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Abstract

A test-particle model describing the energization of electrons in a turbulent plasma is presented. Parameters are
chosen to represent turbulence in a magnetic structure of the solar corona. A fluctuating electric field component
parallel to the background magnetic field, with properties similar to those of Kinetic Alfvén Waves, is assumed to
be present at scales of the order of the proton Larmor radius. Electrons are stochastically accelerated by multiple
interactions with such fluctuations, reaching energies of the order of 102 eV within tens to hundreds of seconds,
depending on the turbulence amplitude. For values of the large-scale plasma velocity fluctuation of the order of
tens of kilometers per second, the power absorbed by electrons per surface unit is of the order of that typically
necessary to heat the corona. The power that electrons absorb from fluctuations is proportional to the third power of
the large-scale velocity amplitude, and is comparable with the power associated with the turbulent cascade.
Therefore, this mechanism can be considered as an equivalent kinetic dissipation for turbulence, and it can play a
relevant role in the heating of electrons in the corona.
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1. Introduction

The problem of heating of the solar corona has received
considerable attention in the literature. It is now widely
accepted that the source of the high temperature observed in the
outer atmosphere of the Sun lies in the photospheric motions
moving and shuffling magnetic field lines, which extend from
the photosphere up to the Corona. Models have been proposed
where this mechanism would transfer magnetic and kinetic
energy from low atmospheric layers up to the magnetized
Corona, both through quasi-stationary magnetic field deforma-
tions (e.g., Parker 1972, 1988), or by higher frequency waves
propagating along the magnetic field (e.g., Lee & Roberts
1986; Hollweg 1987; Malara et al. 1996; Milano et al. 1997).
Observational evidence has recently been found for the
presence of torsional motions in magnetic elements of the
chromosphere (Srivastava et al. 2017), as well as of Alfvén
waves in the corona (Tomczyk & McIntosh 2009).

The coronal heating problem and the typical description of
turbulent flows have many points in common. In fact, energy
injection at large spatial scales due to photospheric motions, the
subsequent nonlinear cascade of energy, and the final
dissipation at small scales are the main features characterizing
turbulent flows. This idea has led to the formulation of models
of coronal heating based on turbulence, where magnetohydro-
dynamic (MHD) or reduced MHD (Strauss 1976) direct
numerical simulations are employed (Einaudi et al. 1996;
Hendrix & Van Hoven 1996; Dmitruk & Gomez 1997, 1999;
Dmitruk et al. 1998; Rappazzo et al. 2008; Rappazzo & Velli
2011; van Ballegooijen et al. 2011; Dahlburg et al. 2012,
2016). Further theoretical contributions have been provided by
“reduced” approaches to MHD turbulence, based on the shell-
model technique (Giuliani & Carbone 1998; Boffetta et al.
1999), that have allowed us to describe extended spectra with a
limited computational effort (Nigro et al. 2004, 2005; Buchlin
& Velli 2007; Verdini et al. 2012; Cadavid et al. 2014). Due
to the strong axial magnetic field B0, such models predict
transverse velocity and magnetic field fluctuations that

propagate along B0 at the Alfvén velocity, while nonlinear
effects produce an energy cascade developing in the directions
perpendicular to B0. Another point in favor of the “turbulent”
scenario is that in turbulent magnetofluids dissipation takes
place via a large number of small dissipative events, whose
statistics are determined by the properties of intermittency (e.g.,
Frisch 1995; Sorriso-Valvo et al. 1999). In the turbulent
corona, these events should be revealed as microflares or
nanoflares. In fact, the statistical properties of flares (Lin et al.
1984; Crosby et al. 1993; Krucker & Benz 1998; Parnell &
Jupp 2000) display features such as distribution of energy, peak
power, duration, and waiting times that are compatible with
those of dissipative events in turbulence (Boffetta et al. 1999;
Lepreti et al. 2001).
Though the dynamics of turbulence in MHD has been deeply

investigated, mechanisms that are responsible for energy
dissipation in low-collisional plasmas are still poorly under-
stood. In particular, in the coronal plasma collisional
dissipative coefficients have values so low that collisional
dissipative lengths turn out to be smaller than scales where
dispersive and kinetic effects become relevant. Therefore, it can
be inferred that kinetic effects can play an important role in the
smallest-scale part of the turbulence spectrum, and they can be
(at least partially) responsible for transferring energy from
fluctuations to particles, thus contributing to energize the
plasma. The kinetic scenario is more complex than in MHD;
for instance, in corona the various ion species and electrons can
all have different temperatures. In the present paper, we want to
address this point by studying the stochastic interaction
between electrons and fluctuations at scales comparable with
the proton Larmor radius Rp, in order to assess whether such
interaction can be considered as an eligible mechanism for the
electron heating.
In the presence of a strong background magnetic field B0, the

energy cascade preferentially takes place perpendicularly to B0

(e.g., Shebalin et al. 1983; Carbone & Veltri 1990; Oughton
et al. 1994). Then, it is expected that at smaller scales the
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fluctuation energy tends to concentrate in nearly perpendicular
wave vectors. This idea is supported by observational data
showing that the distribution of wave vectors of magnetic
fluctuations in the solar wind has a significant population quasi-
perpendicular to the ambient magnetic field (Matthaeus et al.
1986, 1990). Dispersive MHD waves belonging to the Alfvén
branch, with lP?l⊥, at scales l⊥∼Rp (lP and l⊥ being the
wavelengths parallel and perpendicular to B0, respectively) are
known as kinetic Alfvén waves (KAWs). The above con-
siderations suggest that the coronal turbulence at scales
l⊥∼Rp is significantly composed by KAW-like fluctuations.
An extensive analysis of KAW physics can be found in
Hollweg (1999). Many solar wind observational analyses (Bale
et al. 2005; Sahraoui et al. 2009; Podesta & Tenbarge 2012;
Salem et al. 2012; Chen et al. 2013; Kiyani et al. 2013),
theoretical works (Howes et al. 2008a; Sahraoui et al. 2009;
Schekochihin et al. 2009), and numerical simulations (Gary &
Nishimura 2004; Howes et al. 2008b; TenBarge & Howes
2012) have suggested that KAWs can play an important role in
the dissipation of turbulent energy. The nature of the turbulent
cascade has been investigated by high-resolution multispace-
craft measurements (Narita et al. 2010), suggesting that
fluctuations at ion scales can be highly oblique, consistent
with KAW fluctuations (Sahraoui et al. 2010). Moreover, the
generation of KAWs has been observed in simulations of
Alfvén wave phase-mixing, a phenomenon that mimics non-
linear interactions in turbulence (Vàsconez et al. 2015; Pucci
et al. 2016; Valentini et al. 2017), as well as in simulations of
Alfvénic packets collisions (Pezzi et al. 2017a, 2017b, 2017c),
while the nonlinear regime of wave-particle interaction in the
case of KAWs fluctuations has been investigated in Vàsconez
et al. (2014). A property of KAWs that is particularly relevant
in such context is that they are endowed with a nonvanishing
electric field component δEP parallel to the background
magnetic field B0 (e.g., Hollweg 1999). In contrast, MHD
theory, valid at large scales, predicts δEP=0 for any
fluctuation. Such a component can allow for an energy transfer
from fluctuations to particles. For instance, Voitenko &
Goossens (2004) studied the heating of several species of ions
in the corona by KAWs using a test-particle approach.

In the present paper we describe a model for the stochastic
energization of electrons in a turbulent plasma permeated by
a strong axial magnetic field B0. The model, which employs a
test-particle approach, assumes that fluctuations are essen-
tially Alfvénic and, at scales of the order of Rp, characterized
by quasi-perpendicular wave vectors and by a parallel
electric field δEP with properties similar to those found in
KAWs. At such scales the dynamics of electrons is simpler
than that of ions because electrons are magnetized, i.e.,
they essentially move following magnetic field lines.
This allows for a simplified treatment of the electron
dynamics. In particular, the parallel electric field associated
with small-scale fluctuations is responsible for electron
acceleration. The model gives an estimate of the power P
transferred from fluctuations to electrons. For values of the
parameters typical of a coronal loop, such power favorably
compares with that required to sustain the coronal high-
temperature against radiative and conductive losses (With-
broe 1988). Moreover, the dependence of P on the fluctuation
amplitude at large scales suggests that the energy transfer
from fluctuations to particles can balance the spectral energy
flux associated with turbulence (e.g., Frisch 1995), thus

representing a possible kinetic mechanism for the turbulent
dissipation. The plan is organized as follows: in Section 2 we
describe the model with the underlying assumptions; in
Section 3 the numerical results are described; in Section 4 we
present a discussion of the results and draw conclusions;
in the Appendix further details of the electron dynamics
description are given.

2. The Model

In this section we describe and discuss the properties of the
model and the underlying assumptions. We consider a
simplified representation of a coronal loop, given by a magnetic
structure with length L, characterized by a uniform background
density n0 and a strong uniform background longitudinal
magnetic field B0. The loop is perturbed by transverse motions,
which generate velocity fluctuations at large transverse scales
l⊥0. Such scales are assumed to correspond to those of
photospheric motions. We indicate the amplitude of velocity
fluctuations at large scales l⊥0 by δv⊥0=δv⊥(l⊥= l⊥0), (where
l⊥ indicates a given perpendicular scale length). Numerical
simulations (e.g., Nigro et al. 2004; van Ballegooijen et al.
2011) of a typical coronal loop in the reduced MHD (RMHD)
description show that time-averaged transverse velocity
fluctuations at large scales are of the order of a few tens of
kilometers per second. These values are in agreement with
velocity estimations from nonthermal line broadenings in
Corona (Acton et al. 1981; Warren et al. 1997; Chae et al.
1998). The values chosen for the above parameters are the
following: B0=102 G, n0=109 cm−3, and l⊥0=3×108 cm,
while δv⊥0 varies in the range between δv⊥0=2×106 cm s−1

and δv⊥0=8×106 cm s−1. The proton Larmor radius is Rp=
mpcvth,p/(eB0), where mp and e are the proton mass and charge,
c is the speed of light, and vth,p=(κBTp/mp)

1/2 is the proton
thermal velocity, with Tp the proton temperature and κB the
Boltzmann constant. Assuming Tp=1.5×106 K and the above
value of B0, we derive Rp;12 cm.

2.1. Fluctuations and Turbulence

Nonlinear interactions among fluctuations at scales l⊥0

transfer their energy toward smaller scales through a turbulent
cascade. This phenomenon generates a spectrum that extends
from large scales down to small scales l⊥K∼Rp, where kinetic
effects become relevant. In the presence of a strong background
magnetic field B0, assuming that magnetic perturbations remain
much smaller than B0 and are characterized by l⊥0 = lP0, then
the RMHD description can be applied (Strauss 1976). The
RMHD approximation has been commonly adopted in many
models of turbulence in coronal structures (e.g., Nigro et al.
2004; Buchlin & Velli 2007; Rappazzo et al. 2008; Rappazzo
& Velli 2011; van Ballegooijen et al. 2011). Within RMHD,
velocity dv and magnetic field dB perturbations are essentially
transverse to B0, motions are noncompressive ∇⊥·dv⊥=
0, and perturbations propagate along B0 at the Alfvén
speed vA=B0/(4πn0mp)

1/2, mp being the proton mass. These
properties also characterize Alfvén waves in MHD. In RMHD,
nonlinear effects produce an energy cascade mostly in the
transverse directions, i.e., a spectrum of transverse scales l⊥
much smaller than longitudinal ones lP are generated in the
resulting turbulence. On this basis, we assume that fluctuations
at small scales are Alfvénic and are characterized by a parallel
scale length lPK?l⊥K∼Rp. In particular, we assume that the
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amplitudes of velocity and magnetic field fluctuations at such
scales are related by
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indicated as KAWs. We will focus on the effects of the
component δEP parallel to B0, nonvanishing in KAWs, on the
dynamics of electrons. In coronal conditions, it can be written
in the form (Voitenko & Goossens 2004):
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In order to estimate the amplitude δEP at scales (lP, l⊥)=
(lPK, l⊥K), we make the following considerations. Numerical
results by Nigro et al. (2008) derived from an RMHD-based
model show that the kinetic energy turbulence spectrum has a
single spectral index α=−5/3 with respect to k⊥ in the whole
inertial range of turbulence, corresponding to a Kolmogorov
spectrum. Therefore, we assume that the amplitude of velocity
fluctuations at small scales δv⊥K is given by
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where l⊥K=2πRp. Nigro et al. (2008) and Malara et al. (2010)
have also shown that, at sufficiently small transverse scales,
there is an equipartition between kinetic and magnetic energies
in fluctuations, which is consistent with our assumption (1). In
MHD turbulence with strong longitudinal magnetic field B0,
the energy cascade in the parallel direction tends to be
inhibited. This is consistent with the RMHD assumptions,
under which nonlinear interactions turn out to be efficient only
in the direction perpendicular to the main magnetic field. In this
context, the so-called critical balance principle (Goldreich &
Sridhar 1995) postulates a balance between linear wave periods
and nonlinear turnover timescales: lP/cA∼l⊥/δv⊥, where the
velocity fluctuation follows the Kolmogorov spectrum.
According to this description and using the relation (3), we
assume that fluctuations at small scales are characterized
by transverse l⊥K and longitudinal lPK lengths, which are
related by:

d
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We notice that the critical balance relation ( µ ^k k2 3), the

condition d µ^ ^
-B k 1 3 (derived from Kolmogorov spectrum

and energy equipartition assumption), and Equation (2) imply
that d µ ^E k4 3 for ^

-k Rp
1, i.e., δEP increases with increasing

k⊥. Therefore, the main contribution to the parallel electric field
comes from fluctuations at the smallest scale l⊥K. In particular,
using Equations (2)–(4) we derive the following estimation for
the amplitude of the parallel electric field associated with
fluctuations at small scales:
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Summarizing, in the present model we assume that the main
contribution to the parallel electric field is due to fluctuations,
or “packets,” at scales l⊥=l⊥K=2π Rp and lP=lPK (with lPK
given by Equation (4)), whose amplitude is given by the
expression (5). Such packets, which propagate in the long-
itudinal direction at velocity ±vA, have a finite lifetime tL which
corresponds to the nonlinear time calculated at the smallest
scale l⊥K:
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where we used the relation (3).
The jump of electric potential in the parallel direction across

each of such packets is
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Using the above values of parameters, we find δV∼1 V,
corresponding, for an electron, to a jump in potential energy
δU=±e δV∼±1 eV. Such a value of d∣ ∣U is much less than
the electron thermal energy Eth in a ∼106 K corona, where
Eth∼102 eV. Nevertheless, we will show that multiple
crossing through such small potential energy jumps are able
to gradually increase the electron energy up to values
comparable to or even larger than Eth.
As a final remark, we observe that in a fluid description of

hydromagnetic turbulence the small-scale end of the inertial
range corresponds to the dissipative scale l⊥D. Therefore, a
necessary condition for our model to be consistent is given by
l⊥D�l⊥K=2πRp. This condition prevents collisions from
quenching kinetic effects. Here we check whether such a
condition is actually satisfied in our model. The dissipative
scale is determined by imposing that at l⊥=l⊥D the dissipative
time tD becomes of the order of the nonlinear time tnl. In a
plasma with a resistivity η the dissipative time is given by

p h~^ ^( ) ( )t l l c4D
2 2 , while the nonlinear time is tnl(l⊥)∼

l⊥/δv⊥ (l⊥). The condition tD(l⊥D)∼tnl(l⊥D), along with
Equation (3), gives

h
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2
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The (collisional) resistivity η can be estimated as the Spitzer
resistivity ηS. Assuming a temperature T0=1.5×106 K, we
obtain ηS=1.3×10−16 s. Using the above values for δv⊥0

and l⊥0, the expression (8) gives a collisional dissipative length
l⊥D∼1 cm. The value of the kinetic scale length considered in
the model is l⊥K=2πRp;70 cm. Therefore, l⊥,D=l⊥,min.
This suggests that kinetic effects can play a significant role in
the small-scale range of the turbulence spectrum and could give
a relevant contribution to the actual dissipation of the turbulent
cascade.

2.2. Dynamics of Electrons

Each electron within the plasma is subject both to the electric
and to the magnetic force; of course, only the former FE=−e
E can modify the kinetic energy of particles EK=meu

2/2, me

and u being the electron mass and velocity, respectively. At the
scales considered in the model, the electric field can be
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calculated using the generalized Ohm’s law:
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where pe is the electron pressure. The electric field component
E⊥ perpendicular to B is mainly determined by the first term in
Equation (9)
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The Larmor radius of electrons RL,e is much smaller than the
scale l⊥K considered in the model. Therefore, at scales
l⊥�l⊥K the electron motion can be represented as the motion
of the guiding center plus the gyromotion around the guiding
center. The electric field perpendicular component E⊥

contributes to the electron motion determining a drift velocity
ud=c E× B/B2 that coincides with the perpendicular
component v⊥ of the macroscopic fluid velocity:
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where we used Equation (10). Expression (11) also applies to
ions, thus indicating that the perpendicular component of the
fluid velocity can be interpreted as a kinetic drift motion. The
corresponding electron kinetic energy is = uE m 2K d e d,

2

d ^ ^[ ( )]m v l 2e 0
2 . Using the value δv⊥(l⊥0)=5×106 cm s−1

we obtain an electron drift kinetic energy EK, d;7×10−3 eV.
This is several orders of magnitude smaller than the electron
thermal energy, which is of the order of 102 eV for temperatures
of the order of 106 K. We conclude that the perpendicular
electric field component E⊥ does not contribute to energize
electrons. As a consequence, in order to investigate possible
electron energization, we are led to consider the effects of the
parallel electric field component.

Let us consider a local reference frame, indicated by G′,
which moves with the local drift velocity ud; v⊥, while we
indicate by G a global inertial reference frame. The drift
velocity ud significantly varies only at large spatial scales.
Therefore, when describing the interaction between an electron
and a fluctuation at small scales (lP, l⊥)=(lPK, l⊥K), we can
neglect variations of ud across the fluctuation, i.e., we can use a
single reference frame G′ to describe the whole interaction. We
also notice that, during a single interaction between an electron
and a small-scale fluctuation, G′ can be considered to be a
quasi-inertial reference frame. To prove this we consider the
typical timescale τ0=l⊥0/δv⊥0 of variation for ud; v⊥, and
the electron crossing time τcross=lPK/uP of a small-scale
fluctuation. Using Equation (4) we find:

t
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Being vAuP and l⊥K=l⊥0 it follows that τcross=τ0, i.e.,
the velocity ud of G′ remains constant in time during the
electron crossing. Therefore, to describe the interaction
between an electron and a small-scale fluctuation in the
reference frame G′ we do not need to include any fictitious
force in the electron equation of motion.

We observe the following: (i) being ud= v⊥, the small-
scale fluctuation perceives the drift velocity ud as a (quasi-
constant and uniform) bulk flow that advects the fluctuation
itself in the direction perpendicular to B while the fluctuation is
propagating along B at the Alfvén velocity. Therefore, in the
reference frame G′ the small-scale fluctuation only moves
along B. (ii) The electric field in the reference frame G′ is

¢ = +
´ ( )E E

u B
c

. 13d

Taking the transverse component of Equation (13) and using
the definition of ud, we find that the transverse component of E′
is vanishing: ¢ = + ´ =^ ^E E u B c 0d , so that only the
parallel component survives ¢ = ¢ = E E E , the latter equality
following from the transformation law (13).
ud being perpendicular to B, it follows that ¢ = u u , where
¢u and uP are the parallel components of the electron velocity

with respect to G′ and G, respectively. Therefore, the time
evolution of the electron parallel velocity can be derived by
solving the equation of motion in the reference frame G′. In
conclusion, we will adopt the following description for the
interaction between an electron and a small-scale fluctuation: in
the quasi-inertial reference frame G′ the electron moves along
B and it is subject to the electric force ¢ = = - F F Eee e while
crossing a fluctuation at scales (lPK, l⊥K). In the same reference
frame G′ the fluctuation also moves along B at a speed ±vA.
Going back to the global reference frame G, we have only to
add a perpendicular velocity component ud, which, however, is
negligible with respect to uP. Therefore, in order to describe the
electron energization, the reference frames G and G′ are
essentially equivalent.

2.3. Modeling Electron Acceleration by Small-scale
Fluctuations

We want to model in a simple way the effect of the parallel
electric field associated with small-scale fluctuations on a
population of test particles. On the basis of the above
considerations, we assume that a given test-electron crosses a
sequence of fluctuations in the direction parallel to the local
magnetic field. We identify each electron by the index i=
1, K, Ne, with Ne being the number of considered electrons,
and we indicate by i m, the mth fluctuation crossed by the ith
electron, with m=1, K, Mi, Mi being the number of
fluctuations crossed by the ith electron during the whole
calculation. In our model the electron interacts at any time only
with a single fluctuation. Each time the ith electron comes out
from a given fluctuation i m, , it immediately enters the next
fluctuation  +i m, 1. We indicate by t0;i,m and t1;i,m the instants of
time when the ith electron enters and exits from the fluctuation
i m, , respectively; as stated above, t1;i,m=t0;i,m+1. Moreover,
uPi=uPi(t) is the parallel component of the ith electron
velocity, and si,m=si,m(t) is the coordinate identifying the
electron position in the parallel direction with respect to the
fluctuation i m, . In particular, the latter quantity is defined such
that si,m(t=t0;i,m)=0.
All fluctuations i m, have the same parallel length lPK given

by the expression (4) with l⊥K=2πRp, and the same lifetime tL
given by the Equation (6). The fluctuation i m, moves along B
with velocity σi,mvA, with σi,m=±1. The sign σi,m of the
propagation velocity is randomly chosen for each fluctuation. A
parallel electric field with a given spatial profile along the

4

The Astrophysical Journal, 871:66 (10pp), 2019 January 20 Malara et al.



longitudinal direction is associated with each fluctuation. We
adopted the simplest choice of a spatially uniform parallel
electric field profile across the fluctuation i m, :
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 =

D
- <




 

 

⎧
⎨⎪

⎩⎪

⎧⎨⎩

( )

( )
( )

( )

E s

E
s l U t

l s U t
, for

0 , if 0

0, if 0

0, otherwise

,

14

i m i n

i m
i m K i m i m

K i m i m i m

, ,

,
, , 0; ,

, , 0; ,

where ΔEPi,m is the amplitude of the uniform electric field,
which somehow represents the mean value of a more realistic
nonuniform profile of the electric field. The quantity
UPi,m=uPi−σi,mvA is the parallel velocity of the ith electron
relative to the fluctuation i m, . For each fluctuation, the value of
the amplitude ΔEPi,m is chosen according to an assigned
distribution. In particular, we considered two cases:

(1) a Gaussian distribution:

p d d
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where the standard deviation δEPK is the typical fluctuating
electric field amplitude defined by Equation (5).

(2) a stretched-exponential distribution:
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where Γ( · ) is the Euler function and β�2 is a parameter
defining the shape of the distribution. For β=2 the
distribution (16) reduces to the Gaussian (15). Decreasing the
value of β the tails of the distribution (16) become more and
more relevant. The stretched-exponential distribution has been
used to describe the distribution of fluctuation amplitudes at
small scales in a turbulence with spatial intermittency (Frisch &
Sornette 1997; Sorriso-Valvo et al. 2015, 2018). Indeed,
intermittency corresponds to the presence at small scales of
“extreme” fluctuations, whose amplitude is much larger than
the rms value. In our model we used the value β=1/2 in the
expression (16) to simulate the presence of intermittency in the
considered turbulence (Sorriso-Valvo et al. 2015). The profiles
of the Gaussian and of the stretched-exponential distributions
(with β= 1/2) are plotted in Figure 1. We will compare the
results obtained with the two distributions (15) and (16), in
order to check whether intermittency has an effect on the
stochastic acceleration of test particles.

When the ith electron moves inside the fluctuation i m, , it is
subject to a constant acceleration aPi,m=−eΔEPi,m/me, which
can either increase or decrease the parallel velocity of the
electron. Due to the constancy of aPi,m, knowing the initial time
t0;i,m, lPK, and velocity uP0;i,m=uP(t0;i,m), it is a simple matter
to calculate the final time t1;i,m and velocity uP1;i,m=uP(t1;i,m).
The details of this calculation, as well as explicit expressions
for t1;i,m and uP1;i,m in the various cases, are given in the
Appendix. In general, the electron can be either accelerated or
decelerated, and, in the latter case, it is reflected back if uP1;i,m

and uP0;i,m have opposite signs. We also take into account that
each fluctuation has a finite lifetime tL (Equation (6)). If
tL<(t1;i,m− t0;i,m) then the fluctuation disappears before the
electron entirely crosses it; in this case, which can happen when
the electron velocity is relatively low, the final time is set as
t1;i,m=t0;i,m+tL and the final velocity is calculated accord-
ingly. The final time and velocity are used as initial conditions
for the interaction with the subsequent fluctuation  +i m, 1:
t0;i,m+1=t1;i,m, uP0;i,m+1=uP1;i,m.
The described mechanism modifies only the parallel

component uPi,n of the electron velocity, while the perpend-
icular component ¢̂u i m, (in the reference frame G′) due to the
gyromotion remains unchanged. However, one can postulate
some mechanism, like collisions or gradients of magnetic field
intensity, which tends to isotropize the electron energy in the
velocity space. For this reason we included in our model the
possibility to transfer energy between parallel and perpend-
icular motion, so to obtain a complete isotropization. This is
done by the following procedure: for m equal to a multiple of a
given integer Miso the kinetic energy is calculated as ¢ =Ekin

+ ¢̂( )m u u2 2e i m i m,
2

,
2 . Then, the values of uPi,m and ¢̂u i m,

are modified according to = ¢ = ¢^ [ ( )]u u E m2 3i m i m e, , kin
1 2.

However, we found that the results of the model are robustly
independent of the value chosen for Miso, i.e., the possible
isotropization of the electron energy does not modify the
considered acceleration mechanism.
The time evolution of each electron is initiated by setting

t0;i,0=0 and = ¢ = ^u u ui i0; ,0 ,0 0, where the sign of the initial
velocity is randomly chosen, and the value = ¢( )u E m2 3 e0 kin,0

1 2

corresponds to an initial kinetic energy ¢ =E 13 eVkin,0 , which is
equal for all the test particles. The time evolution of particles is
followed up to a final time tfin, which is chosen such that the
average kinetic energy of the electron population reaches a value
of a few hundreds of electronvolts. During the whole time
evolution, each electron interacts with a large number Mi of
fluctuations; typically Mi is of the order of 105. The sequence of
the times t0;i,m (m=0, K, Mi) is distributed in the time interval
[ ]t0, fin , forming a dense (irregular) grid, which allows us to
follow the detailed energy evolution of each test particle.

Figure 1. Gaussian distribution function pG (blue line) and stretched-
exponential distribution function pSE with β=1/2 (black line) are plotted in
semilogarithmic scale, as functions of the parallel electric field amplitude
ΔEPi,m normalized to the standard deviation δEPK.
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3. Results

Figure 2 shows the time evolution of the energy ¢ =Ekin

+ ¢̂( )m u u2 2e
2 2 for four single particles when δv⊥0=4×

106 cm s−1 and assuming the Gaussian distribution (15) for the
electric field amplitudes. It can be seen that the time evolution
of the particle energy is highly irregular: due to the large
number of interactions with accelerating and decelerating
fluctuations, ¢Ekin increases and decreases on a short timescale.
However, a closer inspection of Figure 2 reveals a general
tendency for ¢Ekin to increase. This can be more clearly seen by
calculating the mean particle energy á ¢ ñ = å ¢E E Npkin kin of a
population formed by a large number Np of electrons. In
particular, we used Np=105 particles. In Figure 3 the mean
kinetic energy is plotted as a function of time, for different
values of the large-scale velocity fluctuation amplitude, ranging
from δv⊥0=2×106 cm s−1 to δv⊥0=8×106 cm s−1.

The evolution shown in Figure 3 corresponds to the stage
when á ¢ ñEkin rises up to ∼100 eV (corresponding to a
temperature T∼ 106 K). During this time, the growth of
á ¢ ñEkin is monotonic and almost linear, for all the considered
values of δv⊥0. A quantity useful to characterize the growth of
the electron energy is the power per transverse surface unit P
absorbed by an electron population with density n0 contained in
a loop with longitudinal length L. This is:

ò=
á ¢ ñ ( )P

n L

T

d E

dt
dt 17

T
0

1 0

kin1

where T1 is the time necessary for á ¢ ñEkin to reach the value
100 eV. The quantity P can be compared with the power per
surface unit Pcor, which is necessary to keep coronal structures
at the observed temperatures against radiative losses. In
particular, typical values are Pcor;8×105 erg cm2 s−1 for
quiet-Sun regions and Pcor;107 erg cm2 s−1 for active regions
(Withbroe 1988). The power per surface unit P is plotted in
Figure 4 as a function of the large-scale velocity perturbation
δv⊥0, in the cases of a Gaussian and a stretched-exponential
distribution of ΔEP, where we assumed a density n0=
109 cm−3 and a loop length L=1010 cm. From Figure 4 we
see that the average power transferred to electrons is around
that required to explain coronal heating when large-scale

velocity perturbations δv⊥0 are about a few tens of kilometers
per second, which is compatible with values deduced from
nonthermal line broadenings in the corona (Acton et al. 1981;
Warren et al. 1997; Chae et al. 1998).
Another relevant feature shown in Figure 4 is that P turns out

to be proportional to dv̂ 0
3 . In particular:

k d ^ ( )P v , 180
3

where κ;1.34×10−13 g cm−3. We notice that the scaling
law dµ ^P v 0

3 is remarkably well satisfied by the results, at least
for the considered values of the physical parameters (B0, n0,
l⊥0, Tp) which characterize the model. Such a scaling law is
reminiscent of a property of the mean spectral energy flux á ñ
in a turbulent fluid, which is scale by scale proportional to
d[ ( )]v l 3, (Frisch 1995), with δv(l) the velocity fluctuation
amplitude at a given scale l. This point will be discussed in
more detail in the next section. Finally, from Figure 4 we can
observe that, for any given δv⊥0, the same value of P is found
using the Gaussian pG or the stretched-exponential pSE

Figure 2. Single-particle kinetic energies ¢Ekin of four particles are plotted as
functions of time, in the case δv⊥0=4×106 cm s−1 and a Gaussian
distribution for ΔEPi,k.

Figure 3. Mean kinetic energy á ¢ ñEkin of a population of Np=105 particles
plotted as functions of time, for various values of δv⊥0 ranging from
2×106 cm s−1 to 8×106 cm s−1. Electric field fluctuations follow a
Gaussian distribution.

Figure 4. Power per surface unit P transferred to electrons is plotted as a
function of δv⊥0 in the case of ΔEP with a Gaussian distribution (blue crosses)
or with a stretched-exponential distribution (light blue circles). The green and
blue horizontal lines correspond to the values of Pcor for quiet-Sun regions and
active regions, respectively (Withbroe 1988). The black dashed line represents
a function proportional to dv̂ 0

3 .
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distribution for ΔEPi,m. This indicates that the power
transferred to electrons is determined by only the δEPK value,
i.e., the rms of the fluctuating parallel electric field ΔEP, and
not by details of its distributions, a straightforward conse-
quence of the linearity of the acceleration process of the model.
In particular, the presence of intermittency does not seem to
play any role in determining the power P.

We have also examined how the kinetic energy ¢Ekin is
distributed among the population of test electrons. In the upper
panel of Figure 5, the kinetic energy distribution ¢( )f Ekin is
plotted at different times, in the case of a Gaussian-distributed
ΔEP and δv⊥0=4×106 cm s−1. This panel shows the
asymptotic approach of the energy distribution to a power
law ¢ = ¢ g

¥
-( ) ( )f E A Ekin kin . Therefore, for long times the

considered mechanism tends to form a population of
accelerated particles at energies much higher than the mean
value á ¢ ñEkin . In the lower panel of Figure 5 the energy
distribution ¢( )f Ekin , calculated at the time =t t100 eV when the
mean energy reaches the value á ¢ ñ =E 100 eVkin , is plotted for
different values of δv⊥0. It can be seen that all the distributions
corresponding to the same value of á ¢ ñEkin but different δv⊥0 are
essentially superposed. This reveals a self-similarity property of

the model: indicating by t* the time when the mean energy
á ¢ ñEkin reaches a given value E′*, and introducing a rescaled time
t′=t/t*, then the behavior of the population of test particles
depends only on the time t′, regardless of the value of δv⊥0.
From Figure 5 we can also estimate the value γ;0.8 of the
power-law index associated with ¢¥ ( )f Ekin .
We have also calculated ¢( )f Ekin in the case of parallel

electric field distributed according to the stretched-exponential
distribution (16) (not shown). The results are essentially
coincident with those of the Gaussian distribution. Therefore,
again the presence of intermittency does not seem to influence
the overall dynamics of the electron population.

4. Discussion and Conclusions

The properties of KAWs resulting from an MHD turbulent
cascade in a typical coronal loop, are suitable to propose the
interaction between electrons and KAWs as a possible
acceleration mechanism able to heat the solar corona. While
the energy flux injected at large scales by photospheric motions
is compatible with the power necessary to maintain the coronal
plasma at the observed temperature against radiative losses,
how such energy is dissipated at small scales is still an open
problem. In fact, due to the smallness of collisional dissipative
coefficients, the collisional dissipative scale of the turbulence is
smaller than typical kinetic scales, such as the proton Larmor
radius Rp. As a consequence, it is expected that kinetic effects
can play a relevant role in the turbulent energy dissipation and
heating. In the present paper we have addressed this point. We
have presented a model for stochastic energization of electrons
by parallel electric field associated with small-scale fluctua-
tions. In an MHD turbulence there is a tendency to generate
small-scale fluctuations with wave vectors nearly perpendicular
to the mean magnetic field. This tendency is even better
verified in the RMHD approximation, due to the strong
background magnetic field and to the prevalence of fluctuations
with l⊥?lP already at large scales. RMHD predicts the
prevalence of noncompressive fluctuations propagating along B
at the Alfvén speed, with Alfvénically correlated velocity and
magnetic field fluctuations. On this basis, we expect that in
coronal conditions the turbulence at small scales is dominated
by KAW-like fluctuations, that can accelerate particles by the
associated parallel electric field.
We have modeled the dynamics of single electrons as test

particles, which move along a magnetic field in the reference
frame locally comoving with the plasma. Each electron is
accelerated or decelerated by the parallel electric field
associated with fluctuations that propagate along B at the
Alfvén speed in both directions. The cumulative effect of a
large number of such interactions on a population of electrons
is to increase its mean energy in time. In a typical solar coronal
loop, this mechanism raises the mean energy of test particles to
values of the order of 102 eV, corresponding to typical coronal
temperatures, in a time ranging between tens to hundreds of
seconds.
A relevant quantity is the power per transverse surface unit

P, which particles absorb from fluctuations. The model predicts
that P depends on the amplitude δv⊥0 of the velocity fluctuation
at large scales. Both observations (Alexander et al. 1998;
Brosius et al. 2000; Harra et al. 2001) and models (Nigro et al.
2005; van Ballegooijen et al. 2011) indicate velocity fluctua-
tions in the coronal plasma of the order of a few tens of
kilometers per second, which occasionally can rise to

Figure 5. The kinetic energy distribution ¢( )f Ekin among the population of
electrons is plotted in logarithmic scale. Upper panel: ¢( )f Ekin is plotted at
different times for δv⊥0=4×106 cm s−1. Lower panel: ¢( )f Ekin is plotted at
the time =t t100 eV for different values of δv⊥0; the black dashed line
corresponds to a function µ ¢-Ekin

0.8. Both panels correspond to the case of a
Gaussian-distributed ΔEP.
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∼102 km s−1 prior to a flare start. For a density n0=109 cm−3

and a loop length L=1010 cm, our model predicts values of P
between ∼106 erg cm−2 s−1 and ∼107 erg cm−2 s−1, when δv⊥0

varies in the range 20–40 km s−1. Such values of P favorably
compare with those Pcor necessary to keep the coronal plasma
at the observed temperature (Withbroe 1988), both for the case
of the quiet Sun (Pcor;8× 105 erg cm−2 s−1) and for the case
of an active region (Pcor;107 erg cm−2 s−1). Of course, the
above values of P depend also on the choice of other
parameters of the model, namely, the magnetic field B0, the
turbulence injection scale l⊥0 and the proton Larmor radius Rp.
A calculation of P as a function of those parameters is left for a
future work. However, in the limit of the model’s simplifica-
tions, our results suggest that the interaction of electrons with
KAW-like fluctuations at small scales represents a good
candidate to explain particle energization in the coronal
turbulence.

From a more general point of view, another interesting
feature of the model is the strict proportionality between P and
dv̂ 0

3 , which is reminiscent of the dependence of the spectral
energy flux on the fluctuation amplitude in a fluid turbulence
(Frisch 1995). More specifically, in an incompressible MHD
turbulence, under the hypothesis of homogeneity and isotropy,
the Politano–Pouquet law holds (Politano & Pouquet 1998):

d dº á ñ = - á ñ  ( ) ( ( )) ( ) ( )Z l lY l Z l
4

3
, 19L

2

where p= Z v B n m4 p0 are the Elsässer variables,
δf (l)=f(x+ l)−f (x) is the running difference of a quantity
f over a distance l, angular brackets indicate an average with
respect to the position x and the index L indicates the vector
component along x. The quantities á ñ are related to the mean
energy flux á ñ (the power transferred through the spectrum
per mass unit) through the relation   á ñ = á ñ + á ñ+ -( ) 2.
Performing an order of magnitude estimate, from Equation (19)
we derive  dá ñ ~ ( )[ ( )]v l l3 2 3 , where we assumed d ~( )B l
d p( )v l n m4 p0 . In our case the turbulent cascade essentially
takes place in the perpendicular direction. Therefore, we identify
the scale l in the above expressions with l⊥. The corresponding
power per transverse surface unit is = á ñP n m Lpturb 0 , where
L is the longitudinal length of the loop. Evaluating the constant
á ñ at the largest scale l⊥0 we obtain

k d k~ =^
^

( ) ( )P v l
n m L

l
, with

3

2
. 20

p
turb turb

3
0 turb

0

0

Equation (20) has the same form as the scaling law (18) for the
power absorbed by electrons, and then the two factors κturb and κ
can be compared. If κκturb, then all the energy carried to
small scales by the turbulent cascade is transferred to electrons;
on the contrary, if κ<κturb, then electrons absorb only a
fraction of the turbulent energy. We estimate κturb by the
expression (20), using for n0, l⊥0, and L the same values
considered in the model. This gives κturb;8.3×10−14 g cm−3.
Comparing with the value κ;1.34×10−13 g cm−3 found
from the model results, we see that κκturb. Therefore, we
conclude that in the present case most of the turbulent energy
is transferred to electrons. In other words, the considered

mechanism of electron energization effectively acts as an
equivalent kinetic dissipation for turbulence.
In our case the values found for κ and κturb have essentially

the same order of magnitude. However, while κturb is
determined only by n0 and by the loop aspect ratio L/l⊥0, the
coefficient κ in principle could depend also on other parameters
characterizing the model, namely, B0 and the proton temper-
ature Tp (or, equivalently, the proton Larmor radius Rp). Hence,
there could be other regimes where the present condition
κκturb is not verified. Exploring the parameter space in a
future work could allow us to determine regimes in which the
considered mechanism is able to fully dissipate the turbulent
energy, and others in which the cascade continues toward
smaller scales, where other mechanisms can contribute to
remove the turbulent energy.
The model predicts that, with increasing time, the distribu-

tion of electron energy ¢( )f Ekin asymptotically tends to a power
law. Moreover, the behavior of the energy distribution is
independent of the turbulence amplitude (determined by δv⊥0)
if time is rescaled to a time t* when the mean energy reaches a
given value E′*. It is clear that the form of ¢( )f Ekin could be
different if other effects (like collisions) that tend to thermalize
the distribution were included in the model. In such a case it
could happen that the distribution is totally thermalized by
collisions, or that a tail of nonthermal particles survives at high
energies instead. Including the effect of collisions in the model
would allow us to discriminate between these two possibilities.
Finally, we remark that in the model the mean energy of the

electron population continues to increase in time with no limits.
This is due to the lack of any form of energy loss, like
radiation. However, since the power absorbed by electrons is
compatible with that required to balance radiative losses, we
expect that a proper inclusion of energy losses in the model
would lead the electron population to a final stationary state
where the mean energy corresponds to typical coronal
temperatures.

Appendix
Time and Velocity Calculation

In this Appendix, we calculate the expressions of the final
velocity uP1;i,m and time t1;i,m for an electron that interacts with
a small-scale fluctuation i m, . To simplify the notation, in what
follows we will drop the subscripts i,m in all the quantities. The
fluctuation is characterized by a parallel length lPK, a
propagation velocity σvA (σ=±1), an electric field amplitude
ΔEP and a lifetime tL (given by Equation (6)). The electron
enters the fluctuation at the initial time t0 with the velocity u0.
The electron velocity relative to the fluctuation is indicated by
UP(t)=uP(t)−σvA, assuming that capital letters indicate the
quantities in the reference frame of the fluctuation, while small
letters indicate the same quantities in the G′ reference frame.
Since ΔEP is constant, the parallel motion of the electron in

the reference frame of the fluctuation is described by the
equations:

= - +
-


( ) ( )
( )

( )S t U t t
a t t

2
210 0

0
2

= + -  ( ) ( ) ( )U t U a t t , 220 0

where aP=−eΔEP/me is the acceleration, S(t) is the electron
position in the reference frame of the fluctuation (defined such
as S= 0 at the initial time t= t0), and UP0=UP(t= t0). Note
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that, if the initial relative velocity UP0 is positive (negative)
then the fluctuation is considered to be located in the interval
0�S�lPK (−lPK� S� 0). If UP0 and aP have opposite signs
the electron is decelerated and the relative velocity UP(t)
changes sign at the inversion time tinv=−UP0/aP+t0
(Equation (22)). Correspondingly, in the reference frame of
the fluctuation, the electron covers a distance given by
(Equation (21):

s
= =

-





∣ ∣
( )

∣ ∣
( )L

U

a

u v

a2 2
. 23

A
inv

0
2

0
2

There can be different possibilities, according to the signs of
UP0 and aP and to the value of Linv in comparison with the
fluctuation parallel length lPK. In the following we consider all
the possible cases.

(a) UP0 and aP nonvanishing and opposite, and Linv�lPK.
The first condition indicates that ∣ ( )∣U t is a decreasing

function of time, and the second condition implies that the
motion inversion takes place inside the fluctuation. This case
corresponds to a situation when the electron is reflected back
by the interaction with the fluctuation. The electron takes time
Δta to exit from the fluctuation, given by

s
D = - = -

-







( )
( )t

U

a

u v

a

2 2
, 24

A
a

0 0

with a final relative velocity that is the opposite of the initial
one: UP1=−UP0. However, if Δta turns out to be larger than
the lifetime tL of the fluctuation, then the time the electron
remains inside the fluctuation is tL, and the final velocity is

= +  ( )u u a t . 25L L0

Summarizing, in the case “a” the final time and velocity are
calculated in the following way:


s= + D = - + D <

= + = D
 



⎧⎨⎩
( )

t t t u u v t t

t t t u u t t
case a:

, 2 , for

, , for

26

A L

L L L

1 0 a 1 0 a

1 0 1 a

(b) UP0 and aP nonvanishing and opposite, and Linv>lPK.
In this case the electron is decelerated (as in the case “a”),

but there is no motion inversion because the inversion length
Linv is larger than the parallel length lPK of the fluctuation. The
final time is calculated by requiring that + D =( )S t t0 b

= -     ∣ ∣ ∣ ∣l U U l a aK K0 0 , where Δtb is the time the electron
takes to go through the whole fluctuation. Using Equation (21),
this condition gives:

s s
D = -

-
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-
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2
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From Equation (22) we derive the final relative velocity:

s= + D = - - -


  ( )

∣ ∣
( ) ∣ ∣ ( )U U t t

a

a
u v a l2 . 28A Kb 0 b 0

2

Similar to the previous case, if Δtb is larger than the lifetime tL
of the fluctuation, then the time when the electron remains
inside the fluctuation is tL, and the final velocity is uL
(Equation (25)).

Summarizing, in case “b” the final time and velocity are
calculated in the following way:


s= + D = + D <

= + = D




⎧⎨⎩
( )

t t t u U v t t

t t t u u t t
case b:

, , for

, , for
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1 0 1 b

(c) UP0 and aP nonvanishing and with the same sign, or
UP0=0 and ¹a 0.
In this case the electron is accelerated, i.e., ∣ ( )∣U t is an

increasing function of time. The final time is calculated by
requiring that + D = = -     ( ) ∣ ∣ ∣ ∣S t t l U U l a aK K0 c 0 0 ,
where Δtc is the time the electron takes to go through the
whole fluctuation. Using Equation (21), this condition gives:

s s
D = -

-
+

-
+











( )
∣ ∣

( )t
u v

a

u v

a

l

a

2
. 30

A A K
c

0 0
2

2

From Equation (22) we derive the final relative velocity:

s= + D = - +


  ( )

∣ ∣
( ) ∣ ∣ ( )U U t t

a

a
u v a l2 . 31A Kc 0 c 0

2

If Δtc is larger than the lifetime tL of the fluctuation, then the
time the electron remains inside the fluctuation is tL, and the
final velocity is uL.
Summarizing, in the case “c” the final time and velocity are

calculated in the following way:


s= + D = + D <

= + = D




⎧⎨⎩
( )

t t t u U v t t

t t t u u t t
case c:

, , for

, , for
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1 0 1 c

(d) aP=0 and ¹U 00 .
In this case, the electron crosses the length lPK with a

constant relative velocity UP0, taking a time given by
D =  ∣ ∣t l UKd 0 . As in the previous cases, we compare Δtd
with the lifetime tL. Therefore, the final time and velocity are
given by:

= + D = { } ( )t t t t u umin , , 33L1 0 d 1 0

(e) aP=0 and UP0=0.
This case is extremely improbable to happen and, whenever

verified, it is simply skipped. The numerical procedure
generates a new random value for ΔEP, in order to have

¹a 0 and UP0=0. This new situation corresponds to the
case “c.”
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