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ABSTRACT:  

 

The proposed analysis based on Sentinel-2 imagery provides evidence of impacts of the conflict in the Mopti region (central Mali), 

which has led to widescale cropland abandonment. This area is characterized by rapidly rising levels of violence since 2018, due to 

the presence of armed groups and the proliferation of self-defence militias. This study investigates how high-resolution optical 

imagery can help evaluate the linkages between violence and land cover / land use (LCLU) change. The processing environment of 

Google Earth Engine was used to generate the so-called 3-Period TimeScan (3PTS) product, a RGB composite combining the 

maximum NDVI values in the beginning, in the middle and in the end of the growing season, used to single out cultivated land for 

each year of interest. Theoretically, the period between June 15th and October 15th covers an annual agricultural cycle for the 

considered area; consequently, images acquired during that period were used to generate the 3PTS composites for the year of interest 

(2019) and for pre-conflict years. By comparing the situations before and after the start of the crisis, each populated site was 

categorized according to the degree of cropland change detected in its surroundings. The resulting overview map enables a regional-

scale interpretation of farming activities in 2019, clearly highlighting localized areas of cropland abandonment in the region and 

showing a strong spatial correlation with incidence of conflict. 

 

 

1. INTRODUCTION 

Tensions around the use of land for grazing and agriculture have 

existed for long between communities in central Mali, but it has 

recently become intertwined with wider political and inter-

ethnic clashes (Benjaminsen, 2018), leading to a rapid 

escalation of violence. This has fostered an emergency crisis, 

requiring humanitarian actors to plan their response quickly and 

efficiently. Cropland mapping is essential to inform such 

decisions, as it may indicate not only physical security, or lack 

thereof, but also food security. Typically, in the absence of 

extensive field data, publicly available LCLU datasets are used 

to identify cropland cover. However, while such datasets have 

proliferated over the years, they are often ill-adjusted to the 

Sahelian context and insufficiently accurate to draw a reliable 

picture of cropland in Mali. Given the important physical access 

restrictions due to the security context, the ability to remotely 

assess cultivated areas in central Mali is of critical importance.  

 

1.1 Context of Mali 

Mali is a vast land-locked country in the heart of the Sahel. This 

region is characterized by a unique agroecological system as it 

forms a transitional zone between the arid Sahara to the north 

and the belt of humid savannas to the south. Social indicators of 

Mali remain amongst the lowest in the world, and the country 

ranks 184 out of 189 on UNDP’s 2018 Human Development 

Index. Demographic growth is amongst the highest in the 

world: projections suggest that the population of Mali, 

approximately 20 million in 2020, will double in the next 25 

years (UNDESA, 2019). In addition to mounting demographic 

pressures, the country’s economy has been marked for decades 

by extreme poverty, insufficient basic social services and youth 

unemployment, a situation exacerbated by repeated droughts 

(Gingembre, 2019). Such pressures destabilize livelihoods, 

which are dominated by agriculture and livestock (ILOSTAT) 

and represent a challenge for communities who compete for 

scarce land and water resources. Since a political coup in March 

2012, most of northern Mali has been occupied by non-state 

armed groups. Local conflicts have multiplied from the north to 

the centre of the country, hampering humanitarian access, and 

leaving large numbers of people highly vulnerable. A United 

Nations peacekeeping mission was deployed to the country in 

July 2013. Insecurity data registered thousands of civilian 

fatalities in 2019 throughout Mali (ACLED, 2019). In addition, 

the number of internally displaced persons (IDPs) in the country 

increased from about 50,000 in March 2018 to almost 240,000 

people two years later (IOM, 2020); in October 2020, 131,150 

people were displaced in Mopti only. In the same period, an 

estimated 171,900 people were estimated to be food insecure, 

more than any other region in Mali (Cadre Harmonisé, 2020). 

Among humanitarian actors, agricultural production remains the 

backbone of food security needs assessments and is often the 

deciding factor in the declaration of a food crisis (CILSS, 2014). 

As such, changes in cropland area are a critical indicator of food 

insecurity, more specifically in rural areas that are disconnected 

from larger food markets and production systems.  

 

1.2 Gaps in agricultural data 

Accurate georeferenced data on cropland cover is not available 

for northern and central Mali. The most widely used reference 

source for estimating cultivated surface, FAOSTAT, mostly 

relies on data produced by national governments (FAO, 2020). 

While this data provides a quantitative estimation in hectares by 

administrative division, it is not spatial in nature and cannot be 

used to precisely localize cropland. Likewise, the accuracy of 

the data is in question, given that the most recent official 

agricultural census data in Mali dates from 2005 (RGA, 2007). 

Besides, state presence is typically weak in northern and central 

Mali, as evidenced by a lack of essential public services in areas 

outside of major towns (Centre for Humanitarian Dialogue, 

2020). Furthermore, as collecting field data in an ongoing 

conflict zone presents enormous hazards, it is difficult to 

generate accurate land use data in this area. This lack of 

georeferenced field data has created a dependency on remotely 

sensed imagery for assessing cropland cover in northern and 

central Mali. While Very High Resolution (VHR) imagery 
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could be used to identify active cropland, the cost to acquire 

recent imagery over such a wide area and the time associated 

with its analysis is prohibitive for creating regular and timely 

data. As a result, it is unlikely that updated cadastral data would 

be made available for that area. Publicly available LCLU 

datasets such as FAO-GLC (Latham, 2014), GlobCover (Arina, 

2008) or CCI Land Cover (Defourny, 2016) are often used by 

both researchers and practitioners alike. The cropland 

information provided by those LCLU products, available at a 

global or continental scale, varies substantially among the 

different datasets and has a poor accuracy in Sahelian countries, 

especially in the Sahelian band (Pérez-Hoyos, 2017). An 

assessment conducted by Samasse (2018) looking at eight 

different landcover datasets found none that reach a 75% 

accuracy threshold over Mali, Niger, Burkina Faso, Niger, 

Mauritania, or Senegal for cropland, with an average 

overestimation of cultivated areas of 170%. Intense seasonal 

changes in land cover and important cropland fragmentation 

help to explain the poor accuracy of LCLU datasets in the Sahel 

(Wei, 2020; Nabil, 2020). Indeed, agriculture in those areas 

remains mostly unmechanized: in Mali, 98% of crop fields have 

a size below 1.5 hectares (GEOGLAM, 2015). Given the 

relatively low spatial resolution of typical LCLU datasets 

(ranging from 300 m to 1 km), their use is insufficient for fine 

scale agricultural monitoring. Experimentations of higher 

resolution datasets include Globeland30 (Gong, 2013), which 

provides global land coverage based on the exploitation of the 

Landsat archive at 30 meters, but is available for 2010 only, and 

Sen2Agri (Defourny, 2019), for which Mali was the first 

national demonstration site in 2016. However, Sen2Agri 

products, which rely on extensive field data and Sentinel-2 data, 

focus on the cotton-belt region (southern part of the country), 

excluding northern Sahelian zones (Lamarche, 2018). Thus, no 

reliable, up-to-date, and regional-scale cropland data was 

available for the area of interest when the crisis started in 

central Mali, a time when such data is critically needed to assess 

vulnerability hotspots and respond to a growing humanitarian 

crisis. The method outlined in this paper aims to provide an 

accessible solution to address such information gaps.  

 

2. METHODOLOGY 

The proposed method consists of a highly localized cropland 

change analysis between two years (before and after the start of 

the conflict). For that, so-called 3-Period TimeScan (3PTS) 

products are generated for each year. Inspired by the TimeScan 

developed by Esch (2018), it consists of a Red-Green-Blue 

composite where the red band represents the maximum NDVI 

value during the first period of the growing season, the green 

the maximum NDVI in the middle, and the blue the maximum 

NDVI at the end. This technique enables to condense the 

information on the temporal evolution of the agricultural 

season, and in doing so, to single out cropland from other 

landcover types. Input to the processing chain are top-of-

atmosphere Sentinel-2 image tiles, available in Google Earth 

Engine (GEE), a cloud-based platform providing massive 

computational capabilities and access to a large catalogue of 

remote sensing datasets (Gorelick, 2017). The results presented 

in this paper are derived from the comparison of the 2019 3PTS 

product with the one of 2017, which is a year prior to the start 

of the security degradation in the region. The change status was 

visually determined per populated site, as supervised 

classifications required exhaustive manual cleaning to produce a 

reliable product over such a large and ecologically heterogenous 

zone. The results were compared to georeferenced data of 

violent events during the period of interest. 

2.1 Data 

The Sentinel-2 mission is particularly well-suited for cropland 

monitoring (ESA, 2017; Inglada, 2015). Its global coverage, 

high revisit time (5 to 6 days) and spatial resolution of 10 

metres enable to depict agricultural fields over the entirety of 

the Mopti region, as it manages to detect small, non-mechanized 

agricultural fields, which are predominant in that area. Level-1C 

(L1C, top-of-atmosphere reflectance) was chosen over Level-

2A (L2A, surface reflectance) because of its systematic 

generation and online distribution (ESA, 2017). Indeed, while 

721 L1C elements are available in GEE for the period between 

15th June and 15th October 2019, over the area of interest, the 

equivalent L2A set contains only 697 elements. For the same 

period in 2017 and in 2016, there are respectively 640 and 678 

L1C elements but no L2A product available. Consequently, a 

total of 2,039 Sentinel-2 L1C tiles were processed for this 

study. Tracking cultivation necessitates an accurate dataset of 

human settlements for the region, given that cropland in Mopti 

is typically found within a short distance of a village or hamlet. 

This would also be used to represent the results under the form 

of a regional map showing cropland change categories assigned 

to each locality. A point feature dataset representing populated 

sites in the region of Mopti was created based on the official list 

of villages used by the Malian Institute of Statistics (INSTAT) 

for the national census in 2009, enhanced by a combination of 

ancillary data including OCHA’s Common Operational Datasets 

and OpenStreetMap. This dataset was additionally improved 

through visual inspection of raster datasets such as the High 

Resolution Settlement Layer (Facebook Connectivity Lab, 

2016), Google Earth imagery and Sentinel-2 imagery. The 

manual revision allowed the extensive georeferencing of 3,166 

populated sites in the Mopti region, ensuring all populated sites 

in the study area are covered by the analysis. The Armed 

Conflict Location and Event Data Project database was used to 

locate conflict events (ACLED). This openly-accessible 

database provides the location (latitude, longitude), dates and 

the number of fatalities associated with specific violent events 

registered through weekly updates. ACLED’s sources include 

traditional media, reports from armed groups and civil society 

organizations as well as social media (Raleigh, 2010). 

 

2.2 Processing steps 

For each image of the collections, the Normalized Difference 

Vegetation Index (NDVI) was calculated. NDVI is a widely 

used remote sensing proxy for vegetation cover and has been 

successfully employed to monitor vegetation phenology and 

detect intra-annual changes, more specifically for cropland 

(Benedetti, 1993). It is calculated from the near-infrared and 

visible red reflectance values (Rouse, 1973). For the current 

study, spectral bands B4 and B8 of Sentinel-2 were used to 

calculate NDVI, leaving the spatial resolution of the 3PTS 

products at 10 metres. Positive values of NDVI refers to 

vegetation: higher values correspond to healthy and dense 

vegetation, while lower values show sparse vegetation. Water 

and built-up areas will be represented by near zero or negative 

values of NDVI. A single NDVI product provides an indication 

of vegetation presence on a given date, but it is not always 

sufficient to distinguish croplands from other types of 

vegetation (pasture, shrubs, etc.). A collection of single-date 

images covering the growing season must be considered to 

accurately depict the agricultural situation. Croplands are thus 

identified by their temporal evolution of NDVI values 

throughout the different phases of the agricultural season: 

photosynthetic activity of crops is low during the ploughing-

sowing period (“beginning” of the season, approximated by 15th 
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June to 1st August in this study), increases during the growing 

phase (“middle”, 2nd August to 1st September) until reaching a 

maximum value right before the harvest. Once harvested, NDVI 

values decrease drastically (“end of season”, 2nd September to 

15th October). Thus, the approach employed for investigating 

cropland change considers maximum NDVI values for three 

separate subperiods of the agricultural season and aggregates 

this information into a higher-level product, the 3PTS or 3-

Period TimeScan, reflecting the evolution in time of vegetation 

during the growing period. Pixel-based image compositing is a 

well-known technique (White, 2014) proposed as a solution to 

circumvent technical bottlenecks (e.g. the need for storage, 

high-performing processing infrastructure) and other restrictions 

related to satellite data availability, or the time required for 

exploiting results, which may otherwise hinder the usage of this 

data. The processing steps developed to produce cropland 

change maps are available under the form of a GEE script 

(Boudinaud, 2019), to which input parameters are the years of 

interest, the area of interest and the dates of the growing season 

for the considered area. 

 

2.3 Interpretation of 3PTS 

Because the 3PTS image condenses information per pixel on the 

temporal evolution of the vegetation over a full growing season, 

the different land cover types tend to be associated with specific 

colours, revealing LCLU patterns that are easy to interpret. 

Compared to natural vegetation, croplands are identified by 

higher and more abrupt changes of NDVI values over time 

throughout the different phases of the growing season. For that 

reason, croplands naturally single out on the 3PTS products. 

Figure 1 shows an example of a 3PTS composite over a village 

located in the AOI, in 2019. Built-up and human settlements, as 

well as water or rocks, are depicted in black (NDVI values are 

constantly low over time). Natural vegetation appears in grey 

tones, due to lower variations of natural vegetation over time, 

compared to cultivated areas, which appear as rectangles of 

different vivid colours, corresponding to different crop types, 

each with a specific vegetation curve over time.  

 

 
 

Figure 1. Example of a 3PTS composite for a village in 2019. 

 

2.4 Investigation of cropland changes 

The 3PTS technique was applied for each year of interest to 

support the identification of cropland changes before and after 

the start of the conflict. More specifically, they were determined 

comparing the 2019 3PTS product with the one of pre-conflict 

years: 2017 or, for confirmation or in the rare case of cloudy 

pixels, 2016. When visually comparing the two products, as 

shown in Figure 2 for the village of Bombou, it is possible to 

immediately detect the reduction in cropland areas that occurred 

in that zone between the two years. 

The change status was determined per populated site, using the 

following classes: 

• Severe decrease, where > 50% cropland loss is detected. 

• Medium decrease, where cropland loss is 25% to 50%. 

• Slight decrease, where cropland loss is < 25%. 

• No change, where no change is detected. 

• Slight increase, where cropland gain is < 25%. 

It shall be noted that no area showing a significant or medium 

increase in cropland was identified in the region in 2019. 

 

 
 

Figure 2. Severe cropland loss between 2017 (left) and 2019 

(right) as detected on 3PTS products (village of Bombou). 

 

 

3. RESULTS 

This method enabled to identify 493 villages with significant 

cropland losses (medium or severe) in that year across Mopti 

region, and highlighted different types of impacts of the conflict 

on the landscape. More specifically, a recurring effect of 

concentration of cultivated fields in the proximity to habitations 

was observed, as well as settlement damage in a large number 

of localities. The map resulting in the cropland change analysis 

was compared with georeferenced data of conflict events, 

indicating a strong spatial correlation between violence and 

cropland reductions. 

 

3.1 Key points 

Following the steps presented in the previous sections, the 

resulting map was produced (Figure 3). In total in 2019, 25% of 

localities in the region of Mopti experienced a decrease in 

cultivated lands compared to pre-conflict years (2017, 2016). 

The cercles (level-2 administrative divisions of Mali) most 

affected by significant cropland losses are Koro, Bankass, 

Bandiagara and Douentza (eastern part of the region); these are 

the areas where intercommunal tensions have led to many acts 

of violence in the course of 2019. Besides, in more than 100 

localities, noticeable changes in the distribution patterns of 

cropland fields could be detected in 2019 compared to pre-

conflict years: while satellite imagery show that fields used to 

be cultivated as far as 10 kilometres away from settlements, the 

2019 composite indicates that farmers only cultivated in direct 

proximity to habitations, within a radius ranging from 500 

meters to 2 kilometres. On the other hand, no evident change 

was detected in most localities of the western cercles of the 

region: Youwarou, Mopti, Tenenkou and Djenne experienced 

fewer cropland losses than eastern Mopti. Finally, for a minority 

1 km 
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of localities (2.9%), croplands slightly increased in 2019 

compared to pre-conflict years. This may be due to favourable 

climatic conditions, despite a late start of the rainy season, or a 

consequence of population displacement in safer localities 

within the region. 

 

 

 

Figure 3. Cropland change and violent events in 2019 in Mopti. 

 

 

3.2 Cropland abandonment and incidence of conflict 

The overlapping of violent events registered between April and 

October 2019 with the results of the cropland change analysis 

illustrates a clear correlation between insecurity and agricultural 

decline. In June 2019, when land preparation and planting were 

underway, a peak in both the numbers of violent events and 

fatalities was recorded in the region of Mopti (ACLED, 2019). 

Most of the significant cropland losses occurred in localities 

where violent events were registered between April and October 

2019. During that period, 190 of the 305 violent events reported 

for Mali occurred in the Mopti region, 90% of which in the four 

eastern cercles of the region (Bandiagara, Bankass, Douentza 

and Koro). Due to the presence of multiple armed groups, 

intercommunal violence was exacerbated in those four cercles 

and the general security context has been highly volatile since. 

During the same period, Tenenkou, Mopti, Youwarou and 

Djenne (western cercles) recorded significantly fewer violent 

events; the presence of one non-state armed group deeply rooted 

in those cercles, implying high criminality but allowing a 

relatively calm situation, may partly explain a more normal roll-

out of agricultural activities. Cropland abandonment, as visible 

from space, is one of the many consequences of the widespread 

violence in central Mali. Damaged infrastructure and abandoned 

villages could also be evidenced through the exploration of 

Sentinel-2 composites. Figure 2 shows an example where, 

besides obvious cropland abandonment, settlement damage was 

detected: black-pixeled inhabitations are no longer visible in 

2019, where there used to be built-up two years earlier. More 

specifically, the village at the centre of the image is Bombou, 

located in the cercle of Koro. According to ACLED data, this 

village was attacked multiple times between May and July 

2018, reportedly killing tens of civilians and setting the village 

on fire. Another village visible on the image, located 

approximately 3 kilometres southwest of Bombou, seems to 

have also undergone cropland abandonment and settlements 

damage between 2017 and 2019. Black and colourful pixels 

(corresponding to built-up and croplands, respectively) in the 

2017 3PTS (left image) are replaced in 2019 (right image) with 

cyan and white pixels, corresponding to natural vegetation. 

White tones are due to high values of NDVI throughout the 

period of analysis, which may be a direct consequence of the 

village having been set ablaze in 2018, given that fires can have 

a regenerating effect on soils, a technique sometimes 

intentionally employed by farmers for the following season 

(Hodgkinson, 1998). The interpretation of the 3PTS composites, 

additionally validated with recent VHR imagery when it was 

possible (60% of the localities), allowed for the detection of 

more than one hundred villages visibly destroyed or damaged 

between 2017 and 2019, with indications of fires that were very 

likely set during violent attacks, as also reported by various 

sources of conflict data. Testimonies gathered by Human Right 

Watch from villagers who had fled localities from eastern Mopti 

also confirms and further describes atrocities endured by 

communities of central Mali since 2018 (HRW, 2019). 

 

3.3 Operationalisation of results 

The results of the 3PTS-based cropland change analysis, as 

presented in this study, provided outputs befitting information 

needs of humanitarian actors in Mali. By offering a 

comprehensive map and the list of localities showing significant 

agricultural losses, a more precise picture of food insecurity 

could be drawn. This allowed for a more advanced targeting of 

areas in need of food assistance. As a result, these outputs were 

quickly absorbed into the humanitarian response planning 

process, notably through the Cadre Harmonisé (CH), the bi-

annual national food security analysis, which is led by the 

national early warning system in collaboration with line 

ministries and humanitarian actors. The goal of the CH is to 

estimate the number of food insecure people in the country and 

to provide coordinated targeting priorities for humanitarian 

response. During the CH sessions conducted in October 2019 

and in March 2020, the results presented in this study were used 

as contributing factors for hard-to-reach areas in central Mali, 

where traditional survey data could not be collected due to 

insecurity. This helped inform important gaps in evaluating the 

2020 lean season, which is the period between planting and 

harvesting, when resources from the previous agricultural 

season are scarce: food stocks dwindle and pasture for grazing 

animals is the least available. Typically, in central Mali, the lean 

season is from June until August. It is common for poor 

households to skip meals during this period, and this is the 

period when food insecurity is at its peak. Results contributed to 

the estimation of 757,217 persons considered in food insecurity 

for the 2020 lean season. Beyond the CH, the unprecedented 

level of spatial precision provided by the results fed into 

humanitarian response mechanisms, as a tool to enhance 

geotargeting of communities impacted by the conflict. For the 

2020 lean season, the World Food Programme (WFP) used 

cropland change results to anticipate and inform emergency 

response planning, by targeting their food assistance to 

localities impacted by cropland abandonment.  

 

3.4 Suitability of data pipeline 

Spatial resolution requirements for Earth Observation data were 

developed by the Committee on Earth Observation Satellites 

(CEOS) to match the observed field size for crop monitoring 

applications: it  is specified that an appropriate spatial resolution 

to observe small parcel sizes (< 1.5 ha), predominant in Mali, is 

10 meters maximum. According to a paper conducted by Nabil 

(2020), which studies the suitability of datasets to monitor 

cropland based on parcel size, a lower resolution such as the one 

of Landsat imagery (30 metres) would be insufficient to detect 

agricultural fields in the study area of Mopti. Besides, Sentinel-

2’s temporal resolution of 5 days is a valuable enhancement, 

compared to Landsat’s 16 days, as it allows for a more frequent 

and thus more accurate assessment of the vegetation evolution 

in time, also less dependent on cloudy conditions, which are 
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likely in this season for central Mali, given that it corresponds to 

the rainy season. Finally, Sentinel-2 archive data allows to 

compare the current situation with two pre-conflict years, as it 

was launched in the course 2016 and because the security crisis 

hit Mopti region in 2018. For those various reasons, Sentinel-2 

data is considered the most adapted for the present study and 

preferred over other existing optical sensors. Besides, by using 

openly accessible and free-of-charge data from the Copernicus 

mission and a platform with similar characteristics such as 

Google Earth Engine, the methodology presented in this study 

answers well the challenges faced by humanitarians and 

national governments in countries such as Mali : it is quick to 

conduct and easily reproducible with minimal resources beyond 

an internet connection. In 2020, based on this methodology, the 

WFP Regional Bureau of West and Central Africa conducted 

similar cropland change analyses in hard-to-reach areas across 

seven countries, covering an area beyond 1 million square 

kilometres. Concurrently, on the request of the Technical 

Committee of the Cadre Harmonisé, the Copernicus Emergency 

Management Service (CEMS), which provides on-demand 

detailed mapping information for selected emergency situations, 

also conducted cropland change analyses based on this 

methodology for five divisions of the Borno state (northeast 

Nigeria) for the 2019 agricultural season (EC-JRC, Feb 2020) 

and for the one of 2020 (EC-JRC, Oct 2020). 

 

3.5 Discussion 

While the 3PTS data offers a solution to important information 

gaps in hard-to-access areas, it is not without limitations and 

many possible ways of enhancement can be considered. The 

analysis results do not offer a quantitative estimate of cropland 

surface area changes, but propose qualitative, ready-to-use 

maps. Considering the lack of ground-truth samples over such 

areas, often extremely large and hard-to-reach, and the very 

heterogeneous landscapes that are characteristic of the Sahelian 

band, available ground-truth datasets to train machine learning 

models are often unsatisfactory, and classified results require 

exhaustive manual cleaning to achieve acceptable levels of 

accuracy. Yet, this accuracy is crucial for a highly sensitive 

topic such as agricultural changes in conflict-prone areas, 

especially when it is intended to be used operationally by state 

actors and international organizations. Supervised and 

unsupervised classifications were tested and performed based 

on 3PTS products, yet, consistent results could not be delivered 

in time for the utilization of the maps in the national food 

security analyses, leaving expert interpretation as the method of 

choice.  However, the ease of identifying cropland through the 

3PTS methodology portends its potential to be used in 

classifications. 

Conclusions drawn from the results of the analysis are 

inferential. While the 3PTS method excels at identifying areas 

with declining cultivated surfaces, such data is rarely consumed 

as an impact indicator or output itself. In an operational context, 

it can often be used as a proxy for humanitarian conditions such 

as food insecurity or incidence of conflicts, as this paper 

contends. However, several other factors may be important 

drivers of changes in cultivated surfaces, notably environmental 

shocks (Wessels, 2007), which were not evaluated within the 

study. Likewise, the use of ACLED data to locate incidences of 

conflict may constitute another limitation, as a number of 

incidents are likely missing, especially in cases where the area 

in question is poorly covered by communication networks or 

where the flow of information is impeded. 

4. CONCLUSION 

This paper seeks to offer a spatial analysis toolkit adapted to the 

Sahelian context, based on openly accessible technologies, 

making this solution easily replicable, in other areas or for other 

years of interest. Where existing LCLU datasets and other 

initiatives have failed to respond to humanitarian needs in a 

timely and regular manner, the proposed method paves the way 

for an operational locality-level cropland monitoring system. By 

allowing for a rapid assessment of cropland abandonment at 

locality level, this methodology provides evidence of conflict-

related hazards in hard-to-access areas and enables to highlight 

specific areas at risk of food insecurity. For that, the 3PTS 

composite contains condensed information of the massively 

larger volume of underlying input scenes acquired along the 

agricultural season of a year of interest. The agroecological 

heterogeneity of the Sahelian landscape indicates that machine 

learning tools must be heavily localized to effectively classify 

cropland, in addition to a lack of appropriate training datasets 

(field samples), due to access restrictions. As a result, it is likely 

that visual interpretation will remain a more expedient method 

for assessing cropland changes in the context of crisis 

emergency response. 

The analysis showed that the ongoing violence in central Mali 

heavily curtailed agricultural activities in the eastern part of the 

Mopti region: cropland abandonment, with different degrees of 

loss, was detected in hundreds of localities in 2019 compared to 

pre-conflict years. Such conclusions were corroborated with 

other data sources available for that year, allowing to better 

understand the reasons behind the significant cropland 

reductions, as detected with Sentinel-2 imagery. Intercommunal 

violence leading to attacks of villages, population displacement 

and the restriction of physical access to fields (villages under 

embargo) are the main causes for the observed changes in 

cropland patterns in Mopti.  
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