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ABSTRACT
Research concerning endophytic fungi has recently received a remarkable boost following a general trend to investigate 
and exploit biodiversity in all its forms, and because of the easier access to equipment and methods, which enables 
quicker identification procedures. The available data highlight that, besides the plant hosts, endophytes consistently 
interact with the other components of biocoenosis, and that the assortment of the microbial consortium is also to be 
considered on account of the reciprocal influence between the several species which are part of it. Unravelling these 
complex ecological relationships is fundamental because of possible translational applications, particularly regarding 
crop management. However, this requires that the available information concerning plant species, ecological contexts or 
functional categories of endophytes is examined fully. In this aim, a coordinated effort appears to be necessary to organise 
the current knowledge to increase the significance and the practical impact of new findings.
Keywords: crop protection, defensive mutualism, endophytes, plant fitness, plant microbiome

INTRODUCTION
Although etymology of the word refers to a general 
aptitude to dwell inside plants, the concept of endophytic 
fungi in plant ecology has been recently adopted in a 
stricter sense. Several definitions have been enunciated 
by authoritative scientists in the field which are all based 
on the condition of not causing any immediate overt 
negative effect to the host (Arnold, 2007; Saikkonen, 
2007; Hyde and Soytong, 2008; Jia et al., 2016; Yan  
et al., 2019). Despite the first pioneering observations 
that dates back to the nineteenth century (de Bary, 
1866), a consolidated prejudice that pathogens basically 
were the only microorganisms that can invade and 
colonise living plant tissues has delayed the awareness 
that endophytic fungi are constantly associated with 
plants, and remarkably influence their ecological fitness. 
Through the past few decades, the curiosity of a slowly 

increasing number of investigators scattered around the 
world has resulted in the spread of the general theoretical 
intent that all components of biodiversity have to be 
exploited for the benefit of humanity, with ensuing 
results in terms of literature proliferation (Staniek et al., 
2008; Nicoletti and Fiorentino, 2015; Uzma et al., 2018; 
Gupta et al., 2020).

Nowadays, it can be said that the community of 
scientists involved in studies concerning endophytic 
fungi is at the middle of the ford the awareness of the 
relevance of the subject of their studies, as well as the 
access to the basic laboratory techniques/equipment, 
are widespread; still, there is a gap to be covered for 
attaining to a thorough understanding of this fascinating 
biological phenomenon, and achieving a significant 
impact in crop science.
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ENDOPHYTES, PATHOGENS, OR BOTH
Results of recent investigations show that the 
border between pathogenicity and endophytism is 
inconspicuous, and the conversion of a pathogen into 
an endophyte may be due to the occasional incidence of 
any environmental factor, or even mutation of a single 
gene controlling disease development. Moreover, 
many cases have been described of plant pathogens, 
which start colonisation of plant tissues behaving 
like true endophytes, and only turn into causing 
detrimental effects to their hosts after such a delicate 
balance is disrupted by some external condition. This 
behaviour particularly characterises some taxonomic 
groupings such as the Botryosphaeriaceae (Slippers 
and Wingfield, 2007; Salvatore et al., 2020). More 
consistent and generally accepted is the inference that 
the ecological success of endophytic fungi basically 
relies on their saprophytic aptitude, which allows them 
to thrive on the organic matter available when plant 
tissues start senescence. From a more conceptual point 
of view, the endophytic condition has been proposed 
to represent an adaptation of pathogenicity involving 
reduction of virulence and extension of the latency 
period (Saikkonen, 2007). Whatever the real direction 
driving the evolution, the result is that there are plenty 
of fungal species that are considered either pathogens 
or endophytes depending on the investigational 
contexts. Any attempt to provide an exhaustive 
overview of such species would turn into vain since 
an extremely long list would result requiring to be 
continuously updated and integrated upon evidence of 
conversions in either sense.

OCCURRENCE
Without considering mycorrhizae, another eco-functional 
category which historically has been treated independently 
from the rest of plant-associated fungi (Abdel-Latef  
et al., 2016), the first systematic investigations concerning 
endophytic fungi probably date back to the case of 
Epichloë/Neotyphodium species associated with 
ryegrasses (Lolium spp.), as incited by the necessity to 
elucidate the causes of livestock poisoning (McClennan, 
1920; Sampson, 1935). Afterwards resulting in more 
fodder and non-fodder plants, the particular mutualistic 
relationship established between these fungi and their 
hosts is based on the capacity to spread systemically 
within the plant tissues, permeating them with 
compounds which are toxic to herbivorous organisms, 
and colonise seeds to ensure vertical transmission. This 
common aptitude has induced to treat these endophytes 
as a homogeneous category, the so-called clavicipitaceous 
fungi, for which several fine reviews resuming the state of 
the art are available (Kuldau and Bacon, 2008; Di Menna 
et al., 2012; Panaccione et al., 2014; Simpson et al., 2014).

The residual category of the non-clavicipitaceous 
fungi is much more numerous and much less 
homogeneous (Rodriguez et al., 2009; Sanchez Márquez 

et al., 2012; Nicoletti and Fiorentino, 2015). They are 
considered to inhabit practically every plant species, 
regardless of the environmental conditions. Studies 
carried out on the only two vascular plant species 
known to have colonised Antarctica demonstrated the 
occurrence of both known and new fungal species 
developing endophytically (Rosa et al., 2009, 2010; 
Upson et al., 2009a; Kessler de Andrade et al., 2018). 
On the opposite environmental side, their occurrence 
has also been documented in the few plant species that 
can survive in the hyperarid desert of Atacama (Conley  
et al., 2006; González-Teuber et al., 2017).

In phytogeographic terms, there are indications 
that endophytic fungi communities change regarding 
several factors. Even regarding taxonomic aggregates, 
it has been observed that the Helotiales dominate in 
forests, while the Pleosporales more often characterise 
the species assemblage in grasslands (Jumpponen et al., 
2017). Single species may display specific adaptation, 
particularly when they tend to colonise the whole plant 
and are vertically transmitted, such as those reported 
in forbs (Hodgson et al., 2014). Other cases of specific 
associations may concern discrete plant tissues/organs. 
In this respect, a meaningful example is represented 
by Penicillago nodositata, which was first described as 
Penicillium nodositatum in strict relationship with alder 
(Alnus spp.) where it typically forms as myconodules on 
roots (Valla et al., 1989). However, additional findings 
of this species in herbivore dung (Guevara-Suarez  
et al., 2020) suggest some caution in building arbitrary 
inferences from limited data.

It can be said that for endophytic fungi specialisation 
represents anything but a rule. In fact, a tendency to 
spread throughout the ecological context and to colonise 
taxonomically unrelated hosts has been documented in 
several cases, such as for species of Mycosphaerella/
Septoria, dominating the endophytic assemblage 
in riparian areas in Arizona (Lau et al., 2013), and 
Diaporthe foeniculina, widespread in an Italian forest 
site (Carrieri et al., 2014). Besides Diaporthe/Phomopsis, 
species of genera such as Colletotrichum, Pestalotiopsis, 
Guignardia/Phyllosticta and Xylaria have also been 
reported for such a pervasive aptitude (Suryanarayanan 
et al., 2018; Nicoletti, 2019; Nicoletti et al., 2020).  
As discussed in the above-mentioned paper (Saikkonen, 
2007), for horizontally transmitted endophytes all factors 
increasing spore production and dispersion are direct 
determinants of their spread and relative occurrence. 
Particularly, the animal component of the ecosystems 
in its multifaceted aspects may represent a fundamental 
vehicle (Devarajan and Suryanaranayan, 2006). And 
even genetic factors have a role in possibly affecting 
the interactions with endophytic fungi, especially when 
promiscuity of closely related plant species is conducive 
for hybridisation and introgression. Considerations 
on the genetic interactions with plants also induce to 
expect that species assemblages and/or the degree of 
host specialisation of endophytes be correlated to the 
botanical diversity in a certain environmental context 
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(Saikkonen, 2007). In another instance, the ability to 
establish relationships with various endophytic fungi 
has been considered as a basic factor helping invasive 
plants to respond to abiotic stresses in the colonization 
of new environments (Soares et al., 2016).

DEFENSIVE MUTUALISM
The above-mentioned aptitude by clavicipitaceous 
endophytic fungi is introductory to the consolidated 
concept of defensive mutualism, that is the improvement 
of plant fitness resulting after the acceptance of a 
symbiont releasing toxic metabolites or stimulating 
metabolic adaptations which ensure some extent of 
protection against pests (Luo et al., 2015). Rather than 
being limited to species in the Clavicipitaceae, a similar 
relationship has been recently demonstrated involving 
species of the genus Undifilum (Pleosporaceae) 
endophytic in plants from a few genera in the Fabaceae, 
producing the alkaloid swainsonine, which results in 
being toxic to cattles (Grum et al., 2013; Nicoletti and 
Fiorentino, 2015). Undoubtedly, it is meaningful that 
analogous successful symbiotic relationships involve 
plant and fungal species, which are distantly related in 
taxonomic terms. More directly, it is a clear indication 
that this model is widespread, and that it may represent 
a natural outcome of the evolutionary forces operating in 
ecosystems. In fact, apart from those disclosed after the 
implications on livestock, there are more known cases 
where endophytic fungi protect plants from aggression by 
other kinds of herbivorous organisms, particularly insects 
(Hartley and Gange, 2009; Miller et al., 2009; Eberl et al., 
2019). The same concept applies to plant pathogens, with 
the obvious difference that the alleged bioactive products 
express their activity in terms of antibiosis rather than 
after ingestion (Busby et al., 2016; Brader et al., 2017). 
On a further instance, endophytic fungi may contribute 
to reducing disease severity caused by fungal pathogens 
by upregulating many defence-related genes of the host 
(Mejía et al., 2014; Waqas et al., 2015).

An emblematic protagonist of the multifaceted 
interactions connecting plants, endophytic fungi and 
pests is the cosmopolitan species Botryosphaeria 
dothidea. In fact, although primarily known as a pathogen 
of some forest trees, this fungus has a dramatically large 
host range resulting after its widespread occurrence as 
an endophyte (Marsberg et al., 2017). But even more 
striking is its implication in the tripartite relationship 
established with midges belonging to the Asphondyliinae 
(Diptera, Cecidomyidae) inducing the formation of 
galls on flowers and other organs of a multitude of 
plant species; possibly inoculated at oviposition, the 
fungus develops a mycelial mat lining the gall walls 
which represents the feeding substrate for the larvae 
(Zimowska et al., 2020b).

It has been documented that even nutritional aspects 
may sometimes be entailed in defensive mutualism; 
for instance, in plants that absorb nitrogen released 
in their tissues from insects killed after infection by 

endophytic entomopathogenic fungi (Behie et al., 2012). 
More often the nutritional implications of endophyte 
colonisation are direct; in fact, in many cases they have 
been reported to help the host plants to better assimilate 
nitrogen, phosphorus, sulfur, magnesium, iron, calcium 
and potassium (Usuki and Narisawa, 2007; Upson 
et al., 2009b; Yadav et al., 2010) or simply degrade 
complex compounds to simpler molecules that are more 
readily available for root absorption (Porras-Alfaro and 
Bayman, 2011).

Finally, endophytic fungi have been reported to 
improve plant fitness also regarding other abiotic stresses, 
such as drought, salinity, extreme temperatures and 
heavy metal toxicity. Again, the many cases known in this 
respect are more exhaustively treated in several dedicated 
reviews (Khan et al., 2015; Jia et al., 2016; Lugtenberg  
et al., 2016; Deng and Cao, 2017; Yan et al., 2019).

SECONDARY METABOLITES
As introduced above, defensive mutualism can be 
mediated by the production of secondary metabolites 
which disclose toxic or antibiotic effects towards pests. 
As research in the field progresses, the list of these 
compounds lengthens at an extraordinarily high rate. 
Besides adding previously unknown metabolites with 
interesting properties, research in the field makes it 
more and more evident that many bioactive products 
originally extracted from plants are commonly produced 
by some of their associated endophytes. Such an ability 
is often shared by several taxonomically unrelated 
strains (Nicoletti et al., 2018), which in turn can establish 
synergistic interactions resulting in enhanced production 
(Bhumika et al., 2016). Indeed, this is quite a hot research 
subject for medicinal plants in particular, as outlined in 
several recent reviews (Ludwig-Müller, 2015; Jia et al., 
2016; Caruso et al., 2020; Zimowska et al., 2020a).

Besides biotechnological implications deriving from 
the possibility to use microbial strains in industrial 
processes for the production of plant-derived drugs 
(Venugopalan and Srivastava, 2015), such a high number 
of cases involving phylogenetically unrelated fungi and 
their host plants is indicative that the symbionts may 
share a common genetic base for the biosynthesis of 
these compounds, and that they are eventually able to 
perform horizontal gene transfer at some extent. Several 
convergent clues have been gathered in this respect 
also involving direct cross-talks between endophytes 
(Fitzpatrick, 2012; Barelli et al., 2016; Manganiello et al., 
2019). In this process of transfer of genetic information, 
a fundamental role is conjectured to be played by other 
microorganisms, particularly bacteria (Schmitt and 
Lumbsch, 2009). In fact, fungi can in turn be hosts of 
‘endohyphal’ bacteria which represent a possible vehicle 
for a natural genomic transformation, or the real actors 
of the biosynthetic process. An example is represented 
by the production of rhizoxin by Paraburkholderia 
rhizoxinica, a new species discovered in hyphae of 
Rhizopus microsporus from which this antimitotic 
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macrolide was originally characterised (Partida-
Martinez and Hertweck, 2007). Considering that 
endohyphal bacteria are of widespread occurrence in 
endophytic fungi (Hoffman and Arnold, 2010; Shaffer 
et al., 2016), more cases can be expected to result where 
these eco-physiological interactions are crucial in 
shaping the biosynthetic aptitudes of the symbionts.

The ability by endophytic fungi to directly 
produce bioactive metabolites of their host plants also 
conceptually implies a take-over of the biomolecular 
mechanisms enabling avoidance of self-toxic effects 
(Naik et al., 2019), representing a fundamental 
requisite for their survival in an environment that is 
permeated with these toxic substances. In this respect, 
it is not at all surprising that endophytes, by their own 
condition of inhabitants of plant tissues, have acquired 
this capacity, and that the subtended evolutionary 
adaptations may be shared by series of endophytic 
strains in most plant species.

CONCLUSIONS
In view of boosting a translational follow-up, future 
research on endophytic fungi should be better focused 
on the elucidation of the mechanisms of interactions 
established with the host plants and their pests and 
pathogens, and the ensuing ecological and evolutionary 
consequences. Particularly, the introduction of selected 
species/strains into plants to enhance crop performance 
might be somehow hampered in the absence of adequate 
knowledge concerning the interactions and the space-
time associations of the pool of microorganisms forming 
such peculiar biocoenoses. Indeed, the available data are 
quite fragmentary and, as they increase in amount, there 
seems to be no perspective that they are systematically 
analysed because of a possible extrapolation of any 
relevant aspects which may improve our knowledge in 
this respect.

The pioneering instinct which has guided forerunner 
investigators in elucidating some of the aspects 
concisely examined in this article is no more adequate. 
Our feeling is that in the current historical moment a 
global effort is desirable to integrate the outcome of 
the manifold independent observations disclosed so 
far to address future research towards more fruitful 
biotechnological applications, particularly in the aim to 
improve crop yields.
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