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A Systematic Approach to the Concept of Surface
Impedance Boundary Conditions

Nathan Ida, Sergey Yuferev, and Luca Di Rienzo

Abstract: This paper discusses the general issues, derivation, implementation and
applications of Surface Impedance Boundary Conditions (SIBCs) in the time- and
frequency-domains. A comprehensive approach based on perturbation methods leads
to SIBCs of desired order of approximation as well as systematic implementation
within existing formulations for linear and nonlinear media. The approach described
here also allows evaluation of errors and appropriateness of SIBCs for specific appli-
cations. A suite of SIBCs is proposed, suitable for use in a wide range of practical
applications and formulations including FEM, FDTD, FIT andBEM. A general tool-
box that can be used for derivation of SIBCs for the users specific formulation and
application has been developed and is described here as well.

Keywords: Surface impedance boundary conditions, perturbation methods, skin ef-
fect, electromagnetic field formulations.

1 Introduction

THE use of SIBCs in low-penetration problems (either low or highfrequencies)
can benefit a broad spectrum of applications by reducing the size of the prob-

lem to solve and, in some cases, rendering the problem solvable. Although the
method has been applied to a large number of problems rangingfrom electric ma-
chines to microwaves, the derivation of an appropriate SIBCwas always more or
less an ad-hoc process. In addition, most researchers have limited themselves to
first order (Leontovich) SIBCs. By doing so, SIBCs could onlytake into account
field variations perpendicular to conducting surfaces, and, with some exceptions,
flat surfaces. Yet, a more general approach, one that eliminates these limitations has

Manuscript received on June 14, 2009.
N. Ida is with Department of Electrical and Computer Engineering, The University of Akron,

Akron, OH 44325-3904, USA (e-mail:ida@uakron.edu). S. Yuferev is with Nokia Corporation,
P.O. Box 1000, Tampere FIN-34101, Finland (e-mail:sergey.yuferev@nokia.com). L. Di
Rienzo is with Dipartimento di Elettrotecnica, Politecnico di Milano, Piazza L. da Vinci, 32 - 20133
- Milano, Italy (e-mail:luca.dirienzo@etec.polimi.it).

143



144 N. Ida, S. Yuferev, and L. Di Rienzo:

been available for some 70 years in the form of the Rytov perturbation method [1].
The method is based on power series expansion and, as such, allows implemen-
tation of arbitrary order SIBCs. By using higher order terms, curved surfaces as
well as variation of fields along the surfaces of conductors can be incorporated in
computation, increasing accuracy and expanding the range of applicability. Signif-
icantly, the method also allows calculation of fields and related quantities within
the skin layer itself. The method has additional advantages. First, it incorporates
other existing SIBCs such as the Leonntovich method (which becomes the first or-
der term in Rytovs expansion). Second, because of the seriesform, implementation
of higher order approximations require virtually no modifications to existing soft-
ware only addition of a higher order module. Rytovs method however is limited to
time-harmonic applications.

The work described here is based on the Rytov expansion method but goes be-
yond it in a number of significant ways [2]. First, we have extended the method into
the time domain whereby the limitations of time-harmonic representation have been
overcome. Second, treatment of problems with nonlinear andnonhomogeneous
material properties follows from the general approach and,within the constraints
imposed by material behavior, follows the same general approach. Third, the inclu-
sion of the toolbox approach allows the user to develop his/her own boundary con-
ditions to suit formulations, numerical methods and implementation preferences.
The SIBCs described here are based on simple characteristics of the problem the
characteristic dimension of the problem (i.e. minimum thickness, smallest radius of
curvature, smallest distance between members of the geometry, etc.) and either the
skin depth (time harmonic problems) or pulse width (time dependent problems).

The development of SIBCs, beyond the classical Leontovich method is usually
an arduous task, requiring considerable skill. In addition, the value of the SIBC
to the problem at hand must be ascertained beforehand, that is, one has to be rea-
sonably certain that SIBCs can in fact be used to some advantage in the first place.
Then one must be able to estimate the errors involved in the use of SIBCs of var-
ious order of approximation before implementation commences. To this end, the
present suite of SIBCs not only analyzes the errors but laso includes a simple pro-
cedure that allows the user to decide a-priori the order of the SIBC and, indeed if
an SIBC can be used based on the characteristic properties ofthe problem and error
tolerance.

2 The Concept of Surface Impedance Boundary Condition

The concept of surface impedance boundary conditions is simple. Assuming a
plane wave impinging on a conducting surface and calculation of the electric and
magnetic field intensities inside the conductor leads to thewell known relation for
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the intrinsic impedance in the conductor

Zc =
1+ j
σδ

[Ω] (1)

whereσ is the skin depth. Since the electromagnetic field is continuous across
the conductors surface the intrinsic impedance of the wave remains the same at
the interface. Therefore, the relation in (1) may be used as asurface impedance
boundary condition since it contains all the necessary information about the field
distribution inside the conductor. Eq. (1) however comes with a set of assumptions
under which it is valid. First, we assumed a high loss tangent(σ ≫ ωε). More
importantly, the wave was assumed to propagate perpendicular to the interface and
because it is a plane wave the fields cannot vary on the surface. The sources of
the wave are at infinity and, of course, materials are simple (linear, homogeneous,
isotropic). The conductor itself is infinitely thick (half space). Nevertheless this
little exercise shows how simple an SIBC can be. In addition,some of the require-
ments can be relaxed relatively easily. For example, the conductor does not have
to be thick the only requirement is that reflections within the conductor must die
out before they reach the surface. For this to happen, the conductor must only be
2-3δ thick or thatδ ≪ D whereD is the characteristic size of the geometry. Eq.
(1) is the SIBC due to Leontovich [3], although it is more often written in terms of
complex permeability and complex permittivity and often interms of electric and
magnetic surface current densities:

~Km = Zc~n×~Ke, Zc =

√

µc

εc
(2)

3 The Proposed Suite of SIBCS

The SIBCs proposed here were developed starting from Rytovsmethod but they go
beyond in a number of significant ways [2].

1. They apply to time-harmonic as well as time-dependent problems.

2. Apply to linear an nonlinear media

3. May be incorporated within any formulation and any numerical technique.

(a) We have developed higher order SIBCs (up to 4th order)
(b) Incorporated within the Boundary Integral Equations method (BIE), Fi-

nite Difference Time Domain method (FDTD), the Finite Integration
Technique (FIT) and the Finite Element Method (FEM). Other varia-
tions are equally possible
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One of the main advantages of our method is in that the error inthe SIBC
can be estimated a-priori based on the characteristic properties of the problem.
This allows the user to select the appropriate order SIBC fora given problem and,
more importantly, to decide if an SIBC can be used and the consequences of its
use. A simple methodology has been developed to facilitate this evaluation prior to
implementation.

4 Development and Application of SIBCS

To demonstrate the development of SIBCs, we first discuss thebasics starting with
no more than the definition of skin depth. Then, we introduce the perturbation ap-
proach and discuss the process of identifying the characteristic properties of the
problem, incorporation of these into a small parameter and expansion in this pa-
rameter. The various formulations are discussed, with emphasis on the unifying
concepts rather than on details of the formulations. For thepurpose of presenting
results we will concentrate on implementation in the BIE formulation in terms of
vector potentials but others will be discussed as well.

Because of its practical importance, the calculation of errors and the method-
ology used to decide on a particular order of approximation will be discussed with
examples. Finally, we will give specific examples of practical calculations in the
time- and frequency domain to demonstrate the wide range of applicability of the
suite of SIBCs described above.

Following perturbation theory, we first introduce the scalefactors for the basic
variables in the governing equations. Selection of the scale factors is based on
knowledge of the characteristic variation of such input data as total current and
dimensions of the conductor. Then the equations are re-written in terms of non-
dimensional variables so that each is a function of the corresponding dimensional
variable and its scale factor. As a result, combination(s) of the scale factors will
appear in the governing equations as parameters.

In conducting media, the distribution of various electromagnetic quantities in
the conducting domain can be described by the equation of diffusion:

∇× (∇×~f )+ σ µ
∂~f
∂ t

= 0 (3)

In lossy dielectrics the governing equation is the telegraphers equation but, since the
process of defining the SIBCs is the same, we will only discusshere Eq. (3) [2].
Here the vector function~f may denote various electromagnetic fields and poten-
tials. The purpose of the SIBC toolbox is transformation of this equation with the
use of perturbation techniques and derivation of a set of approximate relationships
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between components and derivatives of~f at the interface. Those results can be
applied not only to electromagnetics, but to any other area where functions under
consideration are governed by the diffusion equation. Local to the surface we de-
fine an inward normal coordinateη and tangential orthogonal coordinatesξ1 and
ξ2. Non-dimensional variables̃ξ1, ξ̃2 andη̃ are introduced that have the variation
ranges of the same order of magnitude and are related toξ andη , respectively, as
follows

ξ̃i =
ξi

D
, η̃ =

η
δ

(4)

Based on the condition in (1) we introduce a small parameter proportional to the
ratio of the penetration depth and the characteristic size of the conductors surface:

p̃ =
δ
D

=

√

τ
σ µD2 ≪ 1 (5)

The local radii of curvaturedi are directly related to the variation of the function
~f in the directions tangential to the surface of the conductor. This leads to the
following representation

d̃i =
di

D
(6)

We then first define the required components of the diffusion equation in the local
coordinates, that is, definef , its tangential and normal derivatives as well as any
other necessary function (such as the curl) at the interfacein the time or frequency
domain in non-dimensional variable. Of course, one can always transform back to
dimensional variables using the scale factors. These operations lead to the follow-
ing general relations, in the frequency and time domain, which are applicable for
any function f at the interface (denoted byb).

f b
η =p̃

1− j
2

2

∑
i=1

∂
∂ ξ̃i

[

ḟ b
ξi
− p̃

1− j
2

ḟ b
ξi

d̃i − d̃3−i

2d̃i d̃3−i
(7)

+ p̃2 j
2

(

ḟ b
ξi

d̃2
i +2d̃i d̃3−i −3d̃2

3−i

4d̃2
i d̃2

3−i

−
1
2

∂ 2 ḟ b
ξi

∂ ξ̃ 2
i

+
1
2

∂ 2 ḟ b
ξi

∂ ξ̃ 2
3−i

−
∂ 2 ḟ b

ξ3−i

∂ ξ̃i∂ ξ̃3−i

)]

f b
η =p̃

2

∑
i=1

∂
∂ ξ̃i

[

f b
ξi
∗ T̃b

2 − p̃
d̃i − d̃3−i

2d̃i d̃3−i
f b
ξi
∗ T̃b

3 (8)

− p̃2
(

f b
ξi

d̃2
i +2d̃i d̃3−i −3d̃2

3−i

4d̃2
i d̃2

3−i

−
1
2

∂ 2 f b
ξi

∂ ξ̃ 2
i

+
1
2

∂ 2 f b
ξi

∂ ξ̃ 2
3−i

−
∂ 2 f b

ξ3−i

∂ ξ̃i∂ ξ̃3−i

)

∗ T̃b
4

]

T̃b
2 = (π t̃)−

1
2 T̃b

3 = Ũ(t̃) T̃b
4 = 2t̃

1
2 π− 1

2 (9)

whereU(t) is the Heaviside function,̃t = t/τ , and∗ denotes a convolution product.
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The relations in (7) and (8) are third order (Rytov) relations as can be seen from
the order of ˜p. If the term preceded by ˜p2 in the square brackets is removed, we
obtain the Mitzner (second order) SIBC and if we remove the term preceded by
p̃, the Leontovich relation is obtained. Setting ˜p = 0 (that is,δ = 0) reduces the
relation to the perfect electric conductor (PEC) condition.

To see how this toolbox may be used to advantage, consider theformulation
in terms of the magnetic scalar potentialφ in the absence of sources. Under these
conditionsφ can be introduced as follows:

~H = −∇φ (10)

In the free space outside the conductor we have

∇2φ = 0 (11)

The boundary conditions at the dielectric/conductor interface follow directly
from (10):

~n×∇φ
∣

∣

diel =~n× ~H
∣

∣

cond

∂φ
∂~n

∣

∣

∣

diel
=~n· ~H

∣

∣

∣

cond
(12)

The use of the conditions in (12) requires that the problem inside the conductor
in terms of the magnetic field be considered together with (11). To eliminate the
conducting region from the numerical procedure we use the surface impedance
“toolbox” discussed above and write (replacingf with H) [2]

Hb
η =p̃

1− j
2

2

∑
i=1

∂
∂ ξ̃i

[

Ḣb
ξi
− p̃

1− j
2

Ḣb
ξi

d̃i − d̃3−i

2d̃i d̃3−i
(13)

+ p̃2 j
2

(

Ḣb
ξi

d̃2
i +2d̃1d̃3−i −3d̃2

3−i

8d̃2
i d̃2

3−i

−
1
2

∂ 2Ḣb
ξi

∂ ξ̃ 2
i

+
1
2

∂ 2Ḣb
ξi

∂ ξ̃ 2
3−i

−
∂ 2Ḣb

ξ3−i

∂ ξ̃i∂ ξ̃3−i

)]

Hb
η =p̃

2

∑
i=1

∂
∂ ξ̃i

[

Hb
ξi
∗ T̃b

2 − p̃
d̃i − d̃3−i

2d̃i d̃3−i
Hb

ξi
∗ T̃b

3 −
d̃i − d̃3−i

2d̃i d̃3−i
(14)

− p̃2
(

Hb
ξi

d̃2
i +2d̃i d̃3−i −3d̃2

3−i

8d̃2
i d̃2

3−i

−
1
2

∂ 2Hb
ξi

∂ ξ̃ 2
i

+
1
2

∂ 2Hb
ξi

∂ ξ̃ 2
3−i

−
∂ 2Hb

ξ3−i

∂ ξ̃i∂ ξ̃3−i

)

∗ T̃b
4

]

Clearly this is not only simple but very useful as one does nothave to derive
an ad-hoc SIBC for each formulation. The relations in (13) and (14) may be trans-
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formed back to dimensional variables to obtain:

Hb
η =

1
√

jωσ µ

2

∑
i=1

∂
∂ξi

[

Ḣb
ξi
−

1
√

jωσ µ
di −d3−i

2did3−i
Ḣb

ξi
(15)

−
1

jωσ µ

(

Ḣb
ξi

d2
i +2did3−i −3d2

3−i

8d2
i d2

3−i

−
1
2

∂ 2Ḣb
ξi

∂ξ 2
i

+
1
2

∂ 2Ḣb
ξi

∂ξ 2
3−i

−
∂ 2Ḣb

ξ3−i

∂ξi∂ξ3−i

)]

Hb
η =

1
√σ µ

2

∑
i=1

∂
∂ξi

[

Hb
ξi
∗ T̃b

2 −
1

√σ µ
d̃i − d̃3−i

2d̃i d̃3−i
Hb

ξi
∗ T̃b

3 (16)

−
1

σ µ

(

Hb
ξi

d2
i +2d1d̃3−i −3d2

3−i

8d2
i d2

3−i

−
1
2

∂ 2Hb
ξi

∂ξ 2
i

+
1
2

∂ 2Hb
ξi

∂ξ 2
3−i

−
∂ 2Hb

ξ3−i

∂ ξ̃i∂ξ3−i

)

∗ T̃b
4

]

where the time functionsT are those in (9) after return to dimensional variables.
However, it is a simple matter of use of Eq. (10) to obtain the SIBC in trems of the
scalar potential itself. From (10) it directly follows that

Hξi
=

∂φ
∂ξi

, Hη =
∂φ
∂η

. (17)

Substituting (17) into (15)-(16) yields the boundary relations between the normal
and tangential derivatives of the scalar potential in the following form (in dimen-
sional variables):

(∂φ
∂~n

)b
=

1
√

jωσ µ

2

∑
i=1

∂ 2

∂ξ 2
i

[

φ̇b−
1

√
jωσ µ

di −d3−i

2did3−i
φ̇b (18)

−
1

jωσ µ

(

φ̇b d2
i +2did3−i −3d2

3−i

8d2
i d2

3−i

−
1
2

∂ 2φ̇b

∂xi2i
−

1
2

∂ 2φ̇b

∂ξ 2
3−i

)]

(∂φ
∂~n

)b
=

1
√σ µ

2

∑
i=1

∂ 2

∂ξ 2
i

[

φb ∗Tb
2 −

1
√σ µ

di −d3−i

2did3−i
φb∗Tb

3 (19)

−
1

σ µ

(

φb d2
i +2did3−i −3d2

3−i

8d2
i d2

3−i

−
1
2

∂ 2φb

∂ξ 2
i

−
1
2

∂ 2φb

∂ξ 2
3−i

)

∗Tb
4

]

Since the tangential derivative of a function can be approximated using the function
calculated at nodes located along the conductors surface, the expressions in (18)-
(19) are SIBCs of various orders of approximation relating the scalar potential and
its normal derivative at the surface of the conductor. Again, this is a third order
SIBC and can be reduced to lower orders by removing appropriate terms. A similar
process is used to obtain SIBCs for the E-H, A-ψ and other formulations [2]. For
example, the E-H formulation results in the following (again using the toolbox
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approach):

Ẽb
ξ3−k

=(−1)k(1+ j)p̃
[

˙̃Hb
ξk
− p̃

1− j
2

˙̃Hb
ξk

d̃k− d̃3−k

2d̃kd̃3−k
(20)

+ p̃2 j
2

(

˙̃Hb
ξk

d̃2
k +2d̃kd̃3−k−3d̃2

3−k

8d̃2
k d̃2

3−k

−
1
2

∂ 2 ˙̃Hb
ξk

∂ ξ̃ 2
k

+
1
2

∂ 2 ˙̃Hb
ξk

∂ ξ̃ 2
3−k

−
∂ 2 ˙̃Hb

ξ3−k

∂ ξ̃k∂ ξ̃3−k

)]

+O(p̃4)

Ẽb
ξ3−k

=(−1)k p̃
[ d

d̃t
(H̃b

ξk
∗ T̃b

2 )− p̃
d̃k− d̃3−k

2d̃kd̃3−k
H̃b

ξk
∗ T̃b

2 (21)

− p̃2
(

H̃b
ξk

d̃2
k +2d̃kd̃3−k−3d̃2

3−k

8d̃2
k d̃2

3−k

−
1
2

∂ 2H̃b
ξk

∂ ξ̃ 2
k

+
1
2

∂ 2H̃b
ξk

∂ ξ̃ 2
3−k

−
∂ 2H̃b

ξ3−k

∂ ξ̃k∂ ξ̃3−k

)

∗ T̃b
2

]

+O(p̃4)

In thesek= 1,2. These SIBCs and have been implemented in a variety of numerical
methods and many applications following essentially similar steps [2,4–10]

5 A Decision Methodology for Selection of SIBCS

The error in Rytovs approximation (20) or (21) is 4th order inskin depth or, as we
have indicated previously, in the small parameter ˜p. Lower order Mitzner, Leon-
tovich and PEC conditions errors are 3rd, 2nd and 1st order inp̃ respectively. A
critical question is which approximation to use for a specific application and, even
more importantly, if an SIBC can in fact be used and still obtain a given level of
accuracy. The required order is not always cleara priori, especially in transient
applications. To answer this question a-priori, without the need to first solve the
problem and then analyze the errors, we resort to the original scales of the problem:
the characteristic dimensionD and the characteristic time ???as discussed above.
Based on these values we develop a methodology for selectionof SIBCs [2, 11].
UsingD andτ , we define the characteristic skin depthδ and characteristic dimen-
sionλ of the field variation along the bodys surface as:

δ =

√

τ
µσ

, λ = cτ (22)

wherec is the velocity of light. If the material properties are non-linear, the non-
linear characteristic permeabilityµ and/or conductivityσ must be used in (22).
This may be the case when a nonlinearBH curve is given or when conductivity is
temperature dependent. The conditions of applicability ofthe surface impedance
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concept can now be written in terms ofD, δandλ :

λ ≪ D or p̃ =
δ
D

≪ 1 (23)

λ ≫ D or q̃ =
D
λ

=
D
cτ

≪ 1 (24)

We now take and as the basic parameters of the problem. The conditions (23) and
(25) hold for all SIBCs. The approximation in (20) or (21) allows us to replace the
condition in (23) by:

p̃4 ≪ 1 (25)

Now we can evaluate the ranges of the characteristic values for which the SIBCs
(20)-(21) are best applicable. The conditions (23)-(24) ofapplicability of the SIBCs
involve the two characteristic scales (D andτ) and the two parameters of the prob-
lem (p̃ andq̃), therefore, the scales areuniquely expressed by these parameters.

From (9.8) it follows that the approximation errors in the PEC-limit, the Leon-
tovich SIBCs, the Mitzner SIBCs and the Rytov SIBCs are ˜p, p̃2, p̃3 and p̃4, re-
spectively. Based on this observation, we can define approximate ranges of the
parameter ˜p, for which the SIBCs of these classes can be best applied:

(a) For the PEC approximation: ˜p < 0.06

(b) For SIBCs in the Leontovich approximation: ˜p = 0.06÷0.25 (p̃2 ≃ 0.003÷
0.06)

(c) For SIBCs in the Mitzner approximation: ˜p = 0.25÷0.4 (p̃3 ≃ 0.02÷0.06)

(d) For SIBCs in the Rytov approximation: ˜p = 0.4÷0.5 (p̃4 ≃ 0.03÷0.06)

(e) The range of ˜q the parameter can be defined as: ˜q < 0.05

With these definitions in the approximation error due to using the specific
SIBCs will not exceed 6%.

These relations may be used as follows: From (22), (23) and (25) we can write:

D =

√
τ

p̃
√σ µ

and D = cτ q̃ (26)

Now, by substituting the extreme values of the parameters ˜p andq̃ from (a) through
(e) into (26), the desired ranges of the scalesD andτ can be obtained for a given
problem. The relations in (26) are written in terms of specific material properties.
To obtain more universal relations we introduce the following non-dimensional
variables

D̃ = σ µcD τ̃ = σ µc2τ (27)



152 N. Ida, S. Yuferev, and L. Di Rienzo:

With the variables (27) the functions in (26) can be written in the following form:

D̃ = q̃τ̃ D̃ =

√
τ̃

p̃
(28)

These are more convenient than the relations in (26) becausethey are non-
dimensional. Now we can plot these for the extreme values of∂ and q̃ given in
(a)- (e). A representation of these values is shown in Fig. 1.

3 4 5 6 7 8 9

2

3

4 3 (q>0.06)
1b

1c

1d

1a

2 (p>0.5)

lo
g

D
*

log t
*

Fig. 1. TheD̃− τ̃ plane.

Region (1a) in Fig. 1 shows the application area of the SIBCs in the PEC-limit.
Region (1b) is the application range in the Leontovich approximation. Similarly,
the Mitzner approximation and the Rytov approximation ranges are shown as (1c)
and (1d) respectively. If the point in thẽD− τ̃ plane lies in regions 2 and 3, the sur-
face impedance concept cannot be applied because the conditions in (a)-(e) break
down.

Now we can summarize the methodology for selection of an appropriate SIBC
for a given physical problem as follows:

1. Identify the characteristic valuesD andτ and the material propertiesσ andµ ;

2. Calculate or estimate the non-dimensional valuesD̃ andτ̃ using (27);

3. Find the appropriate point in thẽD− τ̃ plane;

4. If this point lies in the regions 1a-1d, choose the corresponding SIBCs from
(20) or (21) or the PEC boundary conditions by selecting those terms indi-
cated in (a)-(e).

To demonstrate the application of the foregoing methodology, we consider here
a problem in the time domain made of a pair of identical parallel copper conductors
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with circular cross section in which equal and oppositely directed pulses of current
of magnitude 1 A flow from an external source as shown in Fig. 2.The radius of
each conductor and the distance between the conductors weretaken equal to 0.1
m (characteristic valueD = 0.1m). Under these conditions the current density has
only one component directed along the conductors.

Fig. 2. Physical geometry of the problem.

The SIBCs in (21) (of various orders) were coupled with the surface integral
equation using the formulation and solved using the boundary element method [11].

The distributions of the surface current density over one half of the cross section
of one conductor were calculated for a current pulse of widthτ = 0.1s (p̃ = 0.37
and q̃ = 3.3× 10−9). Fig. 3 shows that use of the Leontovich SIBC leads to un-
acceptable computational errors (about 18%). On the other hand, the difference
between the curves obtained in the Mitzner and Rytov approximations does not ex-
ceed 3%. Therefore, in this problem it is necessary to use theMitzner SIBC as the
methodology predicts.

If the current pulses are shorter, lower order approximations are sufficient. For
example, forτ = 10−3s, a PEC condition would suffice (4% error) whereas for a
pulse widthτ = 10−2s the Leontovich approximation is optimal (2% error).

6 Applications

The previous sections discussed the issues and some of the theory of SIBCs. But
the importance of these methods is in the applications. These applications are di-
vided into two separate parts. The first deals with the classical issue of propa-
gation into conducting media. These are essentially low frequency applications.
One of the features of the methods discussed here is that theyextend the classical
SIBCs into lower frequencies by allowing lower errors through use of higher or-
der SIBCs [2, 12–15]. The second part deals with high frequency applications in
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Fig. 3. Distribution of surface current density over the conductors surface (τ = 0.1 s).

lossless dielectrics, again, all being dictated by the skindepth [2]. Additional ap-
plications, which may span the whole range of applicabilityinclude ninlinear and
nonhomogeneous media [2] as well as treatment of edges and corners [16–18]. In
this section we describe some of the applications.

To illustrate some of these application we first consider theproblem in Fig. 1
with a current pulse. The is cast steel (with theBH-curve given in [19]]),I = 100A
andτ = 0.1s and a nonlinear SIBc in the time-domain is now needed. The calcu-
lations are performed using four alternatives and the numerical results are shown
in Fig. 4: the PEC boundary conditions (curveA), the proposed non-linear SIBC
(curveB) and two linear SIBCs (curvesC andD). CurveD requires a preliminary
non-linear run to determine the maximum field reluctivity. This max-field method
leads to a 40% error in the calculated power losses. The accuracy of the power
losses computed using a linear SIBC can be improved if the characteristic reluc-
tivity ν∗ is used (curveC) instead of the max-field reluctivityν . However, the
difference in the surface current density between curvesB andC is larger than that
between curvesB andD. Details of the formulation and the SIBC can be found
in [2].

The next example is a multi conductor transmission line madeof three con-
ductors and a common, outer “ground” conductor as shown in Fig. 5. The purpose
here is the calculation of . The results obtained using the SIBC formulation [14] are
tabulated in Tables 1 and 2. Table 1 shows the self inductanceand self resistance of
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Fig. 4. Distributions of the surface current density along half the contour around the cross
section of one conductor shown in Fig. 1.

conductor 1. Table 2 shows the mutual inductances and resistances between con-
ductor 1 and 2. In all cases the frequency is varied from 50 Hz to 100 kHz and the
results are compared with numerical results obtained usingan FEM solution.

Fig. 5. Simulated three-phase power cable (rs = 100mm,rc = 17mm,a = 1.5rc,
b = 3rc; copper conductors withσc = 5.8×107S/m, aluminum shield withσa =
3.8×107S/m; all media have relative permeabilityµr = 1).
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Table 1. Per-unit-length self-resistance and self-inductance of conductor No. 1 for the three-phase
system of Fig. 5.

FEM BEM−SIBC
Frequency [Hz] R11[Ω/m] L11[H/m] R11[Ω/m] LLL11 [H/m]

50 3.2534×10−5 3.8605×10−7 3.3674×10−5 3.8828×10−7

100 4.5510×10−5 3.6337×10−7 4.6398×10−5 3.6302×10−7

200 6.4437×10−5 3.4360×10−7 6.4894×10−5 3.4340×10−7

300 7.8817×10−5 3.3449×10−7 7.9249×10−5 3.3437×10−7

500 1.0174×10−4 3.2524×10−7 1.0214×10−4 3.2515×10−7

103 1.4516×10−4 3.1525×10−7 1.4440×10−4 3.1574×10−7

104 4.5792×10−4 3.0011×10−7 4.5762×10−4 3.0004×10−7

105 1.4812×10−3 2.9511×10−7 1.4492×10−3 2.9506×10−7

Table 2. Per-unit-length mutual-resistance and mutual-inductance between conductors No. 1 and
No. 2 for the three-phase system of Fig. 5.

FEM BEM−SIBC
Frequency [Hz] Rm [Ω/m] Lm [H/m] Rm [Ω/m] LLLm [H/m]

50 6.8090×10−6 1.1826×10−7 7.5031×10−6 1.1623×10−7

100 1.0478×10−5 1.0954×10−7 1.0978×10−5 1.0929×10−7

200 1.5447×10−5 1.0384×10−7 1.6024×10−5 1.0392×10−7

300 1.9360×10−5 1.0134×10−7 1.9937×10−5 1.0146×10−7

500 2.5608×10−5 9.8796×10−8 2.6177×10−5 9.8942×10−8

103 3.8502×10−5 9.6235×10−8 3.7691×10−5 9.6378×10−8

104 1.2288×10−5 9.1939×10−8 1.2305×10−4 9.2099×10−8

105 4.2558×10−5 9.0575×10−8 3.9325×10−4 9.0740×10−8

7 Conclusions

The SIBCs developed here and the applications discussed point to a systematic
approach to the development and use of SIBCs covering the entire range of low
penertration problems. Those methods and formulation thathave not been defined
so far are covered under the toolbox approach which, in effect allows development
of additional, new SIBCs to suit the users need. The assumptions needed were
minimal. A method of evaluation of suitability of SIBCs for specific problems
allows the user an informed decision before embrakation on development and use
of the method.
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