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We consider a classical problem of stability of equilibrium figures of a liquid rotating uniformly as
a rigid body about a fixed axis. We connect the problem of stability with the behavior for larget of
solutions of an evolution problem governing the motion of an isolated liquid mass whose initial data
are slight perturbations of the regime of a rigid rotation. The main attention is given to the case when
the figure is not rotationally symmetric; in this case the regime of a rigid rotation defines a periodic
solution of the above-mentioned nonstationary problem. It is proved that a sufficient condition of
stability is the positivity of the second variation of the energy functional in an appropriate function
space.

1. Introduction

The problem of the shape and stability of equilibrium figures of a uniformly rotating isolated
liquid mass has drawn attention of many generations of mathematicians, beginning with I. Newton.
A review of results obtained in the past and of some recent contributions can be found in [1, 7]. We
recall that if the liquid rotating with constant angular velocityω0 about thex3-axis is subjected to
capillary forces at the boundary (which is assumed to be free) and to the forces of self-gravitation,
then the equilibrium figureF is defined by the equation

σH(x)+
ω2

0

2
(x2

1 + x2
2)+ κU(x)+ p0 = 0, x ∈ G ≡ ∂F, (1.1)

which should be satisfied at the boundaryG of the domainF . Herep0 = const,H is twice the
mean curvature ofG, negative for convex domains,U(x) =

∫
F |x − y|−1 dy is the Newtonian

potential, andσ andκ are the constant coefficient of surface tension and the gravitational constant,
respectively. The caseκ = 0 corresponding to the absence of self-gravitation is not excluded butσ

should be positive. The density of the liquid is assumed to equal one.
Equation (1.1) is the Euler equation for the functional

R = σ |Γ | +
β2

2
∫
Ω
(x2

1 + x2
2)dx

−
κ

2

∫
Ω

∫
Ω

dx dy

|x − y|
− p0|Ω|, Γ = ∂Ω, (1.2)

whereΩ is a domain inR3 close toF with the same volume|Ω| and the same position of the
barycenter asF , Γ = ∂Ω, |Γ | = mesΓ , and

β = ω0

∫
F
(x2

1 + x2
2)dx.
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is the magnitude of the total angular momentum of the rotating liquid. We assume that the barycenter
of F coincides with the origin, and hence

|Ω| = |F |,

∫
Ω

xk dx =

∫
F
xk dx = 0, k = 1,2,3. (1.3)

The fact thatΩ is close toF means thatΓ can be determined by the equation

x = y +N(y)ρ(y), y ∈ G, (1.4)

whereN(y) is the exterior normal toG andρ(y) is a certain small function; we assume that

|ρ|C1(G) = δ � 1. (1.5)

The restrictions (1.3) can be expressed in terms ofρ in the form∫
G
ϕ(y; ρ)dSy = 0,

∫
G
ψk(y; ρ)dSy = 0, k = 1,2,3, (1.6)

where

ϕ(y; ρ) = ρ(y)−
ρ2(y)

2
H(y)+

ρ3(y)

3
K(y), (1.7)

ψk(y; ρ) = ykϕ(y; ρ)+Nk(y)

(
ρ2(y)

2
−
ρ3(y)

3
H(y)+

ρ4(y)

4
K(y)

)
, (1.8)

andK(y) is the Gaussian curvature ofG.
Hence,R can be regarded as a functional defined on the set of small functionsρ(y) described

above, and it can be shown that its first variation vanishes:

δ0R[ρ] ≡
∂

∂λ
R[λρ]

∣∣∣∣
λ=0

= −

∫
G

(
σH(x)+

ω2
0

2
(x2

1 + x2
2)+ κU(x)+ p0

)
ρ(x)dSx = 0,

by (1.1).
It was conjectured in the papers of H. Poincaré and A. M. Lyapunov that a sufficient condition

of the stability of the equilibrium figure is the positivity of the second variation of the energy
functional. For the functional (1.2) the second variation is given by the formula

δ2
0R[ρ] ≡

∂2

∂λ2
R[λρ]

∣∣∣∣
λ=0

=

∫
G
(σ |∇Gρ(y)|

2
− b(y)ρ2(y))dSy

+
ω2

0

I

( ∫
G
ρ(y)(y2

1 + y2
2)dSy

)2

− κ

∫
G

∫
G
ρ(y)ρ(z)

dSy dSz
|y − z|

, (1.9)

where

b(y) = σ(H2
− 2K)+

ω2
0

2

∂

∂N
(y2

1 + y2
2)+ κ

∂U
∂N

, I =

∫
F
(y2

1 + y2
2)dy
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(see [1, 5–7, 18]). This criterion is now generally accepted but its justification given in [6, 1] is far
from being complete because it is made under some a-priori assumptions concerning the perturbed
free boundary of the liquid. Moreover, the corresponding evolution free boundary problem for the
perturbation has not even been formulated. It was pointed out in [6] that a more careful justification
of the principle of minimum of the energy functional based on the study of a perturbed motion of
the liquid is highly desirable.

Our conclusion about stability of the equilibrium figures is based on the analysis of the above-
mentioned evolution problem that consists in the determination of the bounded domainΩt , t > 0,
the velocity vector fieldEv(x, t) and the pressure functionp(x, t), x ∈ Ωt , satisfying the Navier–
Stokes equations

Evt + (Ev · ∇)Ev − ν∇2
Ev + ∇p = 0, ∇ · Ev(x, t) = 0, x ∈ Ωt , t > 0, (1.10)

as well as the dynamic and kinematic boundary conditions on the free surfaceΓt = ∂Ωt , namely,

T (Ev, p)En = (σH + κU(x, t))En, Vn = Ev · En. (1.11)

Hereν is a constant positive viscosity coefficient,T (Ev, p) = −pI + νS(Ev) is the stress tensor,
S(Ev) = (∂vi/∂xj + ∂vj/∂xi)i,j=1,2,3 is the doubled rate-of-strain tensor,H is twice the mean
curvature ofΓt , Vn is the velocity of motion ofΓt in the direction of the exterior normalEn, and

U(x, t) =

∫
Ωt

dy

|x − y|

is the Newtonian potential calculated in the unknown domainΩt . Finally, the initial condition

Ev(x,0) = Ev0(x), x ∈ Ω0, (1.12)

is prescribed with a givenΩ0 whose boundaryΓ0 is defined by equation (1.4) with a given small
ρ = ρ0(y) satisfying (1.5), (1.6). ConcerningEv0 it is assumed that it is close to the velocity vector
field of a rigid rotation about thex3-axis

EV(x) = ω0(−x2, x1,0) = ω0(Ee3 × Ex),

and that it satisfies the conditions∫
Ω0

Ev0(x)dx = 0,
∫
Ω0

(Ex × Ev0(x))dx = βEe3, (1.13)

like EV, and some natural compatibility conditions.
We say that the figureF is stablewhen the problem (1.10)–(1.12) is solvable in an infinite time

intervalt > 0 and the solution tends to the regime of a rigid rotation ast → ∞.
The fact that a rigid rotation can be a limiting regime for the solutions of (1.10)–(1.12) ast → ∞

was discovered in the papers [12, 13] in the case whenβ is small andF is close to a ball. In [9] it was
shown that the convergence of the solution of (1.10)–(1.12) to this limiting regime is exponential.
In [10, 14–16] the condition of smallness ofβ was replaced with the condition of the positivity of
the second variation of the functional

G = σ |Γ | −
ω2

0

2

∫
Ω

(x2
1 + x2

2)dx −
κ

2

∫
Ω

∫
Ω

dx dy

|x − y|
− p0|Ω|, Γ = ∂Ω, (1.14)
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also considered in the theory of equilibrium figures. In [18] a more natural functionalR for the free
motion of the liquid was invoked, which required certain modifications in the proofs. ConcerningF
the axial symmetry was always assumed. Under this assumption,

EV(x) = ω0(Ee3 × Ex), P(x) = ω2
0(x

2
1 + x2

2)/2 + p0, x ∈ F,

is a stationary solution of the problem (1.10), (1.11), because( EV(x),P(x)) satisfy (1.10), and the
boundary conditions (1.11) reduce to (1.1).

Here we consider the case whenF is nonsymmetric. Forσ = 0, the existence of nonsymmetric
equilibrium figures was known long ago; these are the Jacobi ellipsoids, the pear-formed figures
of H. Poincaŕe etc. (see [1, 6]). In the caseσ > 0, κ = 0 such figures were found in [11] (see
also [7]) and computed numerically in [5]. IfF is not axially symmetric, then along withF ≡ F0
equation (1.1) determines a one-parameter family of equilibrium figures,Fθ , θ ∈ [0,2π), obtained
by rotatingF0 about thex3-axis through angleθ . It is natural to assume thatθ is arbitrary and
Fθ+2π = Fθ . It is easily seen that( EV(x), P(x), x ∈ Fω0t+ϕ) is a periodic solution of (1.10),
(1.11) for every constantϕ, and that the velocityVn of evolution of the free boundary in the normal
direction equalsω0h(x), where

h(x) = EN(x) · (Ee3 × Ex) = x1N2 − x2N1, x ∈ G.

It is clear thath(x) = 0 for axially symmetricG.
Since the functionalR takes the same value for allFθ , its second variation cannot be positive

for ρ(y) satisfying (1.6). As shown in [6] for the caseσ = 0, we have

δ2
0R[h] = 0, (1.15)

which will be proved in Section 3 also in the caseσ > 0 (this follows also from (4.43) with
b1 = b2 = 0, b3 = 1). Our main assumption concerningR is as follows: there exist two positive
constants,c1 andc2, such that

c1‖ρ‖
2
W1

2 (G)
6 δ2

0R[ρ] 6 c2‖ρ‖
2
W1

2 (G)
(1.16)

for all ρ(x), x ∈ G, satisfying the orthogonality conditions∫
G
ρ(x)dSx = 0,

∫
G
xkρ(x)dSx = 0, k = 1,2,3, (1.17)

(a linearized variant of (1.6)) and the additional condition∫
G
ρ(x)h(x)dSx = 0. (1.18)

By the Gauss formula and (1.3),∫
G
h(x)dSx =

∫
G
h(x)xk dSx = 0, k = 1,2,3,

so the functions 1, x1, x2, x3, h(x), x ∈ G, are linearly independent.
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Inequalities (1.16) imply that the functionalR takes its minimal valueR0 for Ω = Fθ and that
R > R0 if Ω 6= Fθ , as required in [6]. The additional orthogonality condition (1.18) serves for
“identifying” all the figuresFθ . It is clear that this can be done in many ways.

If inequalities (1.16) hold for every functionρ satisfying (1.17), (1.18), then they are also true,
with other constants, for every smallρ(x) satisfying (1.5), (1.6), (1.18). This can be easily verified
by representingρ in the formρ(x) = ρ1(x)+

∑4
k=1 λkfk(x) with fi = xi , i = 1,2,3,f4 = 1, and∫

G ρ1fk dS = 0, which implies|λk| 6 cδ
∫
G |ρ| dS, by (1.5), (1.6). The converse assertion is also

true.
The main result of the paper is the proof of stability of nonsymmetric equilibrium figures under

the above assumptions. The precise formulation of the result will be given in the next section.
Another evolution free boundary problem for a viscous capillary liquid filling a layer-like

domain over a rigid bottom is considered in [2, 3, 8].

2. Transformation of problem (1.10)–(1.12) and formulation of the main result

We start with the proof of some useful relations for an equilibrium figureF that is always
assumed to be a bounded domain inR3 with a connected smooth boundary. Let us show, following
A. M. Lyapunov [6], that the vector of total angular momentum of the rotating liquid,

Eβ =

∫
F

Ex × EV(x)dx,

is directed along thex3-axis. When we multiply (1.1) byNjx3 − N3xj , j = 1,2, integrate overG
and take account of the relations∫

G
U(Njx3 −N3xj )dSx =

∫
F

∫
F

(
x3
zj − xj

|x − z|3
− xj

z3 − x3

|x − z|3

)
dx dz

=

∫
F

∫
F

(
z3
zj − xj

|x − z|3
− zj

z3 − x3

|x − z|3

)
dx dz = 0

and ∫
G
H(Njx3 −N3xj )dSx =

∫
G
(x3∆Gxj − xj∆Gx3)dSx = 0,

where∆G is the Laplace–Beltrami operator onG, we obtain

ω2
0

2

∫
F

∂

∂xj
(x2

1 + x2
2)x3 dx = ω2

0

∫
F
x3xj dx = 0, j = 1,2.

Hence, ∫
F

Ex × EV(x)dx = βEe3, (2.1)

where

β = ω0I, I =

∫
F
(x2

1 + x2
2)dx. (2.2)

Similarly, multiplying (1.1) byNj , j = 1,2, and integrating we obtain the equation

ω2
0

∫
F
xj dx = 0, (2.3)
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which shows that the barycenter ofF is located on the axis of rotation; hence, the first two relations
(1.3) follow from (1.1). Finally, multiplication of (1.1) byEx · EN and integration leads to an expression
for p0:

p0 =
2σ |G|

3|F |
−

5

6|F |

(
ω2

0I + κ

∫
F
U(x)dx

)
. (2.4)

Forσ = 0, it is obtained in [6].
In fact,p0 is the Lagrange multiplier corresponding to the constraint|Ω| = |F |; the multipliers

corresponding to the restriction on the position of the barycenter vanish (see [15]).
Let us turn to problem (1.10)–(1.12) and recall that for the solution of this problem the following

conservation laws for the mass, total and angular momenta hold:

|Ωt | = |Ω0|,∫
Ωt

Ev(x, t)dx =

∫
Ω0

Ev0(x)dx, (2.5)∫
Ωt

(Ev(x, t)× Ex)dx =

∫
Ω0

(Ev0(x)× Ex)dx.

By assumptions (1.13), we have ∫
Ωt

Ev(x, t)dx = 0, (2.6)∫
Ωt

(Ex × Ev(x, t))dx = βEe3, (2.7)

and, as a consequence, ∫
Ωt

xk dx =

∫
Ω0

xk dx = 0, k = 1,2,3. (2.8)

As in [10, 15, 16], we work with the problem for the perturbations

Evr(x, t) = Ev(x, t)− EV(x), pr(x, t) = p(x, t)− P(x)

written in a coordinate system uniformly rotating with angular velocityω0. We make the change of
variables

x = Z(ω0t)y (2.9)

and introduce new unknown functions

Ew(y, t) = Z−1(ω0t)Evr(Z(ω0t)y, t), s(y, t) = pr(Z(ω0t)y, t), (2.10)

where

Z(λ) =

cosλ − sinλ 0
sinλ cosλ 0

0 0 1

 . (2.11)

Then (1.10)–(1.12) is transformed into the following free boundary problem for( Ew, s):

Ewt + ( Ew · ∇) Ew + 2ω0(Ee3 × Ew)− ν∇2
Ew + ∇s = 0,

∇ · Ew = 0, y ∈ Ω ′
t , t > 0,

T ( Ew, s)En′
= (σH ′

+ P(y)+ κU ′(y, t))En′, V ′
n = Ew · En′, y ∈ Γ ′

t ,

Ew(y,0) = Ev0(y)− EV(y) ≡ Ew0(y), y ∈ Ω0.

(2.12)
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HereΩ ′
t = Z−1(ω0t)Ωt , Γ

′
t = ∂Ω ′

t , En′
= Z−1(ω0t)En is the exterior normal toΓ ′

t , V
′
n is the

velocity of motion ofΓ ′
t in the directionEn′,H ′(y) is the doubled mean curvature ofΓ ′

t , and

U ′(y, t) =

∫
Ω ′
t

dz

|y − z|
.

Now, we can present the main result of the paper.

THEOREM 2.1 Let the following conditions be satisfied:

(i) Γ0 is given by equation (1.4) withG = G0 andρ = ρ0 ∈ C3+α(G0), α ∈ (0,1), satisfying
(1.5), (1.6), (1.18);

(ii) Ev0 ∈ C2+α(Ω0) satisfies conditions (1.13) and the compatibility conditions

∇ · Ev0(y) = 0, S(Ev0)En0 − En0(En0 · S(Ev0)En0) = 0, y ∈ Ω0; (2.13)

(iii) the functionalR[ρ] of (1.2) satisfies inequality (1.16) for everyρ(y) subject to (1.17), (1.18).

If, in addition,

‖ Ew0‖L2(Ω0) + ‖ρ0‖W1
2 (G0)

6 ε (2.14)

with sufficiently smallε > 0, then problem (2.12) has a unique solution defined fort > 0 and such
that

(a) Γ ′
t is given by (1.4) withG = Gθ(t), ρ = ρ̂(·, t) ∈ C3+α(Gθ(t)), ρ̂t (·, t) ∈ C2+α(Gθ(t)),
ρ̂t t (·, t) ∈ Cα(Gθ(t)), for all t > 0; the functionθ(t) is twice continuously differentiable;
ρ̂(x, t) satisfies (1.18), i.e. ∫

Gθ(t)
ρ̂(x)h(x)dSx = 0; (2.15)

(b) Ew(·, t) ∈ C2+α(Ω ′
t ), Ewt (·, t) ∈ Cα(Ω ′

t ), s(·, t) ∈ C1+α(Ω ′
t ), for all t > 0, and

| Ewt (·, t)|Cα(Ω ′
t )

+ | Ew(·, t)|C2+α(Ω ′
t )

+ |∇s(·, t)|C1+α(Ω ′
t )

+ |ρ̂(·, t)|C3+α(G0)
+ |ρ̂t (·, t)|C2+α(G0)

+ |ρ̂t t (·, t)|Cα(G0)

6 ce−bt/2(| Ew0|C2+α(Ω0)
+ |ρ0|C3+α(G0)

), b > 0, (2.16)

|θt (t)| + |θt t (t)| 6 ce−bt/2(| Ew0|C2+α(Ω0)
+ |ρ0|C3+α(G0)

). (2.17)

By Cl(Ωt ), Cl(Γt ) we mean the standard Hölder spaces of functions (or vector fields);ρ̂t (y, t),
ρ̂t t (y, t) are derivatives calculated for a fixed argumenty ∈ Gθ(t); in other words, ify = Z(θ(t))y′,
y′

∈ G0, then

∂ i

∂t i
ρ̂(y, t) =

∂ i

∂t i
ρ̂(Z(θ(t ′))y′, t)

∣∣∣∣
t ′=t

, i = 1,2. (2.18)

Estimates (2.16), (2.17) imply exponential stability of the periodic solution( EV,P,Fω0t+ϕ0).
The decay of̂ρ(y, t) to zero means thatΓ ′

t → Gϕ0, whereϕ0 = limt→∞ θ(t) < ∞. The existence
of this limit follows from (2.17).
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3. Auxiliary propositions

This section is devoted to calculations aimed at the determination of the functionθ(t) . We begin
with some auxiliary constructions. It is well known that for every pointx ∈ R3 with dist(x,G) 6 δ1,
whereG ≡ G0, δ1 � 1, we have

x = y +N(y)r, y ∈ G, (3.1)

with |r| 6 δ1. Let us consider this relation more closely. Assume thaty ∈ G ⊂ G, whereG is a
subset ofG given by

y = y(s), s = (s1, s2) ∈ ω ⊂ R2

(s1, s2 are local coordinates onG). The transformation

E(s1, s2, r) = y(s1, s2)+N(s1, s2)r ≡ y(s)+N(s)r (3.2)

makes the setU = {s ∈ ω : |r| 6 δ} correspond to the setV of the points (3.1) withy ∈ G, |ρ| 6 δ.
LetJ be the Jacobi matrix ofE(s1, s2, r), i.e.

J =


y1,s1(s)+N1,s1(s)r y1,s2(s)+N1,s2(s)r N1(s)

y2,s1(s)+N2,s1(s)r y2,s2(s)+N2,s2(s)r N2(s)

y3,s1(s)+N3,s1(s)r y3,s2(s)+N3,s2(s)r N3(s)

 , (3.3)

where Ni(s) = Ni(y(s)), yk,sj = ∂yk(s)/∂sj , Nk,sj = ∂Nk(s)/∂sj . The vectorsEy,sj =

(yk,sj )k=1,2,3 ≡ Eτj , j = 1,2, are linearly independent and tangent toG, hence, detJ |r=0 6= 0
and detJ (s, r) 6= 0, sinceδ1 is small. Therefore we have the inverse transformation

E−1(x) = {s = Σ(x), r = R(x)},

so thatU = E−1V . We denote byJkm the elements ofJ and byJ km the elements ofJ −1. It is
clear that

xm,sα ≡
∂xm

∂sα
= Jmα,

∂xm

∂r
= Jm3,

∂Σα

∂xk
= J αk,

∂R

∂xk
= J 3k,

whereα = 1,2, k = 1,2,3. The elementsJ 3k are the components of the vector

Ex,s1 × Ex,s2

detJ
=

Ex,s1 × Ex,s2
EN · (Ex,s1 × Ex,s2)

.

Since the surfaceG and the parallel surfaceG(r) = {x = y+N(y)r, y ∈ G} have a common normal
EN(y), andEx,sj are linearly independent tangent vectors toG(r), we have

Ex,s1 × Ex,s2
EN · (Ex,s1 × Ex,s2)

=

EN |Ex,s1 × Ex,s2|

|Ex,s1 × Ex,s2|
= EN

if the triple of vectorsEy,s1, Ey,s2,
EN has a right orientation. Hence,R is a function defined in the

δ1-neighborhood ofG, and
∂R

∂xk
= J 3k

= Nk(y) (3.4)
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(this also follows from the fact thatR(x) = dist(x,G)). In what follows we also consider the matrix
(3.3) with a variabler = r(s); in this case the relationJ 3k(s) = Nk(s) remains valid. Indeed, fix an
arbitrarys′ ∈ ω and consider the matrix (3.3) withr = r(s′). Clearly, the relation considered holds
for arbitrarys ∈ ω, also fors = s′, which proves our assertion.

The second derivatives ofΣα andR with respect toxq are furnished by the equations

∂J km

∂xq
=

2∑
α=1

∂J km

∂sα
J αq +

∂J km

∂r
J 3q .

From this formula higher order derivatives ofΣα andR can be calculated.
Now, let Γ be a surface that is close toG0 ≡ G and is given by equation (1.4) withρ(y)

satisfying (1.5), whereδ 6 δ1/2. We consider other representation formulas forΓ of the type (1.4),

x = y +Nθρθ (y), y ∈ Gθ , (3.5)

whereNθ is the exterior normal toGθ , in order to find the value ofθ such that
∫
Gθ ρθ (y)h(y)dSy

= 0. Instead of rotating the equilibrium figure, we can rotateΓ and try to satisfy the equation

f (λ) =

∫
G
ρ̃(z, λ)h(z)dSz = 0, (3.6)

whereρ̃(z, λ) is the function that defines the surfaceΓ (λ) = Z(λ)Γ by equation (1.4) withG = G0,
ρ = ρ̃, i.e.

x = z+N(z)ρ̃(z, λ), z ∈ G0

(we assume thatλ is so small thatΓ (λ) is contained in theδ1-neighborhood ofG). It is clear that
the pointx = y + N(y)ρ(y) ∈ Γ and the corresponding pointX = Z(λ)x ∈ Γ (λ) are related to
each other by

Z(λ)(y +N(y)ρ(y)) = z+N(z)ρ̃(z, λ), z ∈ G. (3.7)

If, in addition,z, y ∈ G, y = y(s), z = y(σ ), σ = (σ1, σ2) ∈ ω, then

y(σ )+N(σ)ρ̃(σ, λ) = Z(λ)(y(s)+N(s)ρ(s)), (3.8)

whereρ(s) ≡ ρ(y(s)), ρ̃(σ, λ) = ρ̃(y(σ ), λ),N(s) = N(y(s)). Hence, for a givenλ we have

ρ̃(σ, λ) = R(X) = R(Z(λ)x(s)), (3.9)

σ = Σ(X) = Σ(Z(λ)x(s)) = S(s, λ). (3.10)

The difference
ρ̃(z, λ)− ρ(y) = R(Zx)− R(x)

satisfies the inequality
|ρ̃(z, λ)− ρ(y)| 6 |Zx − x| 6 c|λ|. (3.11)

Let us show that the transformation (3.10) is invertible. We have

∂Sα(s, λ)
∂sβ

=

3∑
k,m=1

∂Σα

∂Xk
Zkm(λ)

dxm(s)

dsβ
≡ Bαβ(s, λ), (3.12)
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where
dxm(s)

dsβ
=
∂ym(s)

∂sβ
+
∂Nm(s)ρ(s)

∂sβ
=
∂xm

∂sβ
+Nm

∂ρ

∂sβ

(i.e. here the dependence ofρ on s is taken into account). In particular,

∂Sα
∂sβ

∣∣∣∣
λ=0

=

3∑
m=1

∂Σα

∂xm

(
∂xm

∂sβ
+Nm

∂ρ

∂sβ

)
=

3∑
m=1

J αm
(
Jmβ + Jm3

∂ρ

∂sβ

)
= δαβ ,

hence,S−1(σ, λ) exists for small values ofλ, and∣∣∣∣∂Sα∂sβ
− δαβ

∣∣∣∣ 6 c|λ|.

Let us compute the derivatives∂S−1/∂λ. When we differentiate the identities

σα = Σα(Z(λ)x(S−1(σ, λ)) ≡ Sα(S−1(σ, λ), λ), α = 1,2,

with respect toλ and take account of (3.10), we obtain

0 =

2∑
β=1

Bαβ
∂S−1

β

∂λ
+

3∑
k,m=1

∂Σα

∂Xk

dZkm
dλ

xm(s)

∣∣∣∣
s=S−1(σ,λ)

,

and, as a consequence,

∂S−1
α (σ, λ)

∂λ
= −

2∑
β=1

3∑
k,m=1

Bαβ
∂Σβ

∂Xk

dZkm
dλ

xm(s)

∣∣∣∣
s=S−1(σ,λ)

, (3.13)

whereBαβ = ∂S−1
α /∂σβ are the elements ofB−1.

Next, we calculate the derivative of̃ρ(σ, λ) = R(X) with respect toλ. Differentiation of (3.9)
gives

∂̃ρ(σ, λ)

∂λ
=

3∑
k=1

∂R

∂Xk

∂Xk

∂λ
=

3∑
k,m=1

∂R

∂Xm

(
dZmk

dλ
xk +

2∑
α=1

Zmk
dxk
dsα

∂S−1
α

∂λ

)
.

From (3.13) and
dZ
dλ

Ex =
dZ
dλ
Z−1 EX = Ee3 × EX,

we have
∂ EX

∂λ
= (I −D)[Ee3 × EX],

and
∂̃ρ

∂λ
= ∇XR(X) · (I −D)[Ee3 × EX], (3.14)

whereD is the matrix with elements

Dmk =

3∑
j=1

2∑
α,β=1

Zmj (λ)
dxj
dsα

∂sα

∂σβ

∂σβ

∂Xk
=

2∑
β=1

dXm(σ )

dσβ

∂σβ

∂Xk
. (3.15)
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It is easily seen thatDmk can be expressed in terms of the elements of the matrix (3.3) calculated
for s = σ , r = ρ̃(σ, λ) (we denote it byJ (σ, λ)) and of the inverse matrixJ −1(σ, λ). Indeed,

Dmk =

2∑
β=1

(
∂Xm

∂σβ
+Nm(σ )

∂ρ̃(σ, λ)

∂σβ

)
∂σβ

∂Xk

=

2∑
β=1

(
Jmβ(σ, λ)+ Jm3(σ, λ)

∂ρ̃(σ, λ)

∂σβ

)
J βk(σ, λ),

hence,

δmk −Dmk = Jm3(σ, λ)J
3k(σ, λ)− Jm3(σ, λ)

2∑
β=1

∂ρ̃(σ, λ)

∂σβ
J βk(σ, λ)

= Nm(σ )

(
Nk(σ )−

2∑
β=1

∂ρ̃(σ, λ)

∂σβ
J βk(σ, λ)

)
(3.16)

and

∂ρ̃

∂λ
=

3∑
k=1

(
Nk(σ )−

2∑
β=1

∂ρ̃(σ, λ)

∂σβ
J βk(σ, λ)

)
(Ee3 × EX)k, (3.17)

where

∂ρ̃(σ, λ)

∂σβ
=

3∑
m=1

2∑
α=1

∂R(X)

∂Xm

dXm

dσβ
=

3∑
m,j=1

2∑
α=1

∂R

∂Xm
Zmj

dxj (s)

dsα
Bαβ

∣∣∣∣
s=S−1(σ,λ)

. (3.18)

Finally, taking into account

EN(σ) · (Ee3 × EX) = EN(σ) · (Ee3 × Ey(σ ))

we obtain

∂ρ̃(σ, λ)

∂λ
= EN(σ) · (Ee3 × Ey(σ ))−

2∑
β=1

∂ρ̃(σ, λ)

∂σβ

3∑
k=1

J βk(σ, λ)(Ee3 × EX)k. (3.19)

Computation ofJ βk shows that the last term in (3.19) is equal to

(Ee3 × EX) ·
(ρ̃,σ1

EX,σ2 − ρ̃,σ2
EX,σ1)× EN(σ)

detJ (σ, λ)
,

whereρ̃,σj = ∂ρ̃(σ, λ)/∂σj and

EX,σj =
∂ Ey(σ )

∂σj
+
∂ EN(σ)

∂σj
ρ̃(σ, λ).
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The above term is independent of the choice of local coordinates, since both the numerator and the
denominator are multiplied by det(∂σ ′/∂σ) when the transformationσ ′

= F(σ) is made. Hence,
(3.19) can be written in the form

∂̃ρ(z, λ)

∂λ
= h(z)+ Eh1(z, ρ̃(z, λ)) · ∇G ρ̃(z, λ), (3.20)

whereEh1 is a differentiable vector-valued function depending onρ̃ but not on the derivatives of̃ρ.
One of the consequences of (3.19) is the formula (1.15). To prove it, we compute∂ρ̃(σ, λ)/∂λ

for Γ (λ) = Gλ. It is clear that in this casẽρ(σ, λ) is a smooth function of both arguments and that
ρ(s) = 0. Passing to the limit in (3.19), (3.20) we obtain

∂ρ̃(z, λ)

∂λ

∣∣∣∣
λ=0

= h(z),

because, by (3.18),

∂ρ̃

∂σβ

∣∣∣∣
λ=0,ρ=0

=

3∑
j=1

∂R(x)

∂xj

∂yj

∂sβ
= 0.

Hence,

ρ̃(z, λ)− λh(z) =

∫ λ

0
(ρ̃ ′
µ(z, µ)− h(z))dµ =

∫ λ

0
dµ

∫ µ

0
ρ̃ ′′

µ′µ′(z, µ
′)dµ′

= λ2
∫ 1

0
dt

∫ t ′

0
ρ̃ ′′(z, λt ′)dt ′ ≡ λ2ρ1(z, λ).

Now, sinceR[ρ̃(·, λ)] = R0 does not depend onλ, we have

0 =
d2

dλ2
R[ρ̃(·, λ)] =

d2

dλ2
R[λh] +

d2

dλ2

∫ λ2

0

d

dt
R[λh+ tρ1(·, λ)] dt. (3.21)

The last term equals

d

dλ

(
2λ

d

dt
R[λh+ tρ1(·, λ)]

)∣∣∣∣
t=λ2

+
d

dλ

∫ λ2

0

d2

dtdλ
R[λh+ tρ1] dt

= 2
d

dt
R[λh+ tρ1(·, λ)]

∣∣∣∣
t=λ2

+ 2λ
d

dλ

(
d

dt
R[λh+ tρ1]

∣∣∣∣
t=λ2

)

+
d

dλ

∫ λ2

0

d2

dtdλ
R[λh+ tρ1] dt,

and it tends to zero asλ → 0, sinceδ0R = 0. Hence, (3.21) implies

d2

dλ2
R[λh]

∣∣∣∣
λ=0

= δ2
0R[h] = 0,

and (1.15) is proved.
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Let us turn to our original problem of finding the value ofλ = λ0 for which equation (3.6) is
satisfied. It is equivalent to

f (0) = −

∫ λ0

0
f ′(λ)dλ. (3.22)

We have the following simple lemma.

LEMMA 3.1 There exist positive constantsε1 andl0 depending only onG and such that if|λ| 6 l0
and ∫

G
|ρ(y)| dSy 6 ε1, (3.23)

then

f ′(λ) >
1

2

∫
G
h2(y)dSy . (3.24)

If

max
G

|h(y)|ε1 6
l0

2

∫
G
h2(y)dSy, (3.25)

then equation (3.22) has a unique solution.

Proof. By (3.20),

f ′(λ) =

∫
G
h2(z)dSz +

∫
G
h(z)Eh1(z, ρ̃) · ∇G ρ̃(z, λ)dSz.

Integrating by parts in the second term and making use of (3.11), we obtain

f ′(λ) >
∫
G
h2(z)dSz − c1

∫
G

|ρ(y)| dSy − c2|λ| >
∫
G
h2(z)dSz − c1ε1 − c2l0

from which the estimate (3.24) follows. Since

|f (0)| 6 max|h(y)|ε1

and
∫ λ

0 f
′(µ)dµ is a monotone function for|λ| 6 l0, the existence of solution of (3.22) is evident.

The lemma is proved.

Now, let us assume that there is given a one-parameter family of surfacesΓt , t ∈ [0, t0] (e.g.
Γt = Γ ′

t in the problem (2.12)), that eachΓt is given by equation (1.4), whereρ = ρ(y, t) satisfies
(1.5), and is differentiable with respect tot . As above, we consider the surfacesΓt (λ) = Z(λ)Γt
given by the same equation withρ = ρ̃(y, t, λ), y ∈ G ≡ G0, and we look for the valueλ(t) of the
angleλ such that

f (λ, t) ≡

∫
G
ρ̃(z, t, λ)h(z)dSz = 0 (3.26)

for λ = λ(t). The following proposition is a consequence of Lemma 3.1.

LEMMA 3.2 If ρ(y, t) satisfies (3.23) and if (3.25) holds, then equation (3.26) defines a function
λ(t) such thatf (λ(t), t) = 0. This function is continuously differentiable with respect tot and

|λ′(t)| 6 c

∫
G

|ρt (y, t)| dSy . (3.27)
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Proof. We observe, first of all, that the above calculations, in particular, formulas (3.13), (3.20),
hold true also in the case whenρ depends ont (t enters these formulas as a parameter). Lemma 3.1
is also true if (3.23) is replaced with∫

G
|ρ(y, t)| dSy 6 ε1.

Therefore, under this condition equation (3.26) has a unique solutionλ = λ(t) ∈ [−l0, l0]. Now, let
us show thatf (λ, t) is continuously differentiable with respect tot . Since

∂X

∂t
= Z(λ)Nρt (s, t), (3.28)

we have formulas similar to (3.13), (3.14), namely,

∂S−1
α (σ, t, λ)

∂t
= −

2∑
β=1

3∑
k,m=1

Bαβ
∂Σβ

∂Xk
Zkm(λ)Nm(s)ρt (s, t)

∣∣∣∣
s=S−1(σ,t,λ)

, (3.29)

∂ρ̃(z, t, λ)

∂t
= ∇XR · (I −D)Z(λ)N(y)ρt (y, t), (3.30)

wherey is the point ofG related toz as in (3.7). Hence,

ft (λ, t) =

∫
G
h(z)∇XR · (I −D)Z(λ)N(y)ρt (y, t)dSz. (3.31)

On splittingG into submanifolds where local coordinates can be introduced and on making use of
(3.12) (we omit the details), one can write the last integral as an integral with respect to dSy and
obtain the estimate

|ft (λ, t)| 6 c

∫
G

|ρt (y, t)| dSy . (3.32)

It follows thatλ(t) is also continuously differentiable, and

λ′(t) = −
ft (λ, t)

fλ(λ, t)

∣∣∣∣
λ=λ(t)

.

Inequality (3.27) is a consequence of (3.32), (3.24). The lemma is proved.

If ρ(y, t) is twice continuously differentiable with respect tot , then we can evaluate the second
derivative

λt t (t) = −
ft t

fλ
+
ftfλt

f 2
λ

∣∣∣∣
λ=λ(t)

. (3.33)

For this we should computeft t andfλt . Differentiation of (3.14) leads to

∂2ρ̃

∂λ∂t
=

3∑
k=1

∂∇XR

∂Xk

∂Xk

∂t
(1 −D)[Ee3 × EX] − ∇XR ·

∂D
∂t

[e3 ×X]

+ ∇XR · (I −D)
[
Ee3 ×

∂ EX

∂t

]
. (3.34)
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The derivatives∂Dmk/∂t can be computed by differentiating (3.16) (we recall thatJ βk depends on
ρ̃(σ, t, λ)):

∂Dmk

∂t
= Nm(σ )

∂

∂t

2∑
β=1

∂ρ̃(σ, t, λ)

∂σβ
J βk(σ, t, λ). (3.35)

Taking also (3.18), (3.28) and (3.30) into account, it is not hard to see that (3.34) can be written in
the form

∂2ρ̃(σ, t, λ)

∂λ∂t
= a(s, t, λ)ρt (s, t)+

2∑
β=1

aβ(s, t, λ)
∂ρt (s, t)

∂sβ

∣∣∣∣
s=S−1(σ,t,λ)

, (3.36)

where a and aβ are functions with the same regularity properties as the second and the first
derivatives ofρ, respectively. Hence, on integrating by parts one obtains

ftλ(λ, t) =

∫
G
F(y, λ, t)ρt (y, t)dSy, (3.37)

whereF is as smooth as∂2ρ/∂sα∂sβ .
The derivatives̃ρt t andft t (λ, t) can be computed in a similar way. We have

∂2ρ̃(σ, t, λ)

∂t2
=

3∑
k,m=1

∂∇XR

∂Xk

∂Xk

∂t
(1 −D)Z(λ) EN(s)ρt (s, t)

+ ∇XR · (I −D)Z(λ)
( 2∑
γ=1

∂

∂sγ
( EN(s)ρt (s, t))

∂S−1
γ

∂t
+ EN(s)ρt t (s, t)

)

− ∇XR ·
∂D
∂t
Z(λ) EN(s)ρt (s, t)

∣∣∣∣
s=S−1(σ,t,λ)

.

From this formula, as well as from (3.28), (3.35), (3.20) it follows thatρ̃t t can be represented in the
form (3.36) with an additional terma′ρt t on the right hand side, which implies

ft t (λ, t) =

∫
G
(F1(y, λ, t)ρt (y, t)+ F2(y, λ, t)ρt t (y, t))dSy . (3.38)

Hence,

|λt t (t)| 6 c

∫
G
(|ρt (y, t)| + |ρt t (y, t)|)dSy, (3.39)

by (3.33), (3.37), (3.38).
In the same way higher order derivatives off (λ, t) andλ(t) can be computed and estimated.
If λ(0) = 0, then

|λ(t)| 6 c

∫ t

0

∫
G

|ρτ (y, τ )| dSy dτ, (3.40)

|ρ̃(z, t, λ(t))| 6 |ρ(y, t)| + c

∫ t

0

∫
G

|ρτ (y, τ )| dSy dτ. (3.41)
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An estimate of the gradient of̃ρ(z, t, λ(t)) can be deduced from (3.18). Since

∂ρ(s)

∂sβ
=

3∑
m=1

∂R(x)

∂xm

dxm
dsβ

,

we have ∣∣∣∣ ∂̃ρ(σ, λ)∂σβ
−
∂ρ(s)

∂sβ

∣∣∣∣ 6
3∑

j=1

2∑
α=1

∣∣∣∣ 3∑
m=1

∂R

∂Xm
Zmj −

∂R(x)

∂xj

∣∣∣∣∣∣∣∣dxj (s)

dsα

∣∣∣∣|Bαβ |
+

2∑
α=1

∣∣∣∣ 3∑
j=1

∂R(x)

∂xj

dxj
dsα

∣∣∣∣|Bαβ − δαβ | 6 c|λ|,

and, as a consequence,

|ρ̃(·, t, λ)|C1(G) 6 |ρ(·, t)|C1(G) + c|λ| 6 |ρ(·, t)|C1(G) + c

∫ t

0

∫
G

|ρτ (y, τ )| dSy dτ. (3.42)

4. Proof of Theorem 2.1

As in the case of axisymmetricF (see [18]), Theorem 2.1 reduces to the proof of the solvability
of problem (2.12) in a finite time interval and of uniform estimates for the solution. Additional
attention should be given to the construction of the functionθ(t).

In what follows we work only with problem (2.12) without addressing (1.10)–(1.12) any more.
Changing notations slightly, we write (2.12) in the form

Ewt + ( Ew · ∇) Ew + 2ω0(Ee3 × Ew)− ν∇2
Ew + ∇s = 0,

∇ · Ew(x, t) = 0, x ∈ Ωt , t > 0,

T ( Ew, s)En =

(
σH +

ω2
0

2
(x2

1 + x2
2)+ κU(x, t)+ p0

)
En,

Vn = Ew · En, x ∈ Γt ≡ ∂Ωt ,

Ew(x,0) = Ev0(x)− EV(x) ≡ Ew0(x), x ∈ Ω0,

(4.1)

whereEn is the exterior normal toΓt , Vn is the velocity of evolution ofΓt in the directionEn, and
U(x, t) =

∫
Ωt

|x − y|−1 dy. We recall thatEv0(x) satisfies conditions (1.13).
Let us verify directly thatEw(x, t) satisfies the orthogonality conditions∫

Ωt

Ew(x, t)dx = 0, (4.2)∫
Ωt

Ew(x, t) · Eηj (x)dx = −ω0

∫
Ωt

Eηj (x) · Eη3(x)dx + βδj3, j = 1,2,3, (4.3)

whereEηi(x) = Eei × Ex. Integration of the first equation in (4.1) leads to

d

dt

∫
Ωt

Ew(x, t)dx + 2ω0

∫
Ωt

(Ee3 × Ew)dx −

∫
Γt

(
σH +

ω2
0

2
(x2

1 + x2
2)+ κU(x, t)+ p0

)
EndSx = 0.
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Since ∫
Γt

H EndSx = 0,
∫
Γt

U EndSx =

∫
Ωt

∫
Ωt

Ey − Ex

|x − y|3
dy dx = 0,

the surface integral reduces to

ω2
0

2

∫
Γt

(x2
1 + x2

2)EndSx = ω2
0

∫
Ωt

Ex′ dx, Ex′
= (x1, x2,0),

and we obtain
d

dt

∫
Ωt

Ew dx + 2ω0

∫
Ωt

(Ee3 × Ew)dx − ω2
0

∫
Ωt

Ex′ dx = 0,

i.e.
dI1(t)

dt
− ω0I2(t) = 0,

dI2(t)

dt
+ ω0I1(t) = 0,

d

dt
I3(t) = 0,

where

Ij (t) = Eej ·

( ∫
Ωt

Ew dx + ω0

∫
Ωt

Eη3(x)dx

)
, j = 1,2,3.

It follows thatIj (t) = Ij (0) = 0; for j = 1,2 this gives

d

dt

∫
Ωt

x1 dx − ω0

∫
Ωt

x2 dx = 0,
d

dt

∫
Ωt

x2 dx + ω0

∫
Ωt

x1 dx = 0;

hence, ∫
Ωt

xj dx =

∫
Ω0

xj dx = 0, j = 1,2, (4.4)

and, as a consequence, ∫
Ωt

wk dx = Ik(t) = 0, k = 1,2,3.

Thus, (4.2) is verified.
Next, we multiply the first equation in (4.1) byEηi(x) and integrate overΩt . On integrating by

parts we obtain

d

dt

∫
Ωt

Ew · Eηi dx + 2ω0

∫
Ωt

(Ee3 · [ Ew × Eηi ])dx − ω2
0

∫
Ωt

Ex′
· Eηi dx = 0.

For i = 3 this gives

d

dt

∫
Ωt

Ew · Eη3 dx + 2ω0

∫
Ωt

(Ex′
· Ew)dx =

d

dt

∫
Ωt

( Ew + ω0Eη3(x)) · Eη3(x)dx = 0,

and fori = 1,2 we obtain the system

d

dt

∫
Ωt

( Ew + ω0Eη3) · Eη1 dx − ω0

∫
Ωt

( Ew + ω0Eη3) · Eη2 dx = 0,

d

dt

∫
Ωt

( Ew + ω0Eη3) · Eη2 dx + ω0

∫
Ωt

( Ew + ω0Eη3) · Eη1 dx = 0.
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Since
∫
Ω0
( Ew0 + ω0Eη3) · Eηk dx = δk3β, k = 1,2,3, we conclude from the last three equations that

(4.3) holds.
We also need to introduce the part ofEw orthogonal to all rigid rotationsEηi , i.e.

Ew⊥(x, t) = Ew(x, t)−

3∑
i=1

γi(t)Eηi(x),∫
Ωt

Ew⊥
· Eηk dx = 0, k = 1,2,3.

(4.5)

The latter equations yield an algebraic system forγi :

3∑
i=1

Ski(t)γi(t) =

∫
Ωt

Ew · Eηk dx = −ω0Sk3(t)+ βδk3, k = 1,2,3,

where

Ski(t) =

∫
Ωt

Eηk · Eηi dx =

∫
Ωt

(δki |x|
2
− xixk)dx

are elements of a nonsingular matrixS(t). Hence,

γi(t) =

3∑
j=1

Sij (βδj3 − ω0Sj3) = αi(t)− ω0δi3, i = 1,2,3,

whereSik are the elements ofS−1 andαi(t) = Si3(t)β. It follows that the vector fieldsEV(x, t) =

ω0Eη3(x),

Ew′(x, t) =

3∑
i=1

γi(t)Eηi(x) = Eγ (t)× Ex

and

Ew′′(x, t) =

3∑
i=1

αi(t)Eηi(x) = Eα(t)× Ex

are related to each other by
Ew′′(x, t) = Ew′(x, t)+ EV(x, t),

and that

‖ Ew‖
2
L2(Ωt )

= ‖ Ew⊥
‖

2
L2(Ωt )

+ ‖ Ew′
‖

2
L2(Ωt )

, (4.6)

‖ Ew′
‖

2
L2(Ωt )

=

3∑
i,k=1

γi(t)γk(t)Sik(t) = S33(t)β2
+ S33(t)ω

2
0 − 2βω0. (4.7)

Now, we pass to the proof of the solvability of problem (4.1). For this we need some estimates
of the solution of a linear problem

Evt − ν∇2
Ev + ∇p = Ef (ξ, t), ∇ · Ev = g(ξ, t), ξ ∈ Ω,

Ev(ξ,0) = Ev0(ξ),

ΠS(Ev)En = Eb(ξ, t), ξ ∈ Γ ≡ ∂Ω,

En · T (Ev, p)En− σ En ·

∫ t

0
∆Ev(ξ, τ )dτ = b(ξ, t)+

∫ t

0
B(ξ, τ )dτ,

(4.8)
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in a given bounded domainΩ with a smooth boundaryΓ . HereEn is the exterior normal toΓ and

Π Eφ(ξ) = Eφ(ξ)− En(ξ)(En(ξ) · Eφ(ξ))

is the projection of the vectorEφ(ξ) given onΓ to the tangent plane toΓ at the pointξ . Finally,∆
denotes the Laplace–Beltrami operator onΓ .

THEOREM 4.1 ([14, 17]) LetΩ be a bounded domain inR3 with boundaryΓ ∈ C2+α, α ∈ (0,1),
and let Ef (·, t) ∈ Cα(Ω), g(·, t) ∈ C1+α(Ω), Eb ∈ C1+α,(1+α)/2(Γ × (0, T )), b(·, t) ∈ C1+α(Γ ),
B(·, t) ∈ Cα(Γ ), ∀t ∈ (0, T ), satisfy the compatibility conditions

ΠS(Ev0)En|Γ = b(ξ,0), ∇ · Ev0(ξ) = g(ξ,0), Eb(ξ, t) · En(ξ) = 0,

and the condition
g(ξ, t) = ∇ · Eh(ξ, t)

with Eht (·, t) ∈ Cα(Ω), ∀t ∈ (0, T ). Then problem (4.8) has a unique solutionEv ∈ C2+α(Ω),
p ∈ C1+α(Ω) with Evt ∈ Cα(Ω), ∀t < T , and the solution satisfies the inequality

sup
t<T

|Evt (·, t)|Cα(Ω) + sup
t<T

|Ev(·, t)|C2+α(Ω) + sup
t<T

|p(·, t)|C1+α(Ω)

6 c(T )(| Ef (·, t)|Cα(Ω) + sup
t<T

|g(·, t)|C1+α(Ω) + sup
t<T

|Eht (·, t)|Cα(Ω)

+ |Eb|C1+α,(1+α)/2(Γ×(0,T )) + sup
t<T

|b(·, t)|C1+α(Γ ) + sup
t<T

|B(·, t)|Cα(Γ )).

The local existence theorem for problem (4.1) reads as follows.

THEOREM 4.2 Under the hypotheses of Theorem 2.1, problem (4.1) has a unique solution defined
in a certain finite time interval(0, t0) and possessing the following properties:

(i) Γt is given by equation (1.4) withG = G0, ρ = ρ(·, t) ∈ C3+α(G0), t ∈ (0, t0), ρt (·, t) ∈

C2+α(G0), ρt t (·, t) ∈ Cα(G0);
(ii) Ew(·, t) ∈ C2+α(Ωt ), Ewt (·, t) ∈ Cα(Ωt ), s(·, t) ∈ C1+α(Ωt );

(iii) we have the inequality

sup
t<t0

| Ewt (·, t)|Cα(Ωt ) + sup
t<t0

| Ew(·, t)|C2+α(Ωt )
+ sup
t<t0

|∇s(·, t)|C1+α(Ωt )

+ sup
t<t0

|ρ(·, t)|C3+α(G0)
+ sup
t<t0

|ρ(·, t)|C2+α(G0)
+ sup
t<t0

|ρt t (·, t)|Cα(G0)

6 c(| Ew0|C2+α(Ω0)
+ |ρ0|C3+α(G0)

); (4.9)

(iv) there exists a twice continuously differentiable functionθ(t) such thatθ(0) = 0 and thatΓt
can also be given by the equation

x = y +Nθ(t)(y)ρ̂(y, t), y ∈ Gθ(t), (4.10)

with ρ̂ possessing the same regularity properties asρ and, in addition, the property (2.15). The
functionsθ andρ̂ satisfy the inequalities

|θt (t)| 6 c

∫
Gθ(t)

|ρt (y, t)| dSy 6 c

∫
Γt

| Ew · En| dSy,

|θt t (t)| 6 c

∫
Gθ(t)

(|ρt t (y, t)| + |ρt (y, t)|)dSy 6 c

∫
Γt

(| Ew| + | Ewt |)dSy

(4.11)
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and

sup
t<t0

|ρ̂(·, t)|C3+α(Gθ(t)) + sup
t<t0

|ρ̂t (·, t)|C2+α(Gθ(t)) + sup
t<t0

|ρ̂t t (·, t)|Cα(Gθ(t))

6 c(| Ew0|C2+α(Ω0)
+ |ρ0|C3+α(G0)

), (4.12)

whereρ̂t (y, t) andρ̂t t (y, t) are understood as in Section 2 (see (2.18)).

Proof. The proof of the solvability of problem (4.1) and of estimate (4.9) is based on the passage
to the Lagrangean coordinates and on the use of Theorem 4.1. It is identical with the corresponding
arguments in [18, Theorem 3.2], and we only give a very rough idea of it. The Lagrangean
coordinatesξ ∈ Ω0 are related to the Eulerian coordinatesx ∈ Ωt by

Ex = Eξ +

∫ t

0
Eu(ξ, τ )dτ = EX(ξ, t), (4.13)

whereEu(ξ, t) = Ew(X(ξ, t), t) is the velocity vector field written as a function ofξ, t . Together with
q(ξ, t) = s(X(ξ, t), t), Eu satisfies the relations

Eut − ν∇2
u Eu+ 2ω0Ee3 × Eu+ ∇uq = 0, ∇u · Eu = 0, ξ ∈ Ω0, (4.14)

Eu(ξ,0) = Ew0(ξ), (4.15)

Tu(Eu, q)En− σH En =

(
ω2

0

2
|X′(ξ, t)|2 + p0 + κU(X, t)

)
En, ξ ∈ Γ0, (4.16)

where∇u = A∇ is the transformed gradient,A = (Aij )i,j=1,2,3 is the matrix of cofactors of
the Jacobi matrix of the transformation (4.13) (the Jacobian of this transformation equals one),
|X′

|
2

= X2
1 +X2

2, and finallyTu(Eu, q) = −qI + νSu(Eu) and

Su(Eu) =

( 3∑
k=1

(
Aik

∂uj

∂ξk
+ Ajk

∂ui

∂ξk

))
i,j=1,2,3

are the transformed stress and rate-of-strain tensors, respectively. Using the well known formula
H En = ∆(t) EX, where∆(t) is the Laplace–Beltrami operator onΓt , one can easily show that under
the conditionEn · En0 > 0, (4.16) is equivalent to two equations

Π0ΠSu(Eu)En = 0,

En0 · Tu(Eu, q)En− σ En0 ·∆(t)

(
Eξ +

∫ t

0
Eu(ξ, τ )dτ

)
(4.17)

=

(
ω2

2
|X′(ξ, t)|2 + p0 + κU(X, t)

)
En · En0, ξ ∈ Γ0,

whereEn0 is the exterior normal toΓ0 and

Π Eφ = Eφ − En(En · Eφ), Π0 Eφ = Eφ − En0(En0 · Eφ).

The first statement of Theorem 4.2 is obtained by linearizing problem (4.14)–(4.16) and using
Theorem 4.1 (see [16, 17] for more details). From the interpolation inequalities and from (2.14) it
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follows that
sup
G0

|ρ0(y)| 6 cε(3+α)/(4+α)
|ρ0|

1/(4+α)

C3+α(G0)
,

sup
G0

|∇ρ0(y)| 6 cε(2+α)/(4+α)
|ρ0|

2/(4+α)

C3+α(G0)
.

Since

|ρ(y, t)| 6 |ρ0(y)| +

∫ t

0
|ρτ (y, τ )| dτ,

|∇G0ρ(y, t)| 6 |∇G0ρ0(y)| +

∫ t

0
|∇G0ρτ (y, τ )| dτ,

condition (1.5) holds forρ(y, t), t 6 t0, if ε andt0 are sufficiently small.
For the construction ofθ(t), all the necessary calculations are carried out in Section 3. Due to

Lemma 3.1, we may assume without loss of generality thatρ0 = ρ̂0, i.e.,F0 is chosen in such a way
thatρ0 satisfies (1.18). Then we make use of Lemma 3.2 and setθ(t) = −λ(t); we assume thatθ(t)
is defined in the same time interval [0, t0] as Ew, s, ρ. The estimates (4.11) follow from (3.27), (3.39)
and from the kinematic boundary conditionVn = Ew · En that can also be written in an equivalent
form

ρt (y, t) =
Ew(x, t) · En(x)

En(x) · EN0(y)
, x = y +N0(y)ρ(y, t) ∈ Γt , y ∈ G0.

Finally, we setρ̂(y, t) = ρ̃(Z−1(θ(t))y, t) = ρ̃(Z(λ(t))y, t), y ∈ Gθ(t), whereρ̃(z, t) =

ρ̃(z, λ(t), t), z ∈ G0. TheC1(Gθ(t))-norm of ρ̂ can be estimated with the help of (3.41), (3.42). It is
easily seen that̂ρ satisfies (1.5) ift0 andε are sufficiently small. An estimate of theC3+α(Gθ(t))-
norm ofρ̂ can be derived from the equation

σ(H(x)− Ĥ(y))+
ω2

0

2
(x2

1 + x2
2)−

ω2
0

2
(y2

1 + y2
2)+ κ(U(x, t)− Û(y)) = En · T ( Ew, s)En,

y ∈ Gθ(t), (4.18)

which is a consequence of the boundary conditions. Herex = y + Nθ(t)ρ̂(y, t) ∈ Γt , Ĥ(y) is the
doubled mean curvature ofGθ(t) at the pointy, andÛ(y) =

∫
Fθ(t) |y − z|−1 dz. By Proposition 3.1

in [16] and (4.8), equation (4.18) implies

|ρ̂(·, t)|C3+α(Gθ(t)) 6 c(|En · T ( Ew, s)En|C1+α(Γt )
+ ‖ρ̂(·, t)‖L2(Gθ(t)))

6 c(| Ew0|C2+α(Ω0)
+ |ρ0|C3+α(G0)

). (4.19)

The simplest way to estimate the norms of the derivativesρ̂t , ρ̂t t is to make use of the kinematic
boundary conditionVn = Ew · En. Let us show that the velocitỹVn of evolution of the surface
Γt (λ(t)) = Z(λ(t))Γt in the direction of the exterior normal can be expressed in terms ofVn as
follows:

Ṽn = Vn − θ ′
t (t)(Ee3 × Ex) · En = ( Ew − θ ′

t (t)(Ee3 × Ex)) · En(x), x ∈ Γt .

We recall thatΓt (λ(t)) andΓt are given by the equations

x̃ = z+N0(z)ρ̃(z, t) ≡ X(z, t), z ∈ G0, (4.20)

and
x = Z(θ(t))X(z, t) ≡ Y (z, t), z ∈ G0,
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respectively, and that the normalẼn at the point̃x is related toEn(x) by

En = Z(θ(t))Ẽn.

Hence,
Vn = Y ′

t · En = (ZX)′t · Z Ẽn = X′
t · Ẽn+ Z ′

tZ−1Y · En = Ṽn + θ ′
t (Ee3 × Ex) · En,

as claimed. On the other hand,Ṽn = ρ̃t ( EN · Ẽn), so

ρ̃t (z, t) = ( EN · Ẽn)−1( Ew(x, t)− θ ′
t (t)(Ee3 × Ex)) · En(x). (4.21)

From this relation and from (4.9) it is easy to deduce estimate (4.12) for the time derivatives ofρ̃

and, as a consequence, ofρ̂. The theorem is proved.

Let us turn to uniform estimates of the solution of problem (4.1). One of them is an estimate of
a generalized energy.

THEOREM 4.3 Assume that problem (4.1) has a classical solution defined fort ∈ [0, T ], T 6 ∞,
and thatΓt is given by equation (4.10) witĥρ(y, t) satisfying (2.15). If (1.16) holds, then there
exists a functionE(t) such that

c3(‖ Ew(·, t)‖2
L2(Ωt )

+‖ρ̂(·, t)‖2
W1

2 (Gθ(t))
) 6 E(t) 6 c4(‖ Ew(·, t)‖2

L2(Ωt )
+‖ρ̂(·, t)‖2

W1
2 (Gθ(t))

) (4.22)

and
E(t) 6 c−btE(0), b > 0, (4.23)

for t 6 T . The constantsc1, c2, b are independent ofT .

Proof. First of all, we have the energy relation

d

dt

(
1

2
‖ Ew(·, t)‖2

L2(Ωt )
+G(t)

)
+
ν

2
‖S( Ew)‖2

L2(Ωt )
= 0, (4.24)

whereG(t) is the functional (1.14) withΩ = Ωt . This relation is obtained by multiplying the first
equation in (4.1) byEw and integrating overΩt (cf. [9, 10]). By (4.6) and (4.7), relation (4.24) can
be written in the form

d

dt

(
1

2
‖ Ew⊥(·, t)‖2

L2(Ωt )
+ R1(t)− R0)

)
+
ν

2
‖S( Ew⊥)‖2

L2(Ωt )
= 0, (4.25)

where

R1(t) =
β2

2
S33(t)+

ω2
0

2
S33(t)+G(t) =

1

2
β2

(
S33(t)−

1

S33(t)

)
+ R(t),

andR(t), R0 are defined by (1.2) withΩ = Ωt andΩ = Fθ(t), respectively (it is clear thatR0 is
independent oft). The expression

S33(t)−
1

S33(t)
= −

1

S33(t)

2∑
j=1

Sj3(t)Sj3(t)

=
S22(t)S

2
13(t)+ S11(t)S

2
23(t)− 2S12(t)S13(t)S23(t)

S33(t)detS(t)
(4.26)
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is a positive definite quadratic form with respect toS13(t), S23(t) (this follows from S2
12(t) 6

S11(t)S22(t)). By our main hypothesis concerningR, the differenceR(t) − R0 is equivalent to
the square of the norm‖ρ̂(·, t)‖W1

2 (Gθ(t))
. Indeed,

R(t)−R(0) = R[ρ̂] −R[0] = δ0R[ρ̂] +
∫ 1

0
dλ

∫ λ

0

d2

dµ2
R[µρ̂] dµ = δ0R[ρ̂] +

1

2
δ2

0R[ρ̂] +R1[ρ̂],

where

δ0R[ρ̂] =
d

dλ
R[λρ̂]

∣∣∣∣
λ=0

= 0

and

R1[ρ̂] =

∫ 1

0
(1 − µ)

(
d2

dµ2
R[µρ̂] −

d2

dλ2
R[λρ̂]

∣∣∣∣
λ=0

)
dµ

is a remainder not exceedingcδ‖ρ̂‖
2
W1

2 (Gθ(t))
, sinceρ̂ satisfies (1.5). In addition,̂ρ satisfies (1.6),

(1.18) (withG = Gθ(t)), hence,

c′1‖ρ̂‖
2
W1

2 (Gθ(t))
6 R[ρ̂] − R[0] 6 c′2‖ρ̂‖

2
W1

2 (Gθ(t))
(4.27)

if δ is small enough.
To complete the proof of (4.23), we need to obtain an additional estimate for‖ρ̂‖Gθ(t) . According

to Lemma 4.1 in [18], in the domaiñΩ(t) = Z(−θ(t))Ωt whose boundarỹΓt = Z(−θ(t))Γt is
given by equation (4.20) there exists a solenoidal vector fieldEU(x, t) with the following properties:

(1) EU satisfies the boundary conditions

EU(x, t) · En(x) = m(y, ρ̃(y, t))ϕ(y; ρ̃(y, t)), x ∈ Γ̃t ,

whereϕ(y, ρ) is defined in (1.7),y is the point ofG0 such thatx = y + N0(y)ρ̃(y, t), and
m(y, ρ̃(y, t)) is a positive function satisfying∫

Γ̃t

f (x)m(y; ρ̃)dSx =

∫
G0

f (y +N0(y)ρ̃(y, t))dSy

for anyf (x), x ∈ Γ̃t ;
(2) EU is orthogonal to all vectors of rigid rotation:∫

Ω̃t

EU(x, t) · Eηi(x)dx = 0, i = 1,2,3;

(3) we have the estimates

‖ EU(·, t)‖W1
2 (Ω̃t )

6 c‖ρ̃(·, t)‖
W

1/2
2 (G0)

,

‖ EU(·, t)‖L2(Ω̃t )
6 c‖ρ̃(·, t)‖L2(G0),

‖ EUt (·, t)‖L2(Ω̃t )
6 c(‖ρ̃t (·, t)‖L2(G0) + ‖ρ̃(·, t)‖

W
1/2
2 (G0)

).

It is easy to verify that the vector fieldEW(x, t) = Z(θ(t)) EU(Z−1(θ(t))x, t), x ∈ Ωt , has the same
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properties inΩt , in particular,

‖ EW(·, t)‖W1
2 (Ωt )

6 c‖ρ̃(·, t)‖
W

1/2
2 (G0)

, (4.28)

and, moreover, the derivative

EWt (x, t) = Z ′(θ(t))θ ′(t) EU(Z−1x, t)

+ Z(θ(t))( EU,t (Z−1(θ(t))x, t)+

3∑
k=1

EU,k(Z−1(θ(t))x, t)((Z−1)′(θ(t))x)kθ
′(t)),

where EU,t (z, t) = ∂ EU(z, t)/∂t and EU,k(z, t) = ∂ EU(z, t)/∂zk, satisfies the inequality

‖ EWt (·, t)‖L2(Ωt ) 6 c(‖ρ̃t (·, t)‖L2(G0) + ‖ρ̃(·, t)‖
W

1/2
2 (G0)

). (4.29)

We write the first equation in (4.1) in the form

Ew⊥
t + ( Ew · ∇) Ew⊥

+ ω0(Ee3 × Ew)+ ( Ew · ∇) Ew′′
− ν∇2

Ew + ∇s = − Ew′
t ,

multiply it by EW and integrate overΩt . After integration by parts we arrive at

d

dt

∫
Ωt

Ew⊥
· EW dx −

∫
Ωt

Ew⊥
· ( EWt + ( Ew · ∇) EW)dx +

∫
Ωt

( Ew · ∇) Ew′′
· EW dx

+

∫
Ωt

ω0(Ee3 × Ew) · EW dx +
ν

2

∫
Ωt

S( Ew) : S( EW)dx

−

∫
Γt

(
σH(x)+

1

2
| EV(x, t)|2 + κU(x, t)+ p0

)
EW · EndSx = 0. (4.30)

It is easily verified that

( Ew · ∇) Ew′′
+ω0(Ee3 × Ew) = ( Ew⊥

· ∇)( EV + Ew′′)+ ( Ew′′
· ∇) Ew′′

− ( EV · ∇) EV + [( Ew′′
· ∇) EV − ( EV · ∇) Ew′′]

and that the last term is a rigid rotation:

( Ew′′
· ∇) EV − ( EV · ∇) Ew′′

= ω0

2∑
j=1

αj (t)[(ηj · ∇)η3 − (η3 · ∇)ηj ] = ω0(α1Eη2 − α2Eη1).

Hence, it is orthogonal toEW . We also observe that

( Ew′′
· ∇) Ew′′

− ( EV · ∇) EV =
1

2
∇(| EV|

2
− | Ew′′

|
2),

so (4.30) becomes

d

dt

∫
Ωt

Ew⊥
· EW dx −

∫
Ωt

Ew⊥
· ( EWt + ( Ew · ∇) EW)dx +

∫
Ωt

( Ew⊥
· ∇)( Ew′′

+ EV) · EW dx

+
ν

2

∫
Ωt

S( Ew⊥) : S( EW)dx−

∫
Γt

(
σH(x)+

1

2
| Ew′′(x, t)|2+p0+κU(x, t)

)
EW · EndSx = 0. (4.31)
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Finally, we multiply (4.31) by a small positiveγ and add to (4.25), which leads to

d

dt
E(t)+ E1(t) = 0,

where

E(t) = ‖ Ew⊥(·, t)‖2
L2(Ωt )

+ R1(t)− R0 + γ

∫
Ωt

Ew⊥
· EW dx,

(4.32)

E1(t) =
ν

2
‖S( Ew⊥)‖2

L2(Ω)
− γ

∫
Ωt

Ew⊥
· ( EWt + ( Ew · ∇) EW)dx

+ γ

∫
Ωt

( Ew⊥
· ∇)( Ew′′

+ Ew′) · EW dx +
γ ν

2

∫
Ωt

S( Ew⊥) : S( EW)dx − γ IG

andIG is the last integral in (4.31).
It is clear that (4.22) follows from (1.16) ifγ is a sufficiently small (but fixed) constant.
In order to obtain (4.23), we estimate the functionE1(t) from below (in the same way as in [18,

Theorem 4.1]). By (4.28), (4.29) and the Korn inequality

‖ Ew⊥(·, t)‖W1
2 (Ωt )

6 c‖S( Ew⊥)‖L2(Ωt ),

we have∣∣∣∣ ∫
Ωt

Ew⊥
· ( EWt + ( Ew · ∇) EW)dx

∣∣∣∣ 6 c‖ Ew⊥(·, t)‖L2(Ωt )(‖ρ̃t (·, t)‖L2(G0) + ‖ρ̃(·, t)‖
W

1/2
2 (G0)

)

6 c‖S( Ew⊥(·, t))‖L2(Ωt )(‖ Ew(·, t)‖L2(Γt ) + ‖ρ̂(·, t)‖
W

1/2
2 (Gθ(t))

),

so the first four integrals in (4.30) are not less than

ν

2
‖S( Ew⊥)‖2

L2(Ωt )
− cγ ‖S( Ew⊥)‖L2(Ωt )(‖ Ew(·, t)‖L2(Γt ) + ‖ρ̂(·, t)‖

W
1/2
2 (Gθ(t))

). (4.33)

Now, we estimate theL2(Γt )-norm of Ew = Ew⊥
+ Ew′′

− EV. Analysis of the differenceEw′′
− EV (see

[18, proof of Theorem 4.1]) shows that

‖ Ew′′
− EV‖L2(Γt ) 6 c‖ρ̂(·, t)‖L2(Gθ(t)),

hence,
‖ Ew‖L2(Γt ) 6 ‖ Ew⊥

‖L2(Γt ) + c‖ρ̂‖L2(Gθ(t)).

Using again the Korn inequality we conclude that the difference (4.33) is not less than

(ν/2 − cγ )‖S( Ew⊥)‖2
L2(Ωt )

− cγ ‖S( Ew⊥)‖L2(Ωt )‖ρ̂(·, t)‖W1/2
2 (Gθ(t))

.

The surface integralIG can be written in the form

IG =

∫
Gθ(t)

[
σ(H(x)− Ĥ(y))+

1

2
(| Ew′′(y, t)|2 − ω2

0(y
2
1 + y2

2))

+ κ(U(x)− Û(y))
]
ϕ(y; ρ̂(y, t))dSy, x = y +Nθ(t)ρ̂(y, t) ∈ Γt .
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Repeating the calculations carried out in [15, 16, 18] for symmetricF , one easily shows that

−IG = Q[ρ̂] + δ2
0R[ρ̂] + R′[ρ̂], (4.34)

whereQ is the quadratic form

Q[ρ̂] =
ω2

0

S
(0)
11 S

(0)
22 − S

(0)2
12

(S
(0)
22Σ

2
13[ρ̂] + S

(0)
11Σ

2
23[ρ̂] − 2S(0)12Σ13[ρ̂]Σ23[ρ̂]), (4.35)

S
(0)
jk =

∫
Fθ (t) Eηj (x) · Eηk(x)dx and

Σj3[ρ̂] = δ0Sj3 = −

∫
Gθ (t)

x3xj ρ̂(x, t)dSx, j = 1,2.

SinceS(0)212 6 S
(0)
11 S

(0)
22 ,Q[ρ̂] is nonnegative. The last expressionR′ in (4.34) is the sum of the terms

in −IG of degree higher than 2; it satisfies the inequality

|R′[ρ̂]| 6 cδ‖ρ̂‖
2
W1

2 (Gθ(t))
,

becausêρ satisfies (1.5). From the above estimates it follows that

E1(t) > (ν/2 − cγ )‖S( Ew⊥)‖2
L2(Ωt )

− cγ ‖S( Ew⊥)‖L2(Ωt )‖ρ̂(·, t)‖W1
2 (Gθ(t))

+ γ δ2
0R[ρ̂] − cδ‖ρ̂‖

2
W1

2 (Gθ(t))
. (4.36)

By (1.16), this inequality impliesE1(t) > bE(t) for someb > 0, and, as a consequence, (4.23), for
appropriate sufficiently smallγ andδ. The theorem is proved.

The next theorem concerns uniform estimates of the Hölder norms of the solution.

THEOREM 4.4 Assume that the solution of problem (4.1) is defined fort ∈ (0, T ) and that it has
properties (ii)–(iv) of Theorem 4.2. Then

| Ewt (·, t)|Cα(Ωt ) + | Ew(·, t)|C2+α(Ωt )
+ |s(·, t)|C1+α(Ωt )

+ |ρ̂(·, t)|C3+α(Gθ(t)) + |ρ̂t (·, t)|C2+α(Gθ(t))
+ |ρ̂t t (·, t)|Cα(Gθ(t)) 6 c( sup

t−2τ06t ′6t
‖ Ew(·, t)‖L2(Ω

′

t ′
) + sup

t−2τ06t ′6t
‖ρ̂(·, t)‖W1

2 (Gθ(t ′))
), (4.37)

whereτ0 is a certain small number. The constantc is independent oft .

For completeness, we give the main ideas of the proof that is practically identical with the proof
of Theorem 4.1 in [16]. Lett0 > 2τ0, t1 = t0 − 2τ0, λ ∈ (0, τ0), and letζλ(t) be a smooth function
equal to one fort > t1 + λ, to zero fort < t1 + λ/2, and satisfying the inequalities 06 ζλ(t) 6 1
and ∣∣∣∣∂kζλ∂tk

∣∣∣∣ 6 cλ−k, k = 1,2.

We pass to the Lagrangean coordinatesξ ∈ Ωt1:

Ex = Eξ +

∫ t

t1

Eu(ξ, τ )dτ ≡ X(ξ, t), Eu(ξ, t) = Ev(X(ξ, t), t),
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and we introduce the functionsq(ξ, t) = p(X(ξ, t), t), Euλ(ξ, t) = Eu(ξ, t)ζλ(t), qλ(ξ, t) =

q(ξ, t)ζλ(t). They satisfy the relations

Euλt − ν∇2
u Euλ + 2ω0Ee3 × Euλ + ∇uqλ = Euζ ′

λ(t),

∇u · Euλ = 0, ξ ∈ Ωλ, t ∈ (t1, T ),

Euλ(ξ, t1) = 0,

Π1ΠSu(Euλ)En = 0, ξ ∈ Γt1,

En1 · Tu(Euλ, qλ)En− σ

∫ t

t1

En1 ·∆(τ)Euλ(ξ, τ )dτ = bλ +

∫ t

t1

Bλ(ξ, τ )dτ,

whereEn1 is the exterior normal toΓt1,Π1 Eφ = Eφ − En1(En1 · Eφ), and

bλ(ξ, t) = σ En1 ·

∫ t

t1

ζλ(τ )
d∆(τ)

dτ
Eξ dτ,

Bλ(ξ, t) = En1 · Tu(Eu, q)Enζ
′
λ(t)+ σ En1(ξ) · ζλ(t)

d∆(t)

dt

∫ t

t1

Eu(ξ, τ )dτ

+ ζλ(t)
∂

∂t

[(
ω2

0

2
(X2

1(ξ, t)+X2
2(ξ, t))+ p1 + κU(X)

)
(En · En1)

]
(see [16] for more details). By Theorem 4.1, one obtains (forτ0 sufficiently small)

sup
t1<t<t0

|Euλt (·, t)|Cα(Ωt1)
+ sup
t1<t<t0

|Euλ(·, t)|C2+α(Ωt1)
+ sup
t1<t<t0

|qλ(·, t)|C1+α(Ωt1)

6 cλ−1( sup
t1+λ/2<t<t0

|Eu(·, t)|C1+α(Ωt1)
+ sup
t1+λ/2<t<t0

|q(·, t)|Cα(Γt1)
). (4.38)

The norm ofq on the right hand side is estimated by using the boundary condition (4.18). We
have

|s(·, t)|Cα(Γt ) 6 c(| Ew(·, t)|C1+α(Γt )
+ |ρ̂(·, t)|C2+α(Gθ(t))).

Now, we use the interpolation inequalities

|Eu(·, t)|C1+α(Ωt1)
6 (θ |Eu(·, t)|C2+α(Ωt1)

+ θ−5/2−α
‖Eu(·, t)‖L2(Γt1)

),

|ρ̂(·, t)|C2+α(Gθ(t)) 6 (θ |ρ̂(·, t)|C3+α(Gθ(t)) + θ−5/2−α
‖ρ̂(·, t)‖W1

2 (Gθ(t))
)

with θ = λε1 and estimate (4.19). We multiply (4.38) byλα+7/2 and arrive after easy calculations
at

f (λ) 6 cε1f (λ/2)+K,

where

f (λ) = λα+7/2( sup
t1+λ<t<t0

|Eut (·, t)|Cα(Ωt1)
+ sup
t1+λ<t<t0

|Eu(·, t)|C2+α(Ωt1)

+ sup
t1+λ<t<t0

|q(·, t)|C1+α(Ωt1)
),

K = c(ε)( sup
t1<t<t0

‖ Ew(·, t)‖L2(Ωt ) + sup
t1<t<t0

‖ρ(·, t)‖W1
2 (Gθ(t))

).
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Settingε1 = 1/2c we easily obtain
f (λ) 6 2K;

taking hereλ = τ0 we arrive at the estimate (4.37) forEw ands. It follows from (4.19), (4.21) that̂ρ
also satisfies (4.37). This completes the proof of the theorem.

Proof of Theorem 2.1. By Theorem 4.2, the solution of problem (4.1) exists, the functionθ(t) is
defined and inequalities (4.9), (4.11)–(4.12) hold fort ∈ [0, t0], wheret0 is determined by

L0 = | Ew0|C2+α(Ω0)
+ |ρ0|C3+α(G0)

.

It follows from (4.9)–(4.12) that
L 6 c0L0,

where
L = sup

t<t0

| Ew|C2+α(Ωt )
+ sup
t<t0

|ρ̃|C3+α(Gθ(t)).

In addition, we have estimates (4.23), (4.37), i.e.

E(t) 6 e−btE(0) 6 c1(L)e
−btε, (4.39)

| Ewt (·, t)|Cα(Ωt ) + | Ew(·, t)|C2+α(Ωt )
+ |s(·, t)|C1+α(Ωt )

+ |ρ̂(·, t)|C3+α(Gθ(t))

+ |ρ̂t (·, t)|C2+α(Gθ(t)) + |ρ̂t t (·, t)|Cα(Gθ(t)) 6 c2e
−bt/2E1/2(0) 6 c3(L)e

−bt/2ε. (4.40)

They are satisfied fort ∈ [2τ0, t0] (we chooseτ0 < t0/2). In particular, the last inequality holds for
t = t0, and we assumeε to be so small that

c3(c0L0)e
−bt0/2ε 6 L0,

and that the smallness conditions (1.5), (3.23) forρ̂ are satisfied whenε is replaced withε′ =

c3(c0L0)ε. Then we can apply the local existence theorem once more and extend the solution of
our problem to the interval [t0,2t0]. By the same procedure as above we find the functionθ(t) in
this interval (but the role ofG0 is played this time by the surfaceGt0). The fact that the constants
in (4.23) and (4.37) are independent ofT allows us to repeat this procedure again and again and
extend the solution to the intervals [kt0, (k + 1)t0], k = 1,2, . . . . In all these intervals, inequalities
(4.39), (4.40) hold with the same constants. It is clear that estimates (2.16), (2.17) are satisfied. The
theorem is proved.

REMARK In fact, Theorem 2.1 was proved under the apparently weaker (than (1.16)) hypothesis
of the positivity of the second variation of the functional

R1 =
β2

2

(
S33

−
1

S33

)
+ R,

whereS33
− 1/S33 is expressed as in (4.26) in terms ofSjk =

∫
Ω

Eηj (x) · Eηk(x)dx. This functional
appears in the crucial relations (4.25) and (4.34) leading to (4.23), since

Q[ρ̂] + δ2
0R[ρ̂] = δ2

0R1[ρ̂].

As shown by A. M. Lyapunov [6], in the caseσ = 0 the hypotheses of positivity ofδ2
0R andδ2

0R1
are equivalent to each other. Let us prove that the same is true forσ > 0.
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THEOREM 4.5 If δ2
0R1 has property (1.16) for arbitraryρ(y) satisfying (1.17), (1.18), then

δ2
0R1[ρ] 6 cδ2

0R[ρ], (4.41)

soδ2
0R has the same property (with other constantsc1, c2).

Proof. Without restriction of generality we can assume that∫
F
x1x2 dx = 0

(this condition can be satisfied by appropriate choice of the axesx1, x2). Then, according to (4.35),

Q[ρ] =
ω2

0

S
(0)
11

Σ2
13[ρ] +

ω2
0

S
(0)
22

Σ2
23[ρ].

Let us calculateδ2
0R[ρ0], whereρ0(x) = EN(x) · Eη(x) andEη(x) = Eb× Ex is an arbitrary vector of

rigid rotation. To this end, we writeδ2
0R[ρ] in the form

δ2
0R[ρ] =

∫
G
ρB[ρ] dx,

where

B[ρ] = B0[ρ] +
ω2

0

S
(0)
33

(x2
1 + x2

2)

∫
G
(y2

1 + y2
2)ρ(y)dSy,

B0[ρ] = −∆Gρ(x)− b(x)ρ(x)− κ

∫
G

ρ(y)dSy
|x − y|

,

and computeB0[ρ0]. We take an arbitrary small smooth functionr(x), x ∈ G, and consider the
integral

I [r] =

∫
Γ

(
σH(x)+

ω2
0

2
(x2

1 + x2
2)+ κU(x)+ p0

)
ρ0(x)dSx,

whereU(x) =
∫
Ω

|x − y|−1 dy and

Γ = ∂Ω = {x = y +N(y)r(y) ≡ er(y), y ∈ G}.

It can be easily shown that only the term containingω2
0 is different from zero and that

I [r] = ω2
0

∫
Ω

Eη(x) · Ex′ dx, x′
= (x1, x2,0).

Now, we writeI [r] as an integral overG:

I [r] =

∫
G

(
σH(x)+

ω2
0

2
(x2

1 + x2
2)+ κU(x)+ p0

)
ρ0(x)

∣∣∣∣
x=er (y)

m(y; r(y))dSy,

wherem is the function introduced above (see the proof of Theorem 4.3), and we calculate the first
variation ofI [r]. Taking account of (1.1), we obtain

δ0I [r] =

∫
G
δ0

(
σH(x)+

ω2
0

2
(x2

1 + x2
2)+ κU(x)+ p0

)∣∣∣∣
x=er (y)

ρ0(y)dSy,

= ω2
0δ0

∫
Ω

Eη(x) · Ex′ dx = ω2
0

∫
G

Eη(y) · Ey′r(y)dSy . (4.42)
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Sinceδ0H(er(y)) = ∆Gr(y)+ (H2(y)− 2K(y)) (see [4]) and

δ0U(er(y)) = r(y)
∂U(y)
∂N

+

∫
G

r(z)dSz
|y − z|

(see [16]), (4.42) implies∫
G
ρ0(y)B0[r] dSy = −ω2

0

∫
G

Eη(y) · Ey′r(y)dSy,

and, as a consequence,

B0[ρ0](y) = −ω2
0Eη(y) · Ey′

= −ω2
0(b2y1 − b1y2)y3.

From ∫
G
(y2

1 + y2
2)ρ0(y)dSy = 2ω2

0

∫
F

Eη(x) · Ex′ dx = ω2
0(

Eb × Ee3) ·

∫
F
x3Ex′ dx = 0

we conclude that alsoB[ρ0(y)] = −ω2
0Eη(y) · Ey′. Multiplying this equation byρ0(y) and integrating

we obtain the desired expression forδ2
0R[ρ0]:

δ2
0R[ρ0] = −ω2

0

∫
F

Eη(x) · ∇[(b2x1 − b1x2)x3] dx

= ω2
0

(
b2

2

∫
F
(x2

1 − x2
3)dx+ b2

1

∫
F
(x2

2 − x2
3)dx

)
= ω2

0[b2
2(S

(0)
33 −S

(0)
11 )+ b

2
1(S

(0)
33 −S

(0)
22 )]. (4.43)

Finally, since

Q[ρ0] =
ω2

0

S
(0)
11

b2
2(S

(0)
33 − S

(0)
11 )

2
+
ω2

0

S
(0)
22

b2
1(S

(0)
33 − S

(0)
22 )

2,

we have

δ2
0R1[ρ0] = δ2

0R[ρ0] +Q[ρ0] = ω2
0

[
b2

2
S
(0)
33

S
(0)
11

(S
(0)
33 − S

(0)
11 )+ b2

1
S
(0)
33

S
(0)
22

(S
(0)
33 − S

(0)
22 )

]
for arbitrary Eb = (b1, b2, b3). It is easily verified thatρ0 satisfies (1.17) and (1.18) (the latter with
an appropriate choice ofb3). In this case, by our hypothesis concerningδ2

0R1, δ2
0R1[ρ0] should be

positive, which means that
S
(0)
33 > S

(0)
11 , S

(0)
33 > S

(0)
22 ,

and
δ2

0R[ρ0] > cδ2
0R1[ρ0]. (4.44)

Now, let us show that everyρ(y) satisfying (1.17), (1.18) can be represented in the form

ρ(y) = ρ0(y)+ ρ1(y) = EN(y) · (Eb × Ey)+ ρ1(y)

with ρ1 satisfying the additional orthogonality conditions∫
G
y1y3ρ1(y)dSy =

∫
G
y2y3ρ1(y)dSy = 0. (4.45)
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A simple computation shows that (4.45) holds if

b1 =
1

S
(0)
33 − S

(0)
22

∫
G
y2y3ρ(y)dSy, b2 = −

1

S
(0)
33 − S

(0)
11

∫
G
y1y3ρ(y)dSy,

and if

b3 = −
1∫

G h
2(y)dSy

2∑
i=1

bi

∫
G
h(y) EN(y) · Eηi(y)dSy,

then bothρ andρ1 satisfy (1.17), (1.18).
By (4.45),

δ2
0R[ρ1] = δ2

0R1[ρ1],

so taking account of (4.44) we obtain

δ2
0R[ρ0] + δ2

0R[ρ1] > cδ2
0R1[ρ0] + δ2

0R1[ρ1] > c(δ2
0R0[ρ0] + δ2

0R1[ρ1]). (4.46)

Finally, it is easy to see that

δ2
0R1[ρ] = δ2

0R1[ρ0] + δ2
0R1[ρ1] +R1[ρ0, ρ1],

δ2
0R[ρ] = δ2

0R[ρ0] + δ2
0R[ρ1] +R[ρ0, ρ1],

where

R[ρ0, ρ1] =
d

ds
δ2

0R[ρ0 + sρ1]

∣∣∣∣
s=0

= 2
∫
G
ρ1(y)B0[ρ0] dSy + 2

ω2
0

S
(0)
33

∫
G
(y2

1 + y2
2)ρ0(y)dSy

∫
G
(y2

1 + y2
2)ρ1(y)dSy = 0,

R1[ρ0, ρ1] = R[ρ0, ρ1] + 2
ω2

0

S
(0)
11

Σ13[ρ0]Σ13[ρ1] + 2
ω2

0

S
(0)
22

Σ23[ρ0]Σ23[ρ1] = 0.

Hence, (4.46) coincides with (4.41) and the theorem is proved.
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