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This paper proposes a fractal viscoelastic element via He’s fractal derivative, its 

properties are analyzed in details by the two-scale transform for the first time. The 

element is used to establish a fractal Maxwell-rheological model(FMRM), which 

unifies the fractal creep equation and relaxation equation, and includes the classic 

elastic model and the classical Maxwell-rheological model as two special cases. 

This paper sheds a bright light on viscoelasticity, and the model can find wide 

applications in rock mechanics, plastic mechanics, and non-continuum mechanics.  
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1. Introduction 

 

The rheological property plays an important role in rock, and both the long-term stability 

and durability of rock machines are closely related to the rock’s rheological property. For example, the 

surrounding rock mass is stable at the beginning of tunnel formation, however, as time goes on, the 

deformation of rock mass develops continuously, and after some time, the tunnel may lose stability or 

collapse suddenly, and the surrounding rock has the obvious characteristics of slow deformation with 

the increase of time. With people's attention to the long-term safety of geotechnical engineering, more 

and more attention has been paid to the rheological study of geotechnical engineering, however, the 

focus was put mainly on what kind of constitutive equations was suitable for the relationship between 

stress, strain and time of rock materials[1-3].  

As we all know that the stress-strain relationship of an ideal elastic element satisfies Hooke's 

law is (see Fig. 1) 

                              ( ) ( ) E= ,                       (1.1)  

where ( ) ， ( )  and E  are the stress, strain and modulus of elasticity of ideal elastic element 

respectively. 

As shown in Fig 2, the ideal viscous element satisfies Newton's law gives 
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where   is the viscosity coefficient.  

  
Fig 1. The model of elastic element   Fig 2. The model of viscous element 

 

As a powerful mathematical analysis tool, the fractal derivative has been widely used in the 

description of various complex phenomena[4-22]. Now we use the He’s fractal derivative to correct 

the Eqs.(1.1) and (1.2). The He’s fractal derivative is defined as follows[22-25]:  
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where   is the fractal dimension. The fractal derivative is a powerful tool to establishment of 

complex models in fractal space or discontinuous media. The geometric physical interpretation of 
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fractal derivatives and the process of establishing mathematical models are described in Ref[22]. 

 
Fig 3. The model of viscoelastic element using He’s fractal derivative 

 

By comparing Eq.(1.1) and Eq.(1.2), we propose a common expression, which reads: 
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The above equation can be used to describe the relationship between force and strain of the 

viscoelastic body(see fig.3), where   is the viscoelasticity coefficient. For example,  the Eq.(1.3) is 

used to describe the elastic element when 0= , and the viscous element when 1= .  For 

10  , it can be used to describe the viscoelastic element. Now we plan to use the two-scale 

transform method[23-25] to analyze the creep properties in details. 

 

2. The two-scale transform method 

 

The two-scale method[23-25], as a new transformation method, is an extension of the He’s 

fractional complex transformation[21]. The two-scale transform can be used to convert the fractal 

calculus into the traditional partner and successfully applied to solve many fractal problems. 

Consider the following fractal equation: 
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For using the two-scale transform method[23-25], we let  

                              
=T .                           (2.2) 

By Substituting Eq.(2.2) into Eq.(2.1), the Eq.(2.1) is converted into the following form: 
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So, the fractal equation is successfully converted into an integral order differential equation, 

which can be solved by many classical methods, such as the homotopy perturbation method[26-28], 

variational iteration method[29,30] and so on[31]. 

 

3. The analysis of the viscoelastic body  

 

In order to study the creep properties,  Eq.(1.3) can be rewritten as the following form by 

letting ( ) 0 = . 
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Taking the two-scale transform as: 
=T                          (3.2)   

Applying the two-scale transform to Eq.(3.1), yields:  
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The solution of the above is given as: 
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where C  is a constant. Thus we get the solution of ( )  with the help of Eq.(3.2), which reads: 

                      ( ) ,0 C+
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Let 10 = , 1=  and 0=C , we plot the curves of ( )  with different orders   in 

fig. 3. Obviously, for  =0 and 1, the ( )  represents the creep properties of the elastic element and 

the viscous element respectively. The larger the value of   is, the closer it is to the characteristics of 

elastic element, correspondingly, the smaller the value is, the closer it is to the characteristics of the 

viscous element. In other words, the fractional order   represents whether the element is mainly 

elastic or viscous. 

 
Fig 3. The curves of ( )  with different orders  =0, 0.1, 0.4, 0.7, 0.9 and 1. 

 

4. An Application to fractal Maxwell rheological model (FMRM) 

 

The fractal Maxwell-rheological model is plotted in fig.4, we have the following relation 

according to the series theory: 

 

                            ( ) ( ) ( ) 21 == ,                    (4.1) 

    

and 

                             ( ) ( ) ( ) 21 += ,                    (4.2) 

 

 
Fig 4. The fractal Maxwell-rheological model 

 

Taking  -order differentiation of the above formula, we get: 
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21 += ,                  (4.3) 

For the elastic element, there is 

                             ( ) ( ) 11 E= ,                       (4.4) 

And for the viscoelastic element, we have 
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Eqs.(4.1-4.4) may now be combined to produce the constitutive equation of the fractal 

Maxwell rheological model as 
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Recalling the two-scale transform  

                              
=T                         (4.7) 

We replace   with T  for Eq.(4.6), converting the FMRM constitutive equation into the 

classical partner as: 
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We obtain the creep equation under constant load of ( ) 0 =T as: 
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Correspondingly, the creep equation of the fractal Maxwell rheological model (FMRM) is 

given as 
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E
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The creep curves of the FMRM is plotted in Fig.5 for different   by using 10 = , 1=  

and 1=E . The curve indicates the creep curve of the classical Maxwell rheological model(CMRM) 

when 1= , which is because the viscoelastic element is a pure viscous element at 1= . In 

addition, when 0= , the curved edge represents the elastic element, which is precisely because the 

element is a pure elastic element for 0= , and the FMRM is equivalent to two pure elastic elements 

in series. In the other cases for 10  , the curve is between pure elastic element and classical 

Maxwell rheological model(CMRM). The larger the value of  , the closer it is to CMRM, the 

smaller it is, the closer it is to pure elastic element, which is related to the characteristics of the 

viscoelastic element. 

 

 
Fig. 5 The creep curves of the FMRM with different  . 



 

 

 
Fig. 6. The relaxation curves of the FMRM with different  . 

 

Recalling  Eq.(4.8) and  letting ( )=T constant, we get the relaxation equation: 
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The application of the initial condition 0 =  yields 
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By replacing T  with 
 , there is 
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We draw the relaxation curves of the FMRM as shown in the Fig.6. Obviously, the 

viscoelastic body of the FMRM becomes to the a pure elastic element when 0= , which leads to the 

elastic element properties in Fig.6(red line). As for 1= , the viscoelastic body changes into the 

viscosity element, so the FMRM becomes the CMRM. For 10  , we can come to a similar 

conclusion by recalling the creep properties. Generally speaking, when the strain ( )T is a constant, 

the stress decreases with the increase of time for 10  . By carefully analyzing different curves, 

we find that the larger the fractional order   is, the faster the curve decays.  

 

5. Conclusions 

 

In this paper, for the first time ever, the fractal viscoelastic element is proposed by using  

He’s fractal derivative, and analyzed by applying the two-scale transform method in details. Then we 

use the fractal viscoelastic element to model the FMRM, and study the creep characteristic and 

relaxation characteristic with different orders  . As expected for  =0, the FMRM is equivalent to 

two pure elastic elements in series, and when  =1, the FMRM becomes the CMRM. The obtained 

results in this paper are expected to open some new perspectives towards the characterization of the 



fractal rheological model. This paper sheds a bright light on viscoelasticity, and the model given in this 

paper can find wide applications in rock mechanics and plastic mechanics.  
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