, which is a clear indication 
of a change in the monitored environment. 

The proposed algorithm can also be used for people 
detection. As an example, Fig. 8 and 9 show the 
successful detection of a person entering the scene. The 
indexes resulting from the visual and laser modules are of 
0.790 and 0.810, respectively. It can be noticed that, in this 
test, the vision-based part of the method was not able to 
detect the lower part of the person, mainly due to the 
absence of a significant number of features in the 
corresponding portion of the picture. Nevertheless, the 
data fusion module estimates a scene variation with a 
0.80 likelihood level. Note that this module does not 
include any recognition function. A module to recognize 
human legs using laser data is, instead, described in the 
following section. 

4.2. Laser-based people detection and following  
We employ laser data for detecting people, based on 
typical human leg shape and motion characteristics 
(Milella, A. et al. 2007). Due to safety reasons, laser range 
sensors have to be attached near the bottom of the mobile 
robot; hence, laser information is merely available in a 
horizontal plane at leg height. In this case, legs constitute 
the only part of the human body that can be used for 
laser-based people-tracking and following.  
The method for people detection and following consists 
of two main modules: 
• the Leg Detection and Tracking module: this module 

allows the robot to detect and track people using range 
data based on typical shape and motion characteristics 
of human legs; 

• the People-Following  module: this module enables the 
mobile platform to navigate safely in a real indoor 
environment while following a human user. During 
the tour the robot can also acquire data for 
environment mapping tasks. 

The Leg Detection and Tracking method allows the robot 
to detect and track legs, based on typical human leg 
shape and motion characteristics. The algorithm starts by 
acquiring a raw scan covering a 180° field of view. Laser 
data are analyzed to look for scan intervals with 
significant differences in depth at their edges (Feyrer, S. & 
Zell, A., 2000). Once a set of scan intervals has been 
selected, a criterion to differentiate between human legs 
and other similar objects, such as legs of chairs and tables 
and protruding door frames, must be defined. To achieve 
this aim, first, the width of each pattern is calculated as 
the Euclidean distance between its end-points and is 
compared with the typical diameter of a human leg (from 
0.1m to 0.25m). Then, a Region of Interest (ROI) is fixed in 
proximity of each candidate pattern. A leg-shaped region 
detected within each ROI at the next scan reading is 
classified as a human leg if the displacement of the 
pattern relative to its previous position has occurred with 
a velocity compatible to a typical human leg velocity 
(from 0.2 m/s to 1 m/s). Note that if the robot is moving 
and thus so is the scanner, the effect of ego-motion must 
first be accounted for. This can be done employing the 
information provided by the on-board odometers or by 
the laser scanner. 
 



International Journal of Advanced Robotic Systems, Vol. 7, No. 1 (2010) 

 24 

 
(a) 

 
(b) 

Fig. 6. Goal #1: image (a) and laser scanning (b) of the 
observed scene during the learning task. 
 

 
(a) 

 
(b) 

Fig. 7. Goal #1: image (a) and laser scanning (b) with 
related LSV index of the observed scene during the 
patrolling task 

The people following algorithm consists of the following 
steps: 
• detect human legs; 
• choose the closest moving person within a certain 

distance and angular position relative to the robot; 
• keep track and follow the target person until he/she 

stops or disappears from the scene. 

 
(a) 

 
(b) 

Fig. 8. People detection: image (a) and laser scanning (b) 
of the observed scene during the learning task. 
 

 
(a) 

 
(b) 

Fig. 9. People detection: image (a) and laser scanning with 
related LSV index (b) of the observed scene during the 
patrolling task. 

The employed control loop sets speed and turn rate of the 
robot, based on the distance from the person and from 
other objects present in the environment.  
In order to test both the performance of the people 
detection and tracking algorithm and the effectiveness of 
the people-following method, experimental tests were 
performed. Some results are shown in Fig. 10 and Fig. 11. 
Specifically, in Fig. 10 two people cross the scene 
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surveyed by the robot which is not moving. Assuming 
that the motion direction of each person does not vary 
significantly, the system is able to keep track of the two 
trajectories separately. In Fig. 11, the robot follows the 
intruder maintaining a safety distance from him. 

5. Discussion and Conclusion 

In this paper, we presented the implementation and 
integration of several autonomous navigation and 
surveillance functions on a multisensor mobile robot for 
robotic site monitoring tasks. 
The major aim of the paper was that of providing a 
comprehensive overview of the system, as well as 
 

 
Fig. 10. The trajectories of two people crossing the area 
surveyed by the robot. 
 

 
(a) 

 
(b) 

Fig. 11. People following: (a) image taken during the 
pursuit of a person, (b) robot trajectory and laser scanned 
legs plotted in the environment map. 

experimental results in real contexts, in order to show the 
feasibility of the proposed methods in real-world 
situations. 
First, we described the architecture of the system based 
on a three-layer scheme that allows for modularity and 
flexibility, and may supervise a number of basic 
navigation tasks and specific surveillance tasks. The 
control system makes the robot able to execute 
autonomously multiple heterogeneous task sequences in 
dynamic environments, since it models the sequential 
constraints of the tasks, defines the priority among tasks 
and dynamically selects the most appropriate behaviors 
in any given circumstance. 
In this paper, we also presented the localization and 
mapping modules that use vision, laser and RFID data. 
Then, the implemented modules for abandoned/removed 
object detection and people detection and following were 
introduced. Preliminary experimental results are promising 
and show the effectiveness of the overall system.  
The implemented tasks provide the first steps toward the 
development of a fully autonomous mobile surveillance 
robot. Nevertheless, there are several important issues 
that must be addressed. The primary aim is to provide 
the robot with the ability of automatic interpretation of 
scenes in order to understand and predict the actions and 
interactions of the observed objects based on the 
information acquired by its sensors. In particular, the 
implemented algorithms for object and people detection 
represent the first stage for the development of more 
complex behavior analysis and understanding tasks.  
One limitation of the presented system is that object and 
people detection are accomplished at pre-defined goal 
positions where the robot stops and stays still in order to 
process data. Our current and future work aims on the 
one hand at improving the overall system by adding new 
tasks, such as people and object recognition, and on the 
other hand at studying and developing new modules for 
the detection of moving objects from a moving platform. 
The use of stereovision for motion estimation and 
segmentation is being especially investigated.  
Improving the reactivity of the system to unforeseen 
environmental variations (e.g. light changes, dynamic 
obstacles, etc.) is another major issue that calls for the 
research of novel reactive decision policies, in which the 
weight of each sensor can be dynamically adjusted in 
response to the new perceptions.  

Furthermore, following current trends in multi robot 
systems, our research activity is also focused on the 
distribution of the tasks among a set of independent 
robots to obtain a multi-agent surveillance system, which 
would guarantee greater efficiency and robustness. 
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