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1. Introduction

Environmental conditions act on self-poten-
tial variability driving non-stationary patterns
which can highly distort background behav-
iours (for a discussion of self-potential electro-
chemical theory see e.g., Pham et al., 2001; and
references therein). Such disturbances severely
limit the possibility of studying the electrical
variability of pure geophysical origin and cor-
rectly using self-potential measures for the

monitoring of some geophysical phenomena. In
particular, the relationship between electrical
variability and seismic or volcanic activity,
which might be useful in prediction studies of
earthquakes and volcanic eruptions (e.g.,
Sobolev, 1975; Massenet and Pham, 1985;
Varotsos et al., 1993; Cuomo et al., 1996; Di
Bello et al., 1996; Park, 1996; Varotsos et al.,
1996; Uyeda et al., 2000), can be strongly hid-
den by environmental disturbances such as me-
teorological variability and anthropic activities.
Anthropic influences can be reduced by choos-
ing monitoring sites in zones which are suffi-
ciently far from industrial or urban areas, high
power lines, and any source of human distur-
bance. This is possible just in theory, since for
applied purposes we have to take into account
that risk areas generally do not satisfy these re-
quirements. In any case, even with optimal in-
strumental and ambient conditions, electric sig-
nals are sensitive to meteorological variability
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that can alter electrochemical phenomena.
Therefore, studies related to the assessment of
soil electric activity as a signature of geophysi-
cal phenomena for monitoring purposes cannot
neglect the presence of inherent meteorological
disturbances.

Self-potential signals are good examples of
inhomogeneous signals containing both regular-
ities and isolated singularities in the form of
pulses, jumps, power or deltalike singularities.
In order to single out unwanted interferences,
our first task is to analyse electrical fluctuations
retaining information on the localization of dis-
continuities and transient variations. To this pur-
pose, wavelet analysis is a useful tool, able to
carry out multiresolution studies and to enhance
local features against long term dynamic struc-
tures. Formalization of wavelet theory was actu-
ally initiated by works on seismic signals
(Goupillaud et al., 1984; Grossmann and Mor-
let, 1984). Environmental perturbations in elec-
trical signals might be singled out in the time-
scale domain of the wavelet transform more eas-
ily than in the physical space. By transforming
meteorological data, we locate the time-scale re-
gions where the environmental stress acts. Then
we transform the self-potential signal and, in the
previously selected regions, we extract the ex-
cited wavelet coefficients. Such coefficients ac-
count for local fluctuations which are candidates
for describing the electrical responses to the ex-
ternal disturbance. Excited coefficients can be
filtered out and the signal can be recovered by
anti-transforming the retained coefficients. 

In this exploratory work, we focus on hourly
electrical variability observed during rainy peri-
ods using hourly rainfall levels as support data.
These levels are proxy data for the triggering ac-
tion of rainfalls, since they are related to transient
variations in the soil water content. The informa-
tion stored in rain data concerns the strength of
the external forcing and its duration but it does
not provide indications on the evolution of possi-
ble subsequent long term soil responses. In dy-
namic terms, our support data allow us to investi-
gate those short range self-potential fluctuations
which strictly follow significant gradients of the
soil water content. Of course, with additional
support data, our methodological approach can
be useful to pick up long range features as well.

2. Observational data

We analyse self-potential signals measured
by means of a new geoelectrical monitoring net-
work installed in a seismic active area of the
Southern Apennine Chain (Italy). We focused on
the analysis of self-potential data measured by
the remote station prototype developed at the be-
ginning of 1999 at the Institute of Methodologies
for Environmental Analysis of the National Re-
search Council (IMAA/CNR) Geophysical Lab-
oratory, located in Tito Scalo (PZ). For further
details on the monitoring network and the de-
scription of the experimental equipment, we refer
to Balasco et al. (2002). Pluviometric measures
were supplied by the Istituto Idrografico of Ca-
tanzaro.

Figure 1a,b shows two examples of self-po-
tential time series recorded in rainy periods. The
signal in fig. 1a is very erratic on short time scales
and does not exhibit significant long range trends.
Similarly to earthquakes, pluviometric measures
can be regarded as realizations of a «point pro-
cess» (Cowpertwait, 1994) that is a succession of
discrete events we will call «rain events». Rain
events in fig. 1a induce evident perturbations
which seem to follow the triggering action of the
rainfalls rather strictly. The first three consecutive
small events induce a slight variation in the mean
electric potential values (a trend over a period of
∼ 1 day), whereas a cluster of more important
events drives a rather sharp and large variation.
This last perturbation persists for a time which is
almost equal to the rainy period. 

In fig. 1b, a cluster of rain events located at
a time distance of a very few hours is likely to
be responsible for the concomitant strong po-
tential variation shown in the plot (∼ 100 mV).
Differently from the previous example, this
transient is superimposed on a non stationary
background. After that the rainfalls stop, the
signal decrease is followed by an increase pre-
sumably due to the progressive drying process.
The increase asymptotically restores the signal
morphologies observed before the rainfalls but
with mean values which are greater than those
observed immediately before the rainfalls. Er-
ratic short range variability with anti-persistent
features is ubiquitous, as already highlighted in
recent works (Cuomo et al., 2000; Colangelo et
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al., 2001). In these two cases, although corre-
spondence between rain and signal anomalies
appears rather evident, the strength and direc-
tion of the variations as well as duration of
transients seem to be concerned with local dy-
namics. 

3. The problem and the analysis rationale

3.1. The dynamic problem

The physical-statistical investigation of ob-
servational signals, aimed to reveal their un-
derlying dynamics, is constrained by many fac-
tors, the main one being the nature itself of the

dynamics. The presence of complex mecha-
nisms related to many sources, possible non-
linear interactions among different perturba-
tions, noises, make it very hard to solve the
problem with simple tools. Unfortunately, we
cannot a priori assume that disturbances in-
duce simple effects. Ideally we can globally
decompose the signal into smooth and fast
components. In this picture, we split the dy-
namics on the basis of the frequency content:
low frequencies account for long range varia-
tions whereas high frequencies account for
generally erratic short range fluctuations
(noise). Stationary noises in the context of lin-
ear dynamics are negligible because their ef-
fects have no significant consequences of dy-

Fig. 1a,b. Two examples of hourly measures of self-potential and contextual hourly rainfall levels: a) measures
recorded from 20.11.1999 to 03.12.1999; b) from 08.05.1999 to 29.05.1999. The vertical axis on the left side in
the plot refers to self-potential while the axis on the right side refers to rain.

a

b
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namic value. Differently, externally induced
abrupt changes and transient phenomena com-
plicate the understanding of the electrical dy-
namics and its sources. The local character of
these effects can alter the global dynamic out-
look of the phenomenon, short and long time
scales can interact and the simple global pic-
ture described above does not work well.

3.2. The signal processing problem

Mathematical transformations are usually
applied to experimental data to obtain dynamic
information that does not clearly appear in raw
data. It is well known that pure traditional
tools, such as the standard Fourier transform,
are not suited for the analysis of non stationary
signals. The Fourier transform of a signal with
a local disturbance spreads the information
concerning this singularity in all its coeffi-
cients so any filter will distort both the spec-
trum and the recovered signal. We need instead
analysis tools able to carry out both global and
local investigations allowing us to single out
features at various temporal scales retaining in-
formation on the localization of discontinu-
ities. Starting from traditional methods, some
techniques have been developed, such as the
short time Fourier transform (see e.g., Portnoff,
1981), to carry out scale and time analysis si-
multaneously. In order to account for non sta-
tionary patterns, a temporal window is shifted
along the series and the signal fluctuations are
analysed separately within the series segments
selected by the window. The width of the win-
dow is independent of the time scale so these
methodologies are single-resolution. Tran-
sients in self-potentials may generally exist at
different scales. When one cannot previously
estimate the duration of the local patterns, a
flexible window width is recommended.
Wavelet analysis overcomes such problems
since it is able to provide multiresolution time
and frequency characterisation. It breaks up a
signal in waveforms of duration matched to the
scale. Such waveforms may be irregular and
asymmetric, so providing a wide collection of
functions to investigate shape, duration and ar-
rival time of transients. 

3.3. Rationale

We use the wavelet transforms of support
time series as independent «markers» to select
those time-scale regions where we expect that
important features of the signal are mainly driv-
en by environmental forcing. In the wavelet
transform of the signal, such features are repre-
sented by anomalous (usually high absolute val-
ue) wavelet coefficients which we consider ex-
cited by external forcing. Owing to the mul-
tiresolution character of the wavelet analysis,
the complexity of the patterns described in the
physical space is separated in a multi-layer sim-
pler descriptor. At any scale and time, we search
for those excited coefficients that match signifi-
cant coefficients of the marker. At this prelimi-
nary stage, we do not focus on the extensive
study of electrical responses to different rainfall
dynamics or on filtering strategies which can be
more or less sophisticated depending on the
specific needs. We merely aimed to evaluate the
possibility of discriminating in a simple way
wavelet coefficients accounting for meteorolo-
gy induced morphological distortions by fol-
lowing the fingerprints of suited support data.
We simply filtered the selected wavelet coeffi-
cients substituting their values with values ran-
domly extracted form the distribution of the co-
efficients estimated at the scale concerned im-
mediately before the rainfalls. This procedure is
only mildly invasive because it preserves all the
other coefficients and therefore all those details
that, at any scale and time, cannot be directly as-
sociated with the given forcing, also during
transients.

4. Some basic concepts of wavelet analysis

At present, there is an extensive literature
concerning wavelet analysis and its applica-
tions, from classical papers (e.g., Mallat, 1984;
Daubechies,1992) to more recent textbooks
(e.g., Percival and Walden, 2000). Here we lim-
it ourselves to some background concepts use-
ful for understanding this paper.

Wavelet analysis uses functions (wavelets),
which are localised both in time and in fre-
quency (or scale, in the rigorous wavelet for-
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malism). In practice, the only basic require-
ment for regarding a function as a plausible
wavelet is that it is an oscillating function
which has limited duration, zero mean with an
inherent pass-band like spectrum. The wavelet
transform takes a one-dimensional time signal
into a two-dimensional transformed function
of time and scale. Therefore it resolves features
at various scales without losing information on
time localization. Such intrinsic ability to zoom
in on short-lived high frequency phenomena is
simply achieved by introducing a scale param-
eter s which adapts the width of the wavelet
kernel to the resolution required (thus chang-
ing its frequency contents) at locations which
are determined by a parameter t0. Dilated
(changing s) and translated (changing t0) ver-
sions are obtained from a wavelet prototype ψ
(mother wavelet). By iteratively dilating the
wavelet and shifting it along the signal we ob-
tain a multiscale information of the temporal
properties of the signal. Dilated and translated
versions of the mother wavelet are obtained by
the action U

,U s t t s
t t

0
0=

-} }^ ] ah g k

where s, t0 ∈ R and s > 0 for the Continuous
Wavelet Transform (CWT). The wavelet trans-
form Wf of a function f (t) is then obtained pro-
jecting the function on the dilated and translat-
ed wavelets
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where (*) denotes complex conjugation. CWT
is obtained by continuously shifting scalable
functions which do not form an orthogonal ba-
sis. For many applied purposes we use the Dis-
crete Wavelet Transform (DWT, Daubechies,
1992). Discrete wavelets are not continuously
scalable and translatable but are scaled and
shifted in discrete steps. In the DWT formalism
the wavelet representation is
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The parameters j and k are integers and s > 1 (s =
= 2 for the usual dyadic sampling) is a fixed di-
lation step. The translation parameter t0 de-
pends on this dilation step: for t0 = 1 we have a
dyadic sampling of the time axis as well.
Wavelet series decomposition transforms sig-
nals in series of wavelet coefficients. In discrete
wavelet analysis, the signal is decomposed in
approximation and details. The process can be
iterated. The original signal is decomposed in
successively lower resolution components so
producing a wavelet decomposition tree. Figure
2 shows the generic form of a one-dimensional
(1D) wavelet transform. The signal is passed
through H (a low-pass filter) and G (a high-pass
filter), and then down-sampled by a factor of
two. This process is considered one level of the
transform and can be repeated for a finite num-
ber of levels n. The resulting outputs, Di (i = 1,
2, …, n) and Ln, are called wavelet coefficients,
and are details and approximation respectively.
When we use orthogonal wavelet basis func-
tions, we can reconstruct an arbitrary signal by
anti-transforming its wavelet coefficients.

In this work, a dyadic wavelet decomposition
is carried out down to level n = 3 that corre-
sponds to a scale 23 = 8 h (the coarsest time res-
olution of our analysis). This time scale appeared
sufficient for investigating relatively fast varia-
tions in the given signals. We used the daub-
echies 3 (asymmetric) wavelet. Nevertheless tri-
als with different wavelet functions did not imply
remarkable differences in our analysis.

5. Results

Figure 3a,b shows the rain and self-potential
wavelet coefficients estimated for the signal of

Fig. 2. Multilevel wavelet transform. The symbol
↓2 indicates down-sample by two.
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Fig. 3a,b. Wavelet coefficients (a) for rainfall measures and (b) for self-potentials relative to the signal report-
ed in fig. 1a.

a

b
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fig. 1a. Correspondence between significant rain
wavelet coefficients (fig. 3a) and excited signal
coefficients (fig. 3b) is generally very good. We
need no particular comparison criterion; a
naked eye view is sufficient to understand that
rain data are suited to locate the time-scale re-
gions where the self-potential variability is al-
tered. It is interesting to observe the signal co-
efficients (fig. 3b) at level 1 (scale = 2 h) in cor-
respondence with the cluster of rainfalls (100-
150 h). If we exclude a slighthy excited coeffi-
cient associated with the largest events, the co-
efficients at this scale do not appear particular-
ly sensitive to rainfalls. This suggests that,
when triggered, the rain effects are played on
time scales longer that two hours. If a smooth-
ing filter is used to remove the meteorological
anomaly, these fine scale details may be aver-
aged out. Our procedure instead retains these
details. Figure 4 shows a zoom in representation

of the original signal (fig. 1a) and the recovered
signal. The two signals differ just during the
rainfalls. It is interesting to see that no remark-
able difference can be detected between the re-
constructed signal during the external event and
that of the real fluctuations observed before and
after it. As stressed above, fine scale details are
not synthetic. Our filter removes just excited
coefficients so restoring the background behav-
iour. This fact highlights the mildly invasive
character of our reconstruction.

The problem for the signal of fig. 1b is
slightly more difficult because hourly rainfall
levels in this case are not optimal support data.
Figure 5a,b shows the estimated self-potential
and rain wavelet coefficients. By comparing the
coefficients at the same level of approximation
or detail, we again observe a good agreement,
but the excited regions for the signal are slight-
ly longer that those detectable in the wavelet

Fig. 4. Original (black line) and recovered (bold line) signals for the time series of fig. 1a.
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Fig. 5a,b. Wavelet coefficients (a) for rainfall measures and (b) for self-potentials relative to the signal report-
ed in fig. 1b.

a

b
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transform of the rainfalls. As already observed
in Section 2, the triggering action of the rain-
falls seem to be followed by slower responses
of the soil. In this case, our support data do not
provide sufficient information to understand
where the transient ends. In order to recover the
signal, we made the operational hypothesis that
the excited coefficients relative to the 24 h after
the end of the rainfalls were relevant to the me-
teorological stress as well. As shown in fig. 6,
the morphology of the recovered signal in the
rainy period traces patterns which are similar to
those observed in dry periods. About 24 h after
the end of the rainfalls, the recovered signals
adapts itself to intersect the observational data.

6. Conclusions

The main idea we present in this paper is
that the joint multiresolution wavelet analysis

of self-potential signals and support data relat-
ed to environmental forcing can represent a
suitable basis to extract environment-induced
electrical fluctuations. Wavelet transform trans-
lates the complexity of mixed global behav-
iours and transient patterns described by the
electrical signals in simpler time sequences of
coefficients over several resolutions or scales.
We focused on hourly self-potential variability
driven by rainfalls by exploiting hourly rainfall
level measures as support data. Such data,
transformed in the wavelet domain, were used
to mark the time-scale regions where rainfalls
act influencing self-potential variability. We
showed that in these regions excited wavelet co-
efficients of the signal are detectable and they
well account for local alterations ascribable to
the rain. Moreover, these coefficients can be fil-
tered out, removing distortions with a mildly
invasive technique. We think that our method-
ological approach is promising. However, the

Fig. 6. Original (black line) and recovered (bold line) signals for the time series in fig. 1b.
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reliability of the recovering procedure is strict-
ly related to the quality of the support data and
their ability to represent the actual mechanisms
we are interested in.
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