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An efficient hybrid technique for the solution of
fractional-order partial differential equations

Jassim H.K.!, Ahmad H.2, Shamaoon A.!, Cesarano C.>™

In this paper, a hybrid technique called the homotopy analysis Sumudu transform method has
been implemented solve fractional-order partial differential equations. This technique is the amal-
gamation of Sumudu transform method and the homotopy analysis method. Three examples are
considered to validate and demonstrate the efficacy and accuracy of the present technique. It is
also demonstrated that the results obtained from the suggested technique are in excellent agree-
ment with the exact solution which shows that the proposed method is efficient, reliable and easy
to implement for various related problems of science and engineering.

Key words and phrases: fractional differential equation, Sumudu transform, homotopy analysis
method.
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Introduction

Newly, the fractional calculus (FC) and its various applications in mathematics, physics and
engineering have received considerable attention. FC applications are found in many areas,
such as dynamic device control theory, chemical mechanics, probability and statistics, electri-
cal networks, corrosion electrochemistry, and optics and signal processing. Linear/nonlinear
fractional-order differential equations may be successfully modeled. A fractional PDE is ob-
tained from the classical diffusion equation of mathematical physics by replacing the nth order
time derivative with a fractional-order derivative «, which is now the area of increasing interest
apparent in the literature study [10-12,19].

In recent decades, many of the numerical and analytical techniques have been implemented
to solve fractional-order PDEs, such as the fractional variational iteration method [23,34,42,44,
45], fractional differential transform method [25, 36, 46], fractional series expansion method
[9,29], fractional Sumudu variational iteration method [20, 31], fractional natural decomposi-
tion method [32,38], fractional Sumudu decomposition method [17,30,33], fractional Sumudu
homotopy perturbation method [28], fractional reduce differential transform method [24, 26,
41], fractional Adomian decomposition method [16, 21, 47], fractional Laplace decomposition
method [27], fractional Laplace homotopy perturbation method [14], fractional Laplace varia-
tional iteration method [13,15,18,35,37], variational iteration method [4-8] and local mesh less
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method [1-3,22,40]. As the main aim of this work the homotopy analysis Sumudu transform
method is implemented to solve FPDEs and nonlinear system of FPDEs.

1 Fractional calculus

In this section, we demonstrate some notations and definitions that will be used further in
the study. FC theory is almost more than two decades old in the literature. Several definitions
of fractional integrals and derivatives have been proposed but the first major contribution to
give proper definition is due to Liouville as follows.

Definition 1 ([30,39]). The Riemann-Liouville fractional integral operator of order « > 0, of a
function ¥ (1) € C,, € > —1, is defined as

1 47 .
I*¥(t) = W/o (t—5)""¥(s)ds, a>0, 7>0,
¥(7), & =0,

whereT'(-) is the well-known Gamma function.

Definition 2 ([30,39]). The Caputo fractional derivative (CFD) with order « > 0 of ¥(7) is

defined as follows ,

o o T _ \m—a—1yg(m)
D¥(0) = Frr =y /0 (T — s)"m= =1y (m) () g
form—1<a<mmeN,t>0 and ¢ € C",.

The fundamental basic properties of the Caputo fractional derivative are given as:

(@)
D*I*Y(x,7) = ¥(x,7);

(ii)

m—1 Tk
I"D*Y¥ (x,7) = ¥(x,7) — Y -7¥®(x,0);
Z Kl
(iii)
TB+1) 4
DitP= L~ _he 4,
I(gp-—p+1)

Definition 3 ([39]). The Mittag-Leffler function E,(z) with a > 0 is defined as

00 M

Ex(z) = Z m.

m=0

Definition 4 ([30,43]). The Sumudu transform (ST) is defined by
S¥(7)] = /Ooo e Y(wr)dt, weE (—wi,wy).
Some properties of ST:
(i) S[k] = k for any constant k;
(i) S[t™/T'(na+1)] = w™.
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Definition 5 ([43]). The ST of the CFD is defined as

m—1
S[D¥(x,7)] = w *S[¥(x,7)] — Y w T H¥W(x,0), m—-1<a<m.
k=0

2 Analysis of FHASTM
Let us consider a general fractional nonlinear PDE of the form
Di¥(x,7)+ R¥(x,7) + N¥(x,7) =G(x,T7), m—1<a<m, x€R, T>0 (1)
subject to the initial condition ¥ (x,0) = (k) (x,0),k=1,2,...,m —1, where D¥¥(x, T) is the

CFD of the function ¥(x, T) defined as

1 N m—zx—lamqf(xls)
F(m—oc)/o(T s) T ds, m—1<a<m,

0"Y(x,T)
atm

DY (x, 1) =
a=m¢€ N,

and R is the linear differential operator, N represents the general nonlinear differential op-
erator, and G(x, 7) is the source term. Now taking the ST of both sides of equation (1) we
have

S[Df¥ (x,T)] + S[R¥(x,7)] + SIN¥(x, T)] = S[G(x, T)].

Using the differentiation properties of the ST and above initial condition, we have

w tS[¥(x,T)] — ’:i: ¥ ®) (x,0) + S[RY (x, T)] + S[N¥(x, T)] = S[G(x, 7)),
S[¥(x,7)] — ':Z: W FH) (x,0) + w*(S[R¥(x, )] + S[N¥ (x,T)] — S[G(x,T)]) = 0.

We define the nonlinear operator

m—1
N[@(x,;9)] = S[@(x, 1;q)] — ¥ o*@¥(x,0)
k= (2)

=0
+ W (S[Ra(x, T;9)] + SN (x, T3:9)] = S[G(x, T)]),

where g € [0,1] and @(x, T;q) is a real function of x, T and g, the so-called zero order deforma-
tion equation of the equation (2) has the form

(1-q)S[@(x,1;q) = Yo(x,7)] = ghH(x, T)N[o(x, T;q)], 3)

where g € [0,1] is the embedding parameter, H(x, T) denotes a nonzero auxiliary function,
h # 0 is an auxiliary parameter ¥o(x, T) is an initial guess of ¥(x,7) and @(x, T;q) is an
unknown function. Obviously, when the parameter 4 = 0 and g = 1, it holds

2(x,7;0) =¥ (x,7), 211 =Y¥(x1),
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respectively. Thus as g increases from 0 to 1, the solution @(x, 7; g) varies from the initial guess
Yo(x, T) to the solution ¥(x, 7). Expanding & (x, 7;¢) in Taylor’s series with respect to g, we

have
(o)

a(x,7;9) = Yo(x, T) + Y Yulx, T)g", (4)

m=1

where 1 g
@ .
Yu(x,T) = 19" Tq) T'q)’ .
m! og™" 7=0
If the auxiliary linear operator, the initial guess, the auxiliary parameter /;, and the auxiliary

function are properly chosen. The series (4) converges at 4 = 1, then we has

Y(x,7) =Yo(x,T)+ i You(x,T), (5)

m=1
which must be one of the solution of the original nonlinear equation (1). According to the defi-
nition of equation (5), the governing equation can be deduced from the zero-order deformation
equation (3).
Define the vectors ¥, (x,7) = {¥o(x,7), ¥1(x,T),..., Ym(x, T)}. Differentiating the zero-
order deformation equation (12) m-times with respect to g and then dividing by m! and finally
setting g = 0 we get the following mth order deformation equation

S[¥m(x,T) — X ¥p_1(x,T)] = hH(x, T) Ry (F 1 (x, 7).
Applying the inverse ST, we have
Wou(%,7T) = X ¥_1(x,T) + STURH(x, T) R (F 1 (x,7))],
where

Ry (‘_I}mfl) =

1 9" IN[@(x,T;9)] 0, x<1,
1 ’ 7 Xm —

(m—1)! aq™ =0 1, x>1.
In this way, it is easily to obtain ¥, (x, T) for m > 1, at mth order, h = —1. We have

Y(x,T)= io‘lfm(x, T).

3 Applications
Example 1. Consider the following nonlinear FPDE

DY +¥¥r—¥Yw =0 0<a<l, (6)
with ¥ (x,0) = x. Applying ST to equation (6), we have

S[¥]  ¥(x,0)

+ S[T‘Ijx — Txx] = 0 or S[‘Ij] — X + leS[TTx — Txx] = 0.

We now define a nonlinear operator as

X, T; 2 (x,T;
No(,Tig)] = Slolx, Tig)] + @' o mq) 251 - 22T,

and thus
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19 |

W(x,7)at o =0.9 7
W(x,7) at a =0.95 P

1.8 WYx,7)ata =1 /// > -
) W(x,7) exact e F

1.7

1.6

0.05 0.1 0.15 0.2 0.25 0.3 035 04 0.45 0.5
T

Figure 1. Plots of the exact and approximate solutions ¥ (x, T) of (6)
for values of x with the fixed value x.

The mth order deformation equation is
S[¥m — x0¥m_1] = hH(x, T) Ry (F 1)
Applying the inverse ST we have
Yo = xm¥ 1+ hS T H(x, )R (Fi1)]. 7)

Solve above the equation (7) form = 1,2,... choosing H(x,T) = 1. Let us take the initial
conditions ¥y = x,

¥y = x1¥0 +hS~[Ri (¥o)] = (0)(x) +hS~[S(¥o) — x + w*S(¥o¥o, — Yo..)]

hxt*
— 1S 1% ] =
= hS5 lwia] = Ta+1)
Yy = x¥1 + hsil[Rz(qjl)]
— hxt® -1 «
= (1) <m> +hS [S(Tl) +w S(To‘frlx + %1%, — ‘lex)]
_ hxt® 1 N N hxt* hxt*
S T(a+1) S [hxw W S(T(uc+1) * I'(a+1) O)]
_ hxt® 1 N oy hxt® W2 xt® 2h2 x>
= Tarn TS et T = ey T ) T T 1)
Setting then h = —1, the series solutions of equation (6) are given by
¥(x,7) = x4+ xt# n 2xT® .
Y T T T+ 1) T T2a+1)

The exact result of Example 1 whena = 1is¥(x,7) = x/(1 — 7).
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(a) {b)

(c) {d)

Figure 2. The surface graph of the approximate solutions ¥ (x, T) of (6):
(@ ¥(x,7) whena =0.9; (b) ¥(x,7) when a = 0.95;
(© ¥(x,7) whena =1, (d) ¢(p, T) exact solution.

In Figure 1, we plot the graph of the exact and approximate solutions for (6) when

x = 0.9,0.95, 1. In Figure 2, we plot 3D surface solution for (6) when a« = 0.9,0.95, 1.

Example 2. Consider the non-linear FPDE
DY - 92 —¥Y¥, =0, 0<a<l,
with the initial condition ¥ (x,0) = x2. Applying ST to the equation (8) we obtain

S[¥]  ¥(x,0)

S[¥2 +¥Y¥.,] =0.
On simplifying and using the equation (9) we have

S[¥] — x? — W*S[¥2 4+ ¥¥ ] = 0.
We now define a nonlinear operator as

09(x, T;9)

Nio(x, 7)) = S[5(x 19)] - 2 - w's[ (2

2
) +2(x,74) ox2

and thus

m—1 m—1

Rm(q}m—l) = S(Tm—l) - (1 - xm)xz - was{ Z (Ti)x(Tm—l—i)x + Z LIli(‘Pm—l—i)xx

i=0 i=0

0’2 (x,T;9)

P

J

(8)

©)
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16 Wix,7) at o =0.9 1 ' ' !

W(x,r) at o =0.95
Yix,r)at o =1 /

14

O W) exact /

Figure 3. Plots of the exact and approximate solutions ¥ (x, T) of (8)
for different values of a« with the fixed value x.

The mth order deformation equation is
S¥m — xu¥m_1] = hH(x, T)Rp (Fp_1).
Applying the inverse ST we have
Yo = XY +hSTHH(x, T) Ry (¥ 1)) (10)

Solve above the equation (10) for m = 1,2,... choosing H(x,T) = 1. Let us take the initial

conditions ¥y = x2,

¥1 = x1%¥0 + 1S Ry (Fo)] = (0)(x*) +hS ! [S(Yo) — x* — w*S(¥or Yo, — Yo¥o,,)]
= hSx? — x? — w"S(4x® +2x?)] = hS~ ! [—w*(6x?)] = —6hx?T"
Ta+1)

Yy, = x¥1 + hsil[Rz(fFl)]

= (2T LS8y — WS (Yo, ¥y, + 1 Fo, + Fo¥, 1 FI¥
—()(m)‘F [S(¥1) — w*S(¥o, Y1, + Y1, Yo, + ¥o¥s,, + ¥1¥0,,)]
—6hx>T" 1 2 vol —72hx3T"
Ty |- 6w _“’5<r(a+1) )]
—6hx>T" 1 ? 2, 2 2 —6hx®T*  6h2x*TY  2(6%h*x*TH)
~ T 8 et A ) = ey Tt T Tea 1)
Setting the h = —1, the series solutions of equation (8) are given by

6x°7t*  2(62x2T?7)

F(x7) ="+ Tat1)  Ta+1)

The exact result of Example 2whena = 1is ¥, ) = x?/(1—671).
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(a) (b)

(c) (d)

Figure 4. The surface graph of the approximate solutions ¥ (x, T) of (8):
(@ ¥(x,7) whena =0.9; (b) ¥(x,7) when a = 0.95;
(© ¥(x,7) whena =1; (d) ¢(p, T) exact solution.

In Figure 3, we plot the graph of the exact and approximate solutions for (8) when
« = 0.9,0.95, 1. In Figure 4, we plot 3D surface solution for (8) when « = 0.9,0.95, 1.
Example 3. We consider the following non-linear system of equations
DY +u¥,+¥-1=0, 0<a<l, a1
DPu—Yu,—u—-1=0, 0<p<1,

with the initial conditions ¥(x,0) = e*, u(x,0) = e~*. Applying ST on both sides in equations
(11), we get

S ¥O) | gy, 1y 1=,

" w (12)
M_MJrs[‘Pu —u—1]=0

W™ w* ! |

On simplifying and using the equations (12) we have
S¥] —e*+w*Su¥,+¥Y—-1] =0,
S[u] —e ™ — wPS[Fuy +u+1] = 0.

We now define a nonlinear operator as

N[@1(x,T;q)] = S[@1] — e — w* + W"S [@z% + @1],

N[@2(x,T;q)] = S[@2] — e * — wP — wPS [@1% + @2].
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1.2

W(x,r) at o, /3 =0.9
W(x,7) at «, 4 =0.95 ;
Wx,7) at a, G =1 ya

1.1

O WY(x,7)exact o

Figure 5. Plots of the exact and approximate solutions ¥ (x, T) of (11)
for different values of & with the fixed value x

Ri (T 1) = (1) — (1 — 1) (¢ + &) + S [(gum_l_»x) wml]

Ro (1) = S(tt 1) — (1 — %) (e~ + wP) — wPS [(E%(um_l_i)x) " 1]

Then mth order deformation equations are

S[¥m — xm¥m_1] = HH(x, T) Ry (Fru_1),
Slum — Xmity—1) = hH(x, T)Rop (p—1)-

Applying the inverse ST we have

Yo = X ¥m_1 +hS HH(X, TRy (Fru_1)],

1 (13)
Um = Xy 1+ hS™ [H(x, T)Ropy (thyy—1)].

Solve above the equations (13) for m = 1,2,... choosing H(x,t) = 1. Let us take the initial

conditions Yo(x,T) = ¥, up(x,7) = e %,

¥ = x1¥o + S~ Ry (¥o)]
= (0)(¢") +hS'[S(¥o) — (1= 0)(¢" + ") + w"S (¥, + o)
he* %
= STt ¢ ot WS4 e)] = hS T e ] =
U] = xqug + hs—1 [Ro1(#o)]
= (0)(e™) +h81[S(up) — (1= 0) (e + ) — wPS(Youo, + up))
—he 7P

=hS e ™ —e* —wP —wPS(—1+e™)] = hS P + WP — wPe™] = TG+ 1)
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¥y = x2¥1 +hS 1 Ryp(¥1))]

—heTr TN )
= () (Fryy ) +hSTS(¥1) — @ S(uo¥a, + ur¥o, + ¥1)

[(a+1)
_ he'T® PN ht® hth he* %
“Taxn T {he“’ +wS(T(uc+1) F(ﬁ—l—l)—i_l”(oc—i—l))}
_ he*t" —1r11,,x, & 200 x+pB X, 20
_F(a~|—1)+hs [he* w® + hw hw"™P 4 he* w™]
heX T h2ex T h2 2 W2 tp h2ex 20

Tatl) Tatl) T@a+l) T@iptl) Tatl)
Up = XoUq + hs_l[Rzz(ﬁl)]

= () (T 7)) = oS (Fa, + oo, + 1)

rg+1
—he 1P hth ht? he *7P
= — 4+ hS Y —he *wP — wPS — —
ey L S (5 e e
= ﬂ +hS  —he *wP — hw? 4 hw P + he™*w?F]
r(p+1) ’
—he XtP  hZe—xTP h272P h2rot+B h2e—*72P

TB+1) T(B+1) T(2B+1) Ta+p+1) ' TE+1)

26
u(x,7) at a,7=0.9 Vs
u(x,7) at «,3=0.95 A L
2.4 u(x,7) at o, 3 =1
O u(x,7) exact // ”,

Figure 6. Plots of the exact and approximate solutions u(x, T) of (11)
for different values of « with the fixed value x

)

Setting the h = —1, the series solutions of equations (11) are given by
oX T 2 To+B X 20
Yo = Y Ta ) Teapsn) Tarn T
u(x, 1) = e ¥ + ered o o et
’ rp+1) TI2p+1) T(a+p+1) T(28+1)

The exact result of Example 3whena = =1is¥(x,7) =" 7, u(x, 1) = e ¥
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(c) {d)

Figure 7. The surface graph of the approximate solutions ¥ (x, 7) of (11):
(@) ¥(x,7) whena =0.9; (b) ¥(x,7) when a = 0.95;
(0 ¥(x,7) whena =1; (d) ¢(p, T) exact solution.

In Figures 5 and 6, we plot the graph of the exact and approximate solution for the equa-
tions (11) when & = 0.9,0.95, 1. In Figures 7 and 8, we plot 3D surface solutions for the equa-
tions (11) when « = 0.9,0.95, 1.

4 Conclusion

In this work, we utilized the HASTM to solve fractional-order PDEs and their approximate
solutions were obtained. The HASTM was proved to be an effective approach for solving PDEs
with CFD due to the excellent agreement between the obtained approximate solution and the
exact solution. And it’s rapid convergence shows that the procedure is reliable and introduces
a significant improvement in solving linear and non-linear fractional-order PDEs.
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(<) (d)

Figure 8. The surface graph of the approximate solutions u(x, T) of (11):
(@ u(x,7) whena =0.9; (b) u(x,7) when a = 0.95;
(@ u(x,t)whena =1; (d) ¢(p, T) exact solution.
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VY wmivt poboTi pearizoBaHO TiOPMAHII METOA, SIKMIT HA3MBAETHCSI TOMOTOMIYHMM aHAAI30M 3a A0-
ITIOMOTOI0 METOAY epeTBOpeHHs CyMyAy, III0 AO3BOASIE PO3B’sI3yBaTH AMpepeHITiaAbHI PiBHSIHHHS
3 YaCTVMHHMMM TIOXiAHMMI Apo60BOTO TTOpsIAKY. Lelt MeToa € 06’eAHAHHSIM METOAY IIepeTBOPEHHS
CyMyAy Ta MeTOAY TOMOTOIIYHOTO aHaAi3y. PO3rAsSHYTO Tpy mpuUKAaAM AASI MIATBEPAXKEHHS i Ae-
MOHCTpail epeKTUBHOCTI Ta TOUHOCTI Iiel MeToAMKM. TaKoX ImoKasaHO, III0 pe3yAbTaTH, OTpMMaHi
3a AOTIOMOTOIO 3aIIPOIOHOBAHOI METOAMKI, UYAOBO y3TOAXKYIOThCSI 3 TOUHMM PO3B’SI3KOM, IO CBiA-
YUTh PO edpeKTUBHICTD, HAAIMHICTD Ta MPOCTOTY peaisanii 3aITpOIIOHOBAHOTO METOAY AAS Pi3HIMX
CYMIXHMX IpobAeM HayKM Ta TEXHIKIL

Kntouosi cnoea i ppasu: audpepeHIiarbHe piBHSHHHS 3 YaCTMHHVMY IOXIAHMMU APO6GOBOTO IIO-
PsIAKY, lepeTBOopeHHsT CyMYAY, METOA TOMOTOIIIYHOTO aHAAI3Y.



