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A Systematic Approach to the Concept of Surface
I mpedance Boundary Conditions

Nathan Ida, Sergey Yuferev, and Luca Di Rienzo

Abstract: This paper discusses the general issues, derivation, ingpiation and
applications of Surface Impedance Boundary Condition8CS) in the time- and
frequency-domains. A comprehensive approach based ourpation methods leads
to SIBCs of desired order of approximation as well as systeEniaplementation
within existing formulations for linear and nonlinear madiThe approach described
here also allows evaluation of errors and appropriateneS$8Cs for specific appli-
cations. A suite of SIBCs is proposed, suitable for use in dewange of practical
applications and formulations including FEM, FDTD, FIT a@BBEM. A general tool-
box that can be used for derivation of SIBCs for the usersipdormulation and
application has been developed and is described here as well

Keywords: Surface impedance boundary conditions, perturbation austhskin ef-
fect, electromagnetic field formulations.

1 Introduction

HE use of SIBCs in low-penetration problems (either low or hiigdguencies)
T can benefit a broad spectrum of applications by reducingitieeos$ the prob-
lem to solve and, in some cases, rendering the problem delvakithough the
method has been applied to a large number of problems ramgingelectric ma-
chines to microwaves, the derivation of an appropriate SH&S always more or
less an ad-hoc process. In addition, most researchers imaited themselves to
first order (Leontovich) SIBCs. By doing so, SIBCs could otdie into account
field variations perpendicular to conducting surfaces,, avith some exceptions,
flat surfaces. Yet, a more general approach, one that eligsthese limitations has
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been available for some 70 years in the form of the Rytov plestion method [1].
The method is based on power series expansion and, as sloets ahplemen-
tation of arbitrary order SIBCs. By using higher order tefrosrved surfaces as
well as variation of fields along the surfaces of conductaens loe incorporated in
computation, increasing accuracy and expanding the raihgepticability. Signif-
icantly, the method also allows calculation of fields anctedl quantities within
the skin layer itself. The method has additional advantag@st, it incorporates
other existing SIBCs such as the Leonntovich method (whedoimes the first or-
der term in Rytovs expansion). Second, because of the semasimplementation
of higher order approximations require virtually no moditions to existing soft-
ware only addition of a higher order module. Rytovs methoadaeer is limited to
time-harmonic applications.

The work described here is based on the Rytov expansion ehétitgoes be-
yond it in a number of significant ways [2]. First, we have exted the method into
the time domain whereby the limitations of time-harmonjresentation have been
overcome. Second, treatment of problems with nonlinear raamthomogeneous
material properties follows from the general approach avithin the constraints
imposed by material behavior, follows the same generalagmpr. Third, the inclu-
sion of the toolbox approach allows the user to develop &isgivn boundary con-
ditions to suit formulations, numerical methods and impaiation preferences.
The SIBCs described here are based on simple characternigtibe problem the
characteristic dimension of the problem (i.e. minimum khiess, smallest radius of
curvature, smallest distance between members of the gegre&t) and either the
skin depth (time harmonic problems) or pulse width (timeefefent problems).

The development of SIBCs, beyond the classical Leontoviethod is usually
an arduous task, requiring considerable skill. In addijtitre value of the SIBC
to the problem at hand must be ascertained beforehand sthatté has to be rea
sonably certain that SIBCs can in fact be used to some adyairighe first place.
Then one must be able to estimate the errors involved in teetSIBCs of var-
ious order of approximation before implementation comnesncro this end, the
present suite of SIBCs not only analyzes the errors but lzdodes a simple pro-
cedure that allows the user to decide a-priori the order ®3IBC and, indeed if
an SIBC can be used based on the characteristic properties pfoblem and error
tolerance.

2 The Concept of Surface | mpedance Boundary Condition

The concept of surface impedance boundary conditions iglesimAssuming a
plane wave impinging on a conducting surface and calculasicthe electric and
magnetic field intensities inside the conductor leads tontek known relation for
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the intrinsic impedance in the conductor
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where o is the skin depth. Since the electromagnetic field is cootisuacross
the conductors surface the intrinsic impedance of the wewgams the same at
the interface. Therefore, the relation in (1) may be used sisriace impedance
boundary condition since it contains all the necessaryrin&tion about the field
distribution inside the conductor. Eq. (1) however comethwiset of assumptions
under which it is valid. First, we assumed a high loss tandent- we). More
importantly, the wave was assumed to propagate perpeadimuthe interface and
because it is a plane wave the fields cannot vary on the surfBlce sources of
the wave are at infinity and, of course, materials are sinmpledr, homogeneous,
isotropic). The conductor itself is infinitely thick (halpace). Nevertheless this
little exercise shows how simple an SIBC can be. In addittmme of the require-
ments can be relaxed relatively easily. For example, thelecior does not have
to be thick the only requirement is that reflections withie ttonductor must die
out before they reach the surface. For this to happen, théumbor must only be
2-35 thick or thatd <« D whereD is the characteristic size of the geometry. Eg.
(1) is the SIBC due to Leontovich [3], although it is more aofteritten in terms of
complex permeability and complex permittivity and ofterténms of electric and
magnetic surface current densities:

K;m:ZcﬁXR;e, VIS % 2
c

3 TheProposed Suite of SIBCS

The SIBCs proposed here were developed starting from Ryi@tkod but they go
beyond in a number of significant ways [2].

1. They apply to time-harmonic as well as time-dependeritlpros.
2. Apply to linear an nonlinear media
3. May be incorporated within any formulation and any numedrtechnique.

(&) We have developed higher order SIBCs (up to 4th order)

(b) Incorporated within the Boundary Integral Equationghimod (BIE), Fi-
nite Difference Time Domain method (FDTD), the Finite Integpn
Technique (FIT) and the Finite Element Method (FEM). Othaiar
tions are equally possible
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One of the main advantages of our method is in that the err¢dhenSIBC
can be estimated a-priori based on the characteristic pgrepeof the problem.
This allows the user to select the appropriate order SIB@fgiven problem and,
more importantly, to decide if an SIBC can be used and theemprences of its
use. A simple methodology has been developed to facilitasecivaluation prior to
implementation.

4 Development and Application of SIBCS

To demonstrate the development of SIBCs, we first discussahies starting with
no more than the definition of skin depth. Then, we introdineegerturbation ap-
proach and discuss the process of identifying the chaiatiteproperties of the
problem, incorporation of these into a small parameter aquauesion in this pa-
rameter. The various formulations are discussed, with esigshon the unifying
concepts rather than on details of the formulations. Fomptimpose of presenting
results we will concentrate on implementation in the BlEratation in terms of
vector potentials but others will be discussed as well.

Because of its practical importance, the calculation abrsrand the method-
ology used to decide on a particular order of approximatidhbe discussed with
examples. Finally, we will give specific examples of praaiticalculations in the
time- and frequency domain to demonstrate the wide rang@mfcability of the
suite of SIBCs described above.

Following perturbation theory, we first introduce the sdaletors for the basic
variables in the governing equations. Selection of theestadtors is based on
knowledge of the characteristic variation of such inputadas total current and
dimensions of the conductor. Then the equations are reéenrin terms of non-
dimensional variables so that each is a function of the spording dimensional
variable and its scale factor. As a result, combination{she scale factors will
appear in the governing equations as parameters.

In conducting media, the distribution of various electrgmetic quantities in
the conducting domain can be described by the equation fokéin:

—

Dx(DxF)—i—au%:O (3)

In lossy dielectrics the governing equation is the telelgea equation but, since the
process of defining the SIBCs is the same, we will only diséwess Eq. (3) [2].
Here the vector functiorf may denote various electromagnetic fields and poten-
tials. The purpose of the SIBC toolbox is transformationhig equation with the
use of perturbation techniques and derivation of a set ofceqopate relationships
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between components and derivativesfoét the interface. Those results can be
applied not only to electromagnetics, but to any other arbare/functions under
consideration are governed by the diffusion equation. Ltuxéhe surface we de-
fine an inward normal coordinate and tangential orthogonal coordinat&sand
&. Non-dimensional variable&,, &, andi) are introduced that have the variation
ranges of the same order of magnitude and are relatédatad np, respectively, as
follows
f-2 =1 @

Based on the condition in (1) we introduce a small parametgrgstional to the

ratio of the penetration depth and the characteristic dizleeoconductors surface:

. 5 [T

The local radii of curvaturel, are directly related to the variation of the function
f in the directions tangential to the surface of the conducfbiis leads to the
following representation

G=2 ©)
We then first define the required components of the diffusiquragion in the local
coordinates, that is, defing its tangential and normal derivatives as well as any
other necessary function (such as the curl) at the inteifatiee time or frequency
domain in non-dimensional variable. Of course, one canyavii@ansform back to
dimensional variables using the scale factors. These tipesdead to the follow-
ing general relations, in the frequency and time domainctvlaire applicable for
any functionf at the interface (denoted ).
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whereU (t) is the Heaviside functiori,=t/1, andx denotes a convolution product.
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The relations in (7) and (8) are third order (Rytov) relai@s can be seen from
the order ofp If the term preceded bp?7in the square brackets is removed, we
obtain the Mitzner (second order) SIBC and if we remove thmtpreceded by
P, the Leontovich relation is obtained. Settipg="0 (that is,d = 0) reduces the
relation to the perfect electric conductor (PEC) condition

To see how this toolbox may be used to advantage, considdotmeilation
in terms of the magnetic scalar potentjaln the absence of sources. Under these
conditionsg can be introduced as follows:

H=-0O¢ (10)
In the free space outside the conductor we have

%p=0 (11)
The boundary conditions at the dielectric/conductor faiee follow directly

from (10):

29

nx Ij(p‘diel =M |:”cond En

(12)

diel - cond

The use of the conditions in (12) requires that the problesidathe conductor
in terms of the magnetic field be considered together with.(To eliminate the
conducting region from the numerical procedure we use thiase impedance
“toolbox” discussed above and write (replacifgvith H) [2]

- o
o e &
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Clearly this is not only simple but very useful as one doeshase to derive
an ad-hoc SIBC for each formulation. The relations in (13) éi¥) may be trans-
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formed back to dimensional variables to obtain:
" Viwop i; o&L % wop 2ddsi ¢
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where the time function3 are those in (9) after return to dimensional variables.
However, it is a simple matter of use of Eq. (10) to obtain tH&CSin trems of the
scalar potential itself. From (10) it directly follows that

[710] _do

He
Substituting (17) into (15)-(16) yields the boundary rielas between the normal
and tangential derivatives of the scalar potential in tHiwong form (in dimen-

sional variables):

29
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Since the tangential derivative of a function can be appnexéd using the function
calculated at nodes located along the conductors surfaeesxpressions in (18)-
(19) are SIBCs of various orders of approximation relatimg $calar potential and
its normal derivative at the surface of the conductor. Agéiis is a third order
SIBC and can be reduced to lower orders by removing appitepiéams. A similar
process is used to obtain SIBCs for the E-Hand other formulations [2]. For
example, the E-H formulation results in the following (agaising the toolbox
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approach):
o [ 11— dk — d3_«
b _(_ 1K b b
e L e A (20)
~ 2190 21b 219b
+f)21<|:| dE-I— dkd3 k—3d3 K ld |:|Ek }dNHgk J Hg » )]
2 8d2ds | 2 9082 208, 0&0E&
+0(p")
- d . di—ds knp =
> _(_1)p gk~ Gokppp b
P — [& ka ) - boqd, . e T (21)

~ 210b 210b 29b
: ( e A ) 7]
S 8d2d? | 2 082 2082, 0&0& «
+0(p*)

Inthesek=1,2. These SIBCs and have been implemented in a variety of ncather
methods and many applications following essentially sinsteps [2,4-10]

5 A Decision Methodology for Selection of SIBCS

The error in Rytovs approximation (20) or (21) is 4th ordeskin depth or, as we
have indicated previously, in the small paramgter.dwer order Mitzner, Leon-
tovich and PEC conditions errors are 3rd, 2nd and 1st ord@rrigspectively. A
critical question is which approximation to use for a spedipplication and, even
more importantly, if an SIBC can in fact be used and still abtagiven level of
accuracy. The required order is not always claaoriori, especially in transient
applications. To answer this question a-priori, withow tieed to first solve the
problem and then analyze the errors, we resort to the otigoaes of the problem:
the characteristic dimensidd and the characteristic time ???as discussed above.
Based on these values we develop a methodology for seleatiS&hBCs [2, 11].
UsingD andt, we define the characteristic skin degtfand characteristic dimen-
sionA of the field variation along the bodys surface as:

5=  A=cr 22)
uo

wherec is the velocity of light. If the material properties are nlomear, the non-
linear characteristic permeability and/or conductivityc must be used in (22).

This may be the case when a nonlin&t curve is given or when conductivity is
temperature dependent. The conditions of applicabilityhefsurface impedance
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concept can now be written in termsBf dandA:

A<D or p= g <1 (23)
D D

A>D j=—=—<«1 24

> or 6 3 a< (24)

We now take and as the basic parameters of the problem. Tliktioms (23) and
(25) hold for all SIBCs. The approximation in (20) or (21)aalis us to replace the
condition in (23) by:

p*< 1 (25)

Now we can evaluate the ranges of the characteristic valwesHich the SIBCs
(20)-(21) are best applicable. The conditions (23)-(248pylicability of the SIBCs
involve the two characteristic scald3 éndt) and the two parameters of the prob-
lem (P andj), therefore, the scales an@i quel y expressed by these parameters.
From (9.8) it follows that the approximation errors in the@Hkmit, the Leon-
tovich SIBCs, the Mitzner SIBCs and the Rytov SIBCs pré*; p° and %, re-
spectively. Based on this observation, we can define appeiei ranges of the
parametep, for which the SIBCs of these classes can be best applied:

() Forthe PEC approximatiom < 0.06

(b) For SIBCs in the Leontovich approximatiop:="0.06- 0.25 (> ~ 0.003+
0.06)

(c) For SIBCs in the Mitzner approximatioqm=0.25-+ 0.4 (p° ~ 0.02-- 0.06)
(d) For SIBCs in the Rytov approximatiom:= 0.4+ 0.5 (p* ~ 0.03= 0.06)
(e) The range of| the parameter can be defined gsz 0.05

With these definitions in the approximation error due to gsihe specific
SIBCs will not exceed 6%.
These relations may be used as follows: From (22), (23) abvw2 can write:

o VT
N

Now, by substituting the extreme values of the parameiensd( from (a) through
(e) into (26), the desired ranges of the scdleand T can be obtained for a given
problem. The relations in (26) are written in terms of speaifiaterial properties.
To obtain more universal relations we introduce the follogvinon-dimensional
variables

and D =cr{ (26)

D=oucD F=oucr (27)
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With the variables (27) the functions in (26) can be writterthe following form:

6-gt B-Y (28)
p

These are more convenient than the relations in (26) becthese are non-

dimensional. Now we can plot these for the extreme valued ahdq given in

(a)- (e). A representation of these values is shown in Fig. 1.

log ©

Fig. 1. TheD — T plane.

Region (1a) in Fig. 1 shows the application area of the SIBGle PEC-limit.
Region (1b) is the application range in the Leontovich apipnation. Similarly,
the Mitzner approximation and the Rytov approximation emgre shown as (1c)
and (1d) respectively. If the point in th&— T plane lies in regions 2 and 3, the sur-
face impedance concept cannot be applied because theionadit (a)-(e) break
down.

Now we can summarize the methodology for selection of an@pjate SIBC
for a given physical problem as follows:

1. Identify the characteristic valu€sandt and the material propertiesandy;

2. Calculate or estimate the non-dimensional valdesdf using (27);

3. Find the appropriate point in th2— T plane;

4. If this point lies in the regions 1a-1d, choose the comwesing SIBCs from
(20) or (21) or the PEC boundary conditions by selecting eéhtesms indi-
cated in (a)-(e).

To demonstrate the application of the foregoing methodolag consider here

a problem in the time domain made of a pair of identical patalbpper conductors
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with circular cross section in which equal and oppositehedied pulses of current
of magnitude 1 A flow from an external source as shown in FigTI2e radius of
each conductor and the distance between the conductorstakene equal to 0.1

m (characteristic valu® = 0.1m). Under these conditions the current density has
only one component directed along the conductors.

Fig. 2. Physical geometry of the problem.

The SIBCs in (21) (of various orders) were coupled with thdame integral
equation using the formulation and solved using the boynelament method [11].

The distributions of the surface current density over oriedighe cross section
of one conductor were calculated for a current pulse of width 0.1s (9 = 0.37
andd'=3.3x 10°°). Fig. 3 shows that use of the Leontovich SIBC leads to un-
acceptable computational errors (about 18%). On the otaedhthe difference
between the curves obtained in the Mitzner and Rytov apprations does not ex-
ceed 3%. Therefore, in this problem it is necessary to usdlitmner SIBC as the
methodology predicts.

If the current pulses are shorter, lower order approxinmatiare sufficient. For
example, forr = 10~3s, a PEC condition would suffice (4% error) whereas for a
pulse widtht = 10~?s the Leontovich approximation is optimal (2% error).

6 Applications

The previous sections discussed the issues and some ofeitny thf SIBCs. But
the importance of these methods is in the applications. & hpplications are di-
vided into two separate parts. The first deals with the adassssue of propa-
gation into conducting media. These are essentially lowueacy applications.
One of the features of the methods discussed here is thaeitegd the classical
SIBCs into lower frequencies by allowing lower errors thgbhuwse of higher or-
der SIBCs [2, 12-15]. The second part deals with high frequepplications in
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Fig. 3. Distribution of surface current density over the doctors surfacer(= 0.1 s).

lossless dielectrics, again, all being dictated by the dieipth [2]. Additional ap-
plications, which may span the whole range of applicabilitsiude ninlinear and
nonhomogeneous media [2] as well as treatment of edges aners§16—18]. In
this section we describe some of the applications.

To illustrate some of these application we first considergiablem in Fig. 1
with a current pulse. The is cast steel (with Bid-curve given in [19]]),] = 100A
andt = 0.1s and a nonlinear SIBc in the time-domain is now needed. @lweli¢
lations are performed using four alternatives and the nigaleresults are shown
in Fig. 4: the PEC boundary conditions (cumg the proposed non-linear SIBC
(curveB) and two linear SIBCs (curveS andD). CurveD requires a preliminary
non-linear run to determine the maximum field reluctivityni§ max-field method
leads to a 40% error in the calculated power losses. The acgwf the power
losses computed using a linear SIBC can be improved if theactexistic reluc-
tivity v* is used (curveC) instead of the max-field reluctivity. However, the
difference in the surface current density between cuB/eadC is larger than that
between curve® andD. Details of the formulation and the SIBC can be found
in [2].

The next example is a multi conductor transmission line maidiree con-
ductors and a common, outer “ground” conductor as showngn%:i The purpose
here is the calculation of . The results obtained using tB£CSbrmulation [14] are
tabulated in Tables 1 and 2. Table 1 shows the self inductamdeelf resistance of
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K (ka/m)

a5 7A I'=100A +:=0.1s materialis cast steel
c

30 -

B\ \\ rrrrrrrrrrrrr A PEC-imit
— —— B SIBC, non-linear
———C SIBC, linear

25

2.0 |- SIBC, linear
15+
10 F
Comparison of Power Losses:
0.5 _ =
P./Pg=105 P,/P3=060
0.0 a 1 1 1 1 1 1 \b ]
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5
E(mm )

Fig. 4. Distributions of the surface current density alowadf the contour around the cross
section of one conductor shown in Fig. 1.

conductor 1. Table 2 shows the mutual inductances andaesis$ between con-
ductor 1 and 2. In all cases the frequency is varied from 500H00 kHz and the
results are compared with numerical results obtained usmMEEM solution.

Fig. 5. Simulated three-phase power calble= 100mm,rc = 17mm,a = 1.5rc,
b = 3r¢; copper conductors with, = 5.8 x 10’S/m, aluminum shield withy, =
3.8 x 107S/m; all media have relative permeability = 1).
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Table 1. Per-unit-length self-resistance and self-inaluog of conductor No. 1 for the three-phase
system of Fig. 5.

FEM BEM—SIBC
Frequency [Hz] R11[Q/m] L11[H/m] R11[Q/m] L11 [H/M]

50 3.2534x10° 3.8605<10 7 3.3674x10°> 3.8828x 10~/
100 45510<10°>  3.633%10°7  4.6398<10°° 3.6302x 10~
200 6.443%10°°  3.4360<10°7  6.4894<10°°> 3.4340x 10~/
300 7.881%10°°  3.344% 107  7.924%10°° 3.3437x 1077
500 1.0174<10°%  3.2524<10°7  1.0214<10%4 3.2515x 107
108 1.4516<10%  3.1525<10 7  1.4440<10 % 3.1574x 107
10* 45792104 3.0011x10°7 45762104 3.0004 x 107
10° 14812x 1073 2.9511x 1077 1.4492x 1073 2.9506 x 10~/

Table 2. Per-unit-length mutual-resistance and mutuddétance between conductors No. 1 and

No. 2 for the three-phase system of Fig. 5.

FEM BEM—SIBC
Frequency [Hz] Rm [Q/m] Lm [H/m] Rm [Q/m] Lm [H/m]

50 6.8090x 10 © 1.1826x10 7/ 7.5031x10° 1.1623x 10/
100 1.0478x 10° 1.0954x 107 1.0978x 10> 1.0929x 10’
200 1.5447x 10> 1.0384x 107 1.6024x10°> 1.0392x 10’
300 1.9360x 10° 1.0134x 107 1.9937x10° 1.0146x10’
500 25608x 107> 9.8796x 108 26177x10°° 9.8942x 10~8
108 3.8502x 10°°> 9.6235x 108 3.7691x10°° 9.6378x 1078
10* 1.2288x 10> 9.1939x 108 1.2305x10°4 9.2099 x 108
10° 42558x 107 9.0575x 1078 3.9325x 104 9.0740x 108

7 Conclusions

The SIBCs developed here and the applications discussed fooa systematic
approach to the development and use of SIBCs covering thie eabge of low
penertration problems. Those methods and formulationrtérae not been defined
so far are covered under the toolbox approach which, in effibmvs development
of additional, new SIBCs to suit the users need. The assongptieeded were
minimal. A method of evaluation of suitability of SIBCs fopecific problems
allows the user an informed decision before embrakationemeldpment and use
of the method.
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