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estimating the chaos created by the self-map. In this paper, we study the extension of this notion to arbi-
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provided.
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1 Introduction

After Clausius’ definition in thermodynamics in 1865, entropy in mathematics was firstly introduced by
Shannon in information theory ([32]). Inspired by his definition, this notion was implemented in several other
areas. In each of the latter settings, entropy associates to every self-map of a space a value in Ry U {e=} es-
timating the chaos created by it. Let us mention, for example, Kolmogorov ([21]) and Sinai’s ([33]) measure
theoretic entropy in ergodic theory, Adler, Konheim and McAndrew’s topological entropy ([1]), and, more
recently, coarse entropy in coarse geometry ([37] and [14], where the authors of the latter were inspired by
Bowen’s definition of topological entropy in uniform spaces, [3]). We refer to [8] for a wide survey of many
entropy notions, and we also cite [10] where the authors used normed semigroups to provide a unifying ap-
proach to study several entropy notions.

Let us now focus on the situation in group theory. The first idea of extending entropy to the realm of
abelian groups is contained in the work of Adler, Konheim and MacAndrew ([1]), and this entropy was later
studied by Weiss ([35]) in the class of torsion abelian groups. Let us cite also [11] for a more recent reference
to Weiss’ algebraic entropy, and [15] for the algebraic entropy of endomorphisms of locally finite groups.
A different approach was provided by Peters in [23], and then it was generalised for all endomorphisms of
abelian groups in [9]. The same definition can be readily extended to semigroup and monoid endomorphisms.
Let us also address the interested reader again to the survey [8].

Algebraic entropy was later generalised to consider continuous endomorphisms of topological groups.
Peters in [24] gave an extension of the algebraic entropy defined in [23] for topological automorphisms of
locally compact abelian groups. Peter’s definition was then further generalised by Virili ([34]) to all endomor-
phisms of locally compact abelian groups. Virili’s notion can be found in [8] also for non-abelian groups. More
recently, a growing interest was paid to entropies associated to actions of amenable semigroups and groups,
instead of single morphisms. In the algebraic setting, Dikranjan, Fornasiero and Giordano Bruno studied the
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algebraic entropy of actions of amenable cancellative semigroups on abelian groups ([7]). The authors were
inspired by the measure and topological counterparts (see [4] and [18])

In the sequel, as algebraic entropy of monoid endomorphisms we always refer to the definition contained
in [10] and reported in Definition 4.1. In this paper we present a different way to generalise the algebraic
entropy of a single monoid endomorphism. In order to do that, instead of using monoids, we consider sets
endowed with monoid actions, which are called M-sets, for some monoid M. We then introduce in Definition
3.1the entropy of their endomorphisms (Definition 2.3). In addition to its intrinsic interest and the connections
to other known entropies that we shortly mention in the following paragraph, this generalisation is motivated
since M-sets are very flexible objects, and so it has possible applications in different areas of mathematics
where they appear.

This new notion of algebraic entropy extends the usual one in the following sense. Every monoid M can
be canonically seen as an M-set, and an endomorphism of the corresponding M-set can be associated to every
endomorphism of M. The algebraic entropy of the endomorphism of the M-set coincides with the algebraic
entropy of the original endomorphism (Theorem 4.3). According to this observation, we extend several prop-
erties that hold for the usual algebraic entropy of group endomorphisms to this wider setting. Examples of
these properties are the weak logarithmic law (Proposition 3.8), the invariance under conjugation (Corollary
3.11), the monotonicity for subspaces (Corollary 3.12) and quotients (Corollary 3.13), and the weak addition
theorem (Theorem 3.18). We refer to [8] for their classical counterparts in the realm of group endomorphisms.

We establish a strong connection also with another notion of entropy, the coarse entropy introduced in
[37] in the realm of coarse geometry. This branch of mathematics, also known as large-scale geometry, stud-
ies the large-scale, global, properties of spaces, ignoring their topological ones. It was at first developed for
metric spaces (see [17] and [22] for applications to geometric group theory and geometric topology, respec-
tively) and then Roe introduced coarse spaces to deal with non-metrisable spaces ([31]). Other structures that
are equivalent to coarse spaces are balleans ([28]), asymptotic proximities ([26]), and large-scale structures
([13]). More recently, this approach was generalised to non-symmetric spaces with the introduction in [36]
of quasi-coarse spaces (Definition 4.6). The morphisms between those spaces are called bornologous maps.
Every monoid action on a set induces a quasi-coarse space, which is a coarse space if the monoid is a group
([27D). In [27] and [25] several classes of such coarse spaces are characterised. Moreover, every endomorphism
of an M-set induces a bornologous self-map of the corresponding quasi-coarse space, and we show that, pro-
vided that this morphism is surjective, its coarse entropy coincides with the algebraic entropy of the original
endomorphism (Theorem 4.12). We also prove that, for a large class of coarse spaces, every injective bornolo-
gous self-map can be induced by an endomorphism of G-sets, for some subgroup G of permutations (Theorem
4.16), generalising a result due to Protasov ([27, Theorem 1]).

This paper is organised as follows. In Section 2 we recall some basic definitions in the realm of M-sets,
such as monoid and group actions, orbits and endomorphisms of M-sets, and prove results concerning these
objects. Moreover, we define the category FlowMon-Set of M-sets endowed with endomorphisms. Then in
Section 3 we define the algebraic entropy, present some examples of easy computations and discuss conse-
quences of the results proved in §2.1. More standard properties of this entropy (e.g., weak logarithmic law,
invariance under conjugation, monotocity for subspaces and quotients) are collected in §3.1, while in §3.2 we
provide the weak addition theorem and the coproduct formula. Section 4 is devoted to the comparison of the
algebraic entropy with other entropy notions. In particular, in §4.1 we focus on the relationship with the alge-
braic entropy of monoid endomorphisms, while in §4.2 with the coarse entropy. More precisely, in the latter
subsection, we provide all the necessary background in coarse geometry, show when the coarse entropy and
the algebraic entropy coincide, and generalise Protasov’s result.

We would like to thank the referee for the careful reading and the interesting suggestions.
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2 Endomorphisms of M-sets

The theory of M-sets and their homomorphisms that we use in this paper is self-contained. For the inter-
ested reader, we refer to [5], [6] and [20].

Let M be a monoid and X be a set. In the sequel, we denote by e, the neutral element of M. If there is no
risk of ambiguity, we write e. A right action of M on X isamap a: M — X* satisfying the following properties:
- a(e) = idy;
- a(b) o a(a) = a(ab), for every a, b € M.
Since in the sequel we always refer to right actions, we call them actions. If the action involved is clear, we
usually simplify the notation by writing xa instead of a(a)(x), for every x € X and a € M. It is easy to check
that, if a € M is invertible (i.e., there exists a=' € M such that aa™! = a'a = e) then a(a) is a bijection.
In particular, if M is a group, then it acts via bijections, which means that a(M) C Sy, where Sy denotes the
group of permutations of X.

An action a of a monoid M on a set X is said to be:
- freeif, for every a, b € M, a = b provided that there exists x € X such that a(a)(x) = a(b)(x);
- weakly freeif, for every a, b € M, a(a) = a(b) provided that there exists x € X such that a(a)(x) = a(b)(x).
Of course, an action is weakly free if it is free.

Let M be a monoid. A right M-set, briefly, for the purpose of this paper, an M-set, is a set X endowed with
an action of M on it, and we write X .~ M.

Let M be a monoid and X be an M-set. The orbit of a point x € X is the subset xM = {xa € X | a € M} of
X. A subset Y of X is called a ceiling of X if YM := | J{yM | y € Y} = X. Moreover, an element x € X is a top
element if {x} is a ceiling.

Remark 2.1. Let G be a group and X be a G-set. Then the notion of orbit coincides with the usual one (see,
for example, [19]). Thus, the family of orbits {xG | x € X} creates a partition of X. A ceiling of X has to contain
at least one point for each orbit. Moreover, the following properties are trivially equivalent:

— X consists of just one orbit (i.e., the action is transitive);

— every point of X is a top element.

Example 2.2. Let M be a monoid. Then the right regular action p of M on itself is defined as follows: for every
a € M, p(a) is the right shift s by a, i.e., p(a) = sb: M — M, where s%(b) = ba. Moreover, the following
properties are equivalent:

(@) M is left-cancellative (i.e., for every a, b, c € M, if ab = ac then b = ¢);

(b) pis free;

(c) pisweakly free.

The implications (a)— (b)—(c) are trivial. Suppose that p is weakly free and a, b, ¢ € M satisfying ab = ac.
Since p is weakly free, for every x € M, p(b)(x) = p(c)(x), and thus, b = p(b)(e) = p(c)(e) = c.

Hence, in particular, for a group G, the right regular action is free.

Note that the right regular action always has a top element: the neutral element e € M. However, this top
element may not be unique. In fact, every invertible element of M is a top element, and so, if M is a group,
every element is a top element.

If M and N are two monoids, a map f: M — N is a homomorphism if f(ey) = ey and, for every a, b € M,

f(ab) = f(a)f (b).

Definition 2.3. Let M and N be two monoids, and X and Y be an M-set and an N-set, respectively. A homo-
morphism from the M-set X to the N-set Y is a pair (f, f) consisting of amap f: X — Y and a homomorphism
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of monoids f: M — N such that, for every a € M, the diagram
xL.oy
ai fl@)
f
X——=Y

commutes. More explicitly, we require that, for every x € X and a € M, f(xa) = f(x)f(a). Moreover, we say
that (f, f) is

— an endomorphismif X A~ M =Y ~ N;

— anisomorphism if both f and f are bijections;

— an automorphism if it is both an endomorphism and an isomorphism.

Note thlat, if M and N are two monoids and (f, f) is an isomorphism from the M-set X to the N-set Y, then
(f',f ) is an isomorphism from Y to X.

Remark 2.4. Let (f, f) be an endomorphism of the M-set X, where M is a monoid. Since f isa homomorphism,
for every a, b € M, the subdiagrams in the following diagram commute:

ab

TN

X—X—X

x S99 f(a) f(b) B¢

4
W

Moreover, with a routine argument we can show that, foreveryx € X,n € N,and a € M, f"(xa) = f ”(x)fn(a).

Example 2.5. (a) LetX ~ {e}betheaction ofthe trivial group on a set X. Then, for everyself-mapf: X — X,
the trivial endomorphism f: {e} — {e} shows that (f, f) is an endomorphism of X .~ {e}.

(b) Let f: M — N be a homomorphism of monoids. In Example 2.2 we described the construction of the
right regular action. Let us show how f can induce a homomorphism from M .~ Mto N .~ Nin a
canonical way. It is enough to consider the pair (f, f) and the desired properties are fulfilled because
f is a homomorphism.

(c) Let M be a (left-)cancellative commutative monoid, G(M) be the abelian group generated by M ([5]), and
1: M — G(M) the inclusion homomorphism. Then the right regular action of M on itself induces an
action of M on G(M) as follows: for every a € M, a: g — g + 1(a). The action on G(M) is free. Moreover,
for every endomorphism f: G(M) — G(M) such that f(:(M)) C 1(M) (i.e., 1(M) is f-invariant), there exists
an endomorphism f: M — M such that (f, f) is an endomorphism of G(M) .~ M. In fact, define, for every
a e M, f(a) = 17 1(f(1(a))) € 1(M), which satisfies, for every g € G(M),

fga) = f(g +1(a@) = f(g) + (@) = f(8) +1(f(a) = f(®)f (@).

Remark 2.6. Let M and N be two monoids, X be an M-set, Y be an N-set, and (f, f) be a homomorphism
from X to Y. Denote by ay; and ay the actions on X and Y, respectively. Let Z be a ceiling of X. Then, for every
x € X, there exists z € Z and a € M such that x = za, and so f(x) = f(za) = f(z)f(a). Thus f|; and f uniquely
determine the map f.

Conversely, given a map h: Z — Y and a homomorphism g: M — N, the existenceofamapg: X -+ Y
such that g|; = h and (g, g) is a homomorphism from X to Y is not granted in general. In fact, consider the
group X =Z =Y = 7, = {0, 1}, endowed with its right regular action, and the homomorphisms h = idx and
g(G) = {0}. Then the only possible extension g of h is h itself, but 0 = h(0) = h(1 + 1), while h(1) + g(1) = 1.

Let us now suppose that for every pair of distinct points of Z, their orbits are disjoint and the homomor-
phism g satisfies the following property: for every a, b € M, ay(g(a)) = ay(g(b)) provided that there exists
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x € X such that ay(a)(x) = ay(b)(x). Then the desired extension g of h can be defined. In fact, for every
x € X, there exists an element ay € M and a unique zx € Z such that x = zxay, and thus we can define
g(x) = h(zx)g(ax). Note that, for every other ay € M such that x = zxay, ay(g(ax)) = ay(g(a))) thanks to the
required property on g.

Let us now introduce the category FlowMon-Set of flows of sets endowed with monoid actions. Its objects
are quintuplets (M, X, a, f, f), where M is a monoid, X is an M-set, a is the action of M on X, and (f, f) is
an endomorphism of X. Given two objects (M, X, a, f, f) and (N, Y, B, g, g) of FlowMon-Set, a morphism
between them is a homomorphism (h, h) from X «~ Mto Y .~ N such that the following two squares commute:

x—'ox and M—Lom (1)
I O
y —$., N—2-N.

Since (f, f) and (g, g) are endomorphisms of X and Y, respectively, (1) implies that, for every a € M, all
f
f
h \
Y

subdiagrams in the following diagram commute:
X
f (a)l
X h
g
h h
ih(a) g(h(@)=h(f(a)
g

X
|
X
Y Y.

Y

In the previous notation, the pair (h, h) is an isomorphism of FlowMon-Set if (h, h) is an isomorphism from
X A MtoY ~ N,i.e., both h and h are bijective.

If there is no risk of ambiguity, in the sequel we denote the objects of FlowMon-Set as quadruplets
(M, X, f, f), not explicitly mentioning the action of M on X.

2.1 Relationship between the components of a homomorphism

In this subsection we study the relationship between the two maps f and f composing a homomorphism
(f, f) between an M-set and an N-set.

Proposition 2.7. Let M and N be two monoids, X be an M-set, and Y be an N-set. Let (f1, f) and (f», f) be two
homomorphisms from X to Y.
(a) Ifx € X satisfies f1(x) = f>(x), then f1|xu = f2|xm-
(b) Let Z C X. Then the following properties are equivalent:
(b1) Zis a ceiling of X;
(b2) filz = f2|z if and only if f1 = f>.

Proof. Forevery a € M, fi(xa) = fi(x)f(a) = /-(x)f(a) = f>(xa). Thus item (a) and the implication (b;)—(b,)
follow.

Let now Z be a subset of X. Define Y = ZM. Let i; and i, be the canonical injections of X in the disjoint
union X U X, and ~ be the equivalence relation on X L X defined as follows: for every x, y € X, i1(x) ~ i»(y)
ifandonlyifx=y e Y. Let XUy X = XU X/~, q: XU X — X Uy X be the quotient map, and, for k € {1, 2},
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jx = qoiy. If ais the action of M on X, we define an action 8 of M on Xy X as follows: for every j, (x) € XUy X,
Jx(x) = ji(xa), which is well-defined since YM = Y. Note that (j;, idy) and (j,, idy) are two homomorphisms
from X ~ Mto X Uy X .~ M. If Z is not a ceiling, then j; # j,, although j;|y = j»|y and so, in particular,
Jjilz =J2lz- O

Corollary 2.8. Let M and N be two monoids, X be an M-set, Y be an N-set, and (f1, f) and (>, f) be two
homomorphisms from X to Y. If x is a top element of X, then f, = f, if and only if f1(x) = f>(x).

Corollary 2.9. Let M and N be two monoids endowed with their right regular actions. Then the following prop-

erties are equivalent:

(a) the pair (f, f) is a homomorphism from M to N;

(b) there exists a € N such that f = s} o f, where sh: N — N is the left shift by a, defined as sA(x) = ax, for
everyx € N.

Proof. Letf: M — N be a homomorphism. Then, for every a € N, (s} of, f) is a homomorphism from M .~ M
to N .~ N. Moreover, if f: M — N is another map such that (f, f) is a homomorphism, then f = s]’}( en) © f
according to Corollary 2.8 since ey is a top element in M (Example 2.2).

Proposition 2.10. Let M and N be two monoids, X be an M-set, and Y be an N-set. Let us denote by o the
action of N. Let (f, f1) and (f, f>) be two homomorphisms from X to Y.

(a) Foreverya € M, ao fi(a)|py) = @ o f2(a)|p). B B

(b) Ifeither f is surjective or a is weakly free, then @ o f1 = a o f>.

(c) Ifais free, thenf, = f,.

Proof. Item (a) can be easily deduced since, for every a € M, and x € X, f(x)f1(a) = f(xa) = f(X)f>(a). Then
items (b) and (c) trivially follow. O

Corollary 2.11. Let M be a monoid, X be an M-set, a be the action of M on X, and (f, f1) and (f, f») be two
endomorphisms of X. Then:

(a) foreveryn ¢ N,ao an =ao f;" provided that either f is surjective or a is weakly free;

(b) foreveryn e N, fi =/, provided that a is free.

Proof. Both claims follow from Proposition 2.10 and Remark 2.4. O

The following result immediately descends from Corollary 2.11 and Example 2.2.

Corollary 2.12. Let M be a left-cancellative monoid endowed with its right regular action, and (f, f1) and (f, f>)
be two endomorphisms of M. Then, foreveryn € N, fi = f> -

3 Algebraic entropy of endomorphisms

Let M be a monoid and X be an M-set. Then, forevery K C Mand Y C X, define YK = {yk € X | y €
Y, k € K}. This notation will also be used if we consider M with its right regular action. For every set X, denote
by [X]“ the family of finite subsets of X.
Let M be a monoid, X be an M-set, and (f, f) be an endomorphism of X .~ M. Foreveryn € N\{0},x € X
and K € [M]?, define
Ta(f, Fo x, K) = xKF(K) - - F" (K,

which is called the n-algebraic trajectory of (f, f) with respect to x and K. If K contains the neutral element e,
then {Tx(f, f, x, K)}n is an increasing sequence of subsets. We now want to define the algebraic entropy of

(. .
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Definition 3.1. Let M be a monoid, X be an M-set, and (f, f) be an endomorphism of X .~ M. For every x € X
and K € [M]*%, we define

Halg(f’f’ X, I() = lim sup w’

n—oo n

HOS(f, F, X) = sup{He(f, f, X, K) | K € [MI*“}, and  hg(f, f) = sup{HS(f, f, ) | x € X},
and hye(f, f) is called the algebraic entropy of (f, f).

In the notations of Definition 3.1, the limit superior in the definition of Halg(f ,f, x, K) is not a limit in general.
We prove it in Remark 4.18.

Example 3.2. Let M be a monoid, X be an M-set, and (f, f) be an endomorphism of X .~ M.

(@) If M = {e} (as in Example 2.5(a)), then hy,(f,f) = O since, for every n € N\ {0} and x € X,
Ta(f, f, x, {€}) = {x}.

(b) If either M or X are finite, then it is easy to see that h,(f, f) = 0.

(c) Suppose now that the orbits of X are finite. Then, for every x € X and K € [M]*“, {Ta(f, f, x, K)}nen is
bounded since Tu(f, f, x, K) C xM, for every n € N\ {0}. Hence h,(f, f) = 0.

(d) If M is locally finite (i.e., every finite subset of M generates a finite submonoid) and f = idy;, then
hge(f, idy) = 0. In fact, for every x € X, K € [M]*“, and n € N\ {0},

ITn(f, idu, x, K)| = |xK"| < [(K)| < oo.

In the definition of the algebraic entropy, the morphism f: X — X does not play any explicit role. Hence, the
following fact trivially holds.

Fact3.3. If M is a monoid acting on a set X, and (fi, f) and (f5, f) are two endomorphisms of X, then

halg(flyf) = halg(fbf)-

The following results are devoted to understand the implications of what we obtained in §2.1, where we dis-
cussed the relationship between the components of a homomorphism.

Proposition 3.4. Let M be a monoid, X be an M-set, and (f, f1) and (f, f>) be two endomorphisms of X. If, for
il o - i
everyne N,aofy =aof, ,thenhyg(f, f1) = hye(f, f2).

Proof. The claim follows once we show that, for every n € N\ {0}, x € X, and K € [M]?,

Tn(f)E’X’I<):Tn(f!E’X9K)' (2)

Let us prove the desired equality by induction. The case n = 1 is trivial. Suppose that (2) holds for a given n
and we show that the equality holds also for n + 1. In fact,

Tuea (F, f1, %, K) = Xfi(K) - Fi () = Tu(f, fr, x, K (K) = | a(fi (O)Ta(f, i, x, K)) =

kek

= | a®")Talf, F1, %, K)) = Talf, fo, %, KOy (K) = Taa (F, F2 X, K).

kek

O

Corollary 3.5. Let M be a monoid, X be an M-set, a be the action of M on X, and (f, f1) and (f, f>) be two
endomorphisms of X. Then h,(f, fi) = hge(fs f>) provided that either f is surjective or a is weakly free.

Proof. The claim trivially follows from Proposition 3.4 and Corollary 2.11. O



60 —— Nicold Zava DE GRUYTER

3.1 Basic properties of the algebraic entropy

Let us now enlist some basic properties of the algebraic entropy.

Let X be a set. An ideal J of subsets of X is a family closed under taking subsets and finite unions. For
example, for every set X, the family [X]“ is an ideal. A subfamily F C J is cofinal in J if, for every K € J, there
exists F € Fsuchthat K C F.

Proposition 3.6. Let M be a monoid, X be an M-set and (f, f) be an endomorphism of X.
(a) IfK C F € [M]?, then Halg(f,f, x,K) < Halg(f,f, x, F), for every x € X. Hence, if F is a cofinal family of
[M]<¥, then
HIGS(f, fo %) = sup{Hg(f, f X, K) | K € F}.

(b) Ifx,y € X are two points such that y € xM, then Hfl"lg(f, fox) = Hfflz,(f, 9.

(c) IfYisaceiling of X, thenh(f, f) = sup,cy Hff,;(f, f,y). Inparticular, if x is a top element of X, hy(f, f) =
HIS(f, . %)

Proof. Item (a) is trivial, and item (c) follows from (b).

(b) Let x,y € Xand a € M be an element such that y = xa. Pick an arbitrary K € [M]*“ and define
K’ = aK U K. We claim that Hyio(f, f, x, K') 2 Hyye(f, f, v, K) and thus Hf;’,;(f,f, X) 2 Hfz"l;(f,f, y). In fact, for
everyn € N,

Ta(f, f, x, K) = xK'FE) -+ F' (K') 2 xaKF(K) - F* (K) = Tn(f, f, v, KO.
O

Proposition 3.7. Let M be a monoid, X be an M-set, and (f, ) be an automorphism of X. Suppose the following
further properties:

(a) there exists a ceiling Y of X consisting of fixed points for the map f;
(b) M is either commutative or a group acting freely.

Then halg(f_lff_l) = halg(f’ f)-

Proof. According to Proposition 3.6(c), it is enough to evaluate the trajectories on points of the ceiling Y. Let
us now notice that, for every n € N\ {0}, x € Y, and K € [M]¥,

FTGEF T KD) = T OKE W) ) = f00FT () - FUOK =
—xf" () FUOK,
because of the hypothesis (a). Hence, since f is bijective,
TG % K| = xF (KD - FUOK] 3)

If M is commutative, then (3) implies that |T,(f ", f_l , X, K)| = |Ta(f, f, x, K)|, which leads to the thesis. Sup-
pose now that M is a group acting freely on X. According to Proposition 3.6(a), we can assume without loss
of generality that K = K. Hence, (3) and the fact that the action is free imply that

TaF LT 6 B = (K- FUOK| = f () - - FROK| = |7 (K) - - FROK) ™| =
— [KF(K)---F" ()| = |Tulf, fr x, K)),

from which the claim descends. O

Proposition 3.8 (Weak logarithmic law). Let M be a monoid, X be an M-set, and (f, f) be an endomorphism
of X.

_k —
(a) Forevery k € N\ {0}, halg(fk:f )< khalg(fyf)-
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(b) Suppose that X has a ceiling consisting of fixed points for the map f, and M is either commutative or a group
acting freely. Then, if (f, f) is an automorphism, for every k € 7 \ {0}, halg(f" ,fk) < [kl hgg(f, f.

Proof. (a) Fix k € N\ {0}. Then, for everyn € N\ {0}, x € Xand e € K € [M]*¥,

i —k —k(n-1) _
log|Tn(f, £, %, K)| _ oglxKf (K)--f ™" "(K)| _ log{Tun s ( F . K| _
n n - n
_ 10g| Tin—ie1 (5 f5 X, K)| . kn-k+1
kn-k+1 n :

Hence H ;(f k. fk, x, K) < kHgq(f, f, x, K), and so the claim follows in virtue of Proposition 3.6(a) and (c).
(b) It follows from item (a) and Proposition 3.7. In fact, if k € N \ {0}, then ha,g(f",fk) < khgg(f, f)
because of item (a), otherwise, if k € Z \ N, then halg(fk,fk) = halg(f‘k,ffk) < —khge(f, ). O

Theorem 3.9. Let (M, X, f,f) and (N, Y, g, 8) be two objects of FlowMon-Set, and (h, h) be a morphism of
the category FlowMon-Set from (M, X, f,f) and (N, Y, g, 8).

(a) If his injective, then hye(f, f) < haie(g, ).

(b) If h and h are surjective, then hgio(f, f) = hye(g, ).

(c) If his bijective and h is surjective, then hye(f, f) = hy(8, 8).

Proof. Ttem (c) trivially follows from items (a) and (b). To prove them, letn € N\ {0}, x € X, and K € [M]*“.
Then
R(Ta(f, . X, K) = ROKF() -+ F (K)) = hOORKF() -+ f " (K)) =
= hEORUORFK)) - - AF" (K)) = hORK)G(R(K)) - - - 8" (A(K)) = (4)
= Tn(g: §, h(X), H(Kv))-

Suppose that h is injective. Then (4) implies that |Tx(f, f, x, K)| = |Tx(g, g, h(x), h(K))|, and thus

Halg(f’ f: x, K) = Halg(g: g, h(x), h(K)). 5)

Since the inequality (5) holds for every x € X and K € [M]*“, hyi(f, f) < hye(g, 3).
Suppose otherwise that h and h are surjective. Then, for every y € Y and every F € [N]*“, there exists
x € X and K e [M]*? such that h(x) = y and h(K) = F. Then, according to (4),

Tn(g, 8, ¥, F)| = |Tn(g, 8, h(x), h(K))| = |h(Tx(f, f, x, K))| < |Tu(f, f, x, K)|.

Thus Hyi,(g,8, v, F) < Halg(f,f, x, K), and so, since y € Y and F € [N]“ can be taken arbitrarily, hye(8,8) <
halg(f, f) O

Remark 3.10. In the notation of Theorem 3.9, let us note that the injectivity of h implies that h satisfies a mild
version of injectivity. More precisely, we claim that, for every a, b € M, if B(h(a)) = B(h(b)), then a(a) = a(b).
In fact, B(h(a)) = B(h(D)) implies that, for every x € X, h(xa) = h(x)h(a) = h(x)h(b) = h(xb), and so the claim
follows since h is injective.

The following consequences of Theorem 3.9 can be deduced.

Corollary 3.11 (Invariance under conjugation). The algebraic entropy is invariant along isomorphisms of the
category FlowMon-Set.

Corollary 3.12 (Monotonicity for subspaces). Let M be a monoid, X be an M-set, and (f, f) be a endomorphism
of X. Suppose that Y is a subset of X and N is a submonoid of M satisfying the following properties:

(a) YN=Y;

(b) f(Y) CY (ie., Y is f-invariant);
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(c) f(N) <N (i.e., N is f-invariant).
Then (f|y, f|n) is an endomorphism of Y .~ N, and hyie(f|y, fIn) < hge(f, ).

Proof. If we denote by h the inclusion of Y in X and by & the inclusion of N in M, we can apply Theorem 3.9
to obtain the desired result. O

Let g: X — Y be a map. For every E C X x X, we define (g x q)(E) = {(g(x),q(y)) € YxY | (x,y) € E} and
Rg={(x,y) e Xx X | q(x) = q(1)}.

Corollary 3.13 (Monotonicity for quotients). Let M and N be two monoids, X and Y be an M-set and an N-set,
respectively, (f, f) be an endomorphism of X ~ M, q: X — Y be a surjective map and p: M — N be a surjective
homomorphism. Suppose that the following properties hold:

(@ (F <f)(Rq) € Ry;

() (f xf)(Rp) € Rp;

(c) the pair (q, p) is a homomorphism fromX .~ MtoY .~ N.

Then there exists an endomorphism (g,g) of Y .~ N making the pair (q, p) a morphism of the category
FlowMon-Set from (M, X, f,f) to (N, Y, g, 8). Moreover, h (g, 8) < hye(f, f).

Proof. Lety € Yand b € N. Since g and p are surjective, then there exist x € X and a € M such that g(x) = y
and p(a) = b. Then we define g(y) = g(g(x)) = q(f(x)) and g(b) = g(p(a)) = p(f(a)), and these two maps are
well-defined because of the properties (a) and (b), respectively. Moreover, g is an endomorphism of N since
both p and f are homomorphisms. Then it is easy to check that (g, p) has the desired properties. The last
claim follows from Theorem 3.9(b). O

Let us specify Corollary 3.13 in some particular situations, in order to get a better understanding of the hy-
potheses (a)—(c).

Corollary 3.14. Let g: M — N be a surjective homomorphism of monoids, and f be an endomorphism of M.
Moreover, suppose that (fxf)(Rq) C Rq. Then there exists an endomorphism g of N such that (q, q) is a morphism
of FlowMon-Set from (M, M, p, f, f) to (N, N, p, g, g). Moreover, h,4(g, 8) < hge(f, f).

Proof. Inorder to apply Corollary 3.13, it is enough to check that the properties (a)—(c) hold. Since (fxf)(Rq) C
Ry, both items (a) and (b) are fulfilled. Moreover, item (c) follows from Example 2.5(b). O

Note that, in the notation of Corollary 3.14, if M and N are groups, the request that (fxf)(Rq) C Ry is equivalent
to asking that ker g is f-invariant.

Corollary 3.15. Let M be a monoid, X be an M-set, q: X — Y be a surjective map between sets, and (f, f) be
an endomorphism of X. Suppose that the following properties hold:

(@ (fxf)(Rq) C Ry;

(b) foreverya € M, (ax a)(Rq) C Ry.

Then there exists an actionof Mon Y andamap g: Y — Y such that (g, f) is an endomorphism of Y .~ M, and
(4, idw) is a morphism of FlowMon-Set from (M, X, f, ) to (M, Y, g, f). Moreover, h¢(g, f) < haie(f, f).

Proof. First of all, because of item (b), we can define an action of M on Y as follows: if y is a point of ¥ and
x € X satisfies g(x) = y, then ya = g(x)a = q(xa), for every a € M. Because of the definition, it is easy to
check that (g, idy) is actually a homomorphism from X .~ M to Y .~ M. Thus items (a) and (c) of Corollary
3.13 are fulfilled. Moreover, item (b) is trivial, and thus the claim follows from Corollary 3.13 since the map g
defined in the proof coincides with f. O

For every set X, denote by Ay the diagonal of X, i.e., the family Ax = {(x,x) e Xx X | x € X}.
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Corollary 3.16. Let p: M — N be a surjective homomorphism of monoids, a be an action of M on X, and (f, f)
be an endomorphism of X .~ M. Suppose that the following properties hold:

(@) (f xf)(Rp) C Rp;

(b) (ax @(Rp) C Aga.

Then there exists an action B of N on X and an endomorphism g of N such that (f, g) is an endomorphism of
X ~ N, and (idy, p) is a morphism of FlowMon-Set from (M, X, a, f, f) to (N, X, B, f, g). Moreover, hye(f, 8) <
halg(f’ f)

Proof. Let us define the action 8. Let b € N and a € M be an element such that p(a) = b. Then we put
B(b) = B(p(a)) = a(a), which is well-defined because of item (b). Because of the definition of 8, (idy, p) is a
homomorphism from X .~ M to X .~ N. Thus the properties (b) and (c) of Corollary 3.13 are satisfied, while
item (@) is trivial. Then the claim follows once we notice that the map g defined in the proof of Corollary 3.13
coincides with f. O

Let us consider an application of Corollary 3.16.

Remark 3.17. Let M be a monoid with a weakly free action « on a set X, and (f , f) be an endomorphism of
X .~ M. We can introduce an equivalence relation ~x on M as follows: for every a,b € M, a ~x b if and
only if a(a) = a(b). It is not hard to check that ~x is actually a congruence (i.e., an equivalence relation such
that, for every a, b, c,d € M, if a ~x b and ¢ ~x d, then ac ~x bd), and thus we can consider the quotient
monoid M/~.Let p: M — M/ .. denote the quotient map. It is easy to check that the hypothesis of Corollary
3.16 is fulfilled. Thus there exist an action 8 of M/, on X and an endomorphism g of M/, such that (idy, p)
is a morphism from (M, X, a, f, f) to (M/ ~xs X, B, f, 8). Moreover, note that § is free according to its definition
in the proof of Corollary 3.16.

The mentioned corollary also implies that h,(f, 8) < hg(f , f). We claim that, in this setting, also the
opposite inequality holds, and thus he(f, 8) = hge(f, ). Let K € [M]*” and x € X. Then, since (idx, p) is a
morphism from (M, X, a, f, f) to (M/~, X, B, f, 8), for every n € N \ {0}, we have that

Ta(f, 8, X, p(K)) = xp(K)g(p(K)) - - (&)" (p(K)) = xp(K)p(F(K)) - - pF"~ (K)) =
= idx(Op(KF(K) -+ F" (K)) = idy(KF(K) -+ F"  (K)) = Ta(f, F, x, K).

The previous chain implies that Ha,g(f frx,K) = Halg(f , 8, x, p(K)), and thus the claim follows since x € X
and K € [M]*“ can be arbitrarily taken.

3.2 Basic properties of some categorical constructions

Let M and N be two monoids, and X and Y be an M-set and an N-set respectively. Then we define the
product action of M x N on X x Y as follows: for every (x,y) € Xx Y and (a, b) € Mx N, (x, y)(a, b) = (xa, yb).
Moreover, if (f, f) and (g, g) are two endomorphisms of X .~ M and Y ~ N, respectively, then the pair
(f x g, f xg) is an endomorphism of X x ¥ .~ M x N. In fact, for every (x,y) € Xx Y and (a, b) € M x N,

(f x @)((x, y)(a, b)) = (f x g)(xa, yb) = (f(xa), g(yb)) = (fF()f(a), g()g(D)) = ((f x 8)x, Y)(f x 8)(a, b)).

Theorem 3.18 (Weak addition theorem). Let M and N be two monoids, X be an M-set, Y be an N-set, and (f, f)
and (g, g) be endomorphisms of X and Y, respectively. Then h,,(f x g, fxg) = hge(fs f)+h, 12(8, 8-

Proof. Foreveryn ¢ N\ {0}, (x,y) € XxY,and FxK € [Mx N]*“, where F ¢ [M]*“ and K < [N]*, itis easy
to check that
Tn(fxg,fxg, (X’ )’), F x I<) = Tn(f,f’ X, F) X Tfl(grg’ y’1<)’

and thus Hyie(f x g, f x 8, (x,¥), F x K) = Hye(f, f, X, F) + Haie(g, 8, v, K). Then, according to Proposition

3.6(a), Hfl"lg(f xg,fxg, (x,y)= Hﬁl"é(f LX)+ Hﬁ,",;(g, g,7), and so the claim follows. O
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Let {Mj}xe; be a family of monoids and, for every k € I, X; be an M;-set. For every k € I, denote by
ir: Xx — |y Xx the canonical inclusion of Xj in the disjoint union. We define the coproduct action of IT;}; M},
on | |, X as follows: for every i;(x) € | |, Xy and every (ay)y € I My, i;(x)(ay)x = ij(xa;). Moreover, if, for
every k € I, (fi, fi) is an endomorphism of X; .~ M, we define the map Drerfi: U Xk = L Xk by the
law (P, fi)((;(x)) = i;(f;(x)), for every ij(x) € | |, Xx. Then the pair (P, fi, Iifi) is an endomorphism of
LIy Xk > I M. In fact, for every i;(x) € | |, Xy and (ay)y € I} My,

@fk(ij(x)(ak)k) = @fk(ij(xaj)) = ij(fj(xay)) = ;;(F;00f;(a)) = i) Fre(a)i =

kel kel
- ( %fk(i,-(x))) ((kHEIfk) ((ak)k)) .

Theorem 3.19. Let {M;},c; be a family of monoids, and, for every k € I, Xy and (fi, f;) be an M-set and an
endomorphism of Xy, respectively. Then hgo(P fic, IT i) = sup{halg(fk,fk) | kel

Proof. For every k € I, denote by gy : II, M;, — M the canonical projection. It is easy to check that, because
of the definition of the coproduct action, for every K € [II;M;]‘“ and every 1;00) € L Xi» 1;(0)K = ij(xg;(K)).
Then, for every n € N\ {0}, ij(x) € | |; Xy and K € [II;M;]*“,

Tn <@f,<,H/Tk, ij(x),K> =i (xqj(K(ka(K)) (H]Tkn_l(K)))> =

kel kel kel kel
. - -1 : -
- (0,000, [TH®0) g TIR™®0) ) = 5616, . 1060,
kel kel
which implies that Ha,g(@k fir M, 1500, K) = Hee(f;, fi, x, q;(K)). Hence, we obtain the inequality

Z’lg(@k fioo Mifre, 1500)) < Halg(f], f,, x). Moreover, since g; is surjective, every finite subset of M; is the image

of a finite subset of IT; X, and so Halg(@kfk, Oifi, i;(0) = alg(f], f], x). Finally, note that
hazg (EBfk, ka> = sup H ( P s [1Fe z,(x)) = sup sup Hig (e]afk, [1Fe iix ) =
kel kel GOIEL, X kel kel kel kel

= sup sup Halg(f,,fl, X) = suphalg(f,,f})
JjEI xeX;

4 Relationship with other entropies

Let us compare the algebraic entropy introduced in the previous section with other known entropies.

4.1 Relationship with the algebraic entropy of group endomorphisms

Let M be a monoid. Let f: M — M be an endomorphism of M. Fix a finite subset K € [M]*“, and n ¢
N\ {0}. Then we define the subset

TU8(f, K) = KF(K) - - - f* 1 (K) € M.

Definition 4.1 ([8], for group endomorphisms). Let M be a monoid, and f: M — M be an endomorphism of
M. Then the algebraic entropy of f with respect to K is defined as

log|Ta'8 (£, K)|
n

Haig(f, K) = lim (6)

—>o0

Finally, the algebraic entropy of f is hyg(f) = sup{Hy(f, K) | K € [M]*“}.
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A standard approach to prove that the limit in (6) exists is by using Fekete’s Lemma (see, for example, [8]).
We refer to [8] for a comprehensive survey on the algebraic entropy of monoid and group endomorphisms.

Theorem 4.2. Let M be a monoid, X be an M-set, and (f, f) be an endomorphism of X. Then

halg(f,f) < halg(]?)-

Moreover, if the action of M on X is free,

halg(fa f) = halg(]?)-
Proof. Letx € X and K € [M]*“. Then, for every n € N \ {0},

Ta(f, F %, K)| = |XKF(K) -+ F" (K)| < |KF(K)---F"(K)| = [T28(F, K)), @)

which implies that Hg(f, f, x, K) < Haie(f, K). Since x and K can be taken arbitrarily, hyg(f, f) < hgie(F).
If the action of M is free, for every x € X, K € [M]*?, and n € N \ {0}, (7) becomes a chain of equalities
and thus the desired claim can be deduced. O

Let us specialise the previous result for endomorphisms of monoids equipped with their right regular actions.

Theorem 4.3. Let M be a monoid and f be an endomorphism of M. If we endow M with its right regular action,
then

halg(f, f) = halg(f)-

loc

Proof. Since e € M is a top element, hy,(f,f) = Hgg(f, f, €) according to Proposition 3.6(c). Then the
conclusion follows from the observation that, for every K € [M]*“ and every n € N\ {0}, Tn(f,f,e,K) =
TE(f, K). O

The previous corollary proves that the algebraic entropy of endomorphisms of sets endowed with monoid
actions extends the usual algebraic entropy of monoid endomorphisms. Hence, we can see the results proved
in §3 as generalisations of results known for the usual algebraic entropy ([8, 10]).

Example 4.4. (a) Let M be a left-cancellative monoid endowed with its right regular action. According to
Corollary 2.9, every morphism (f, f) of M is of the form (s} o f, f), for some a € M. Then Theorem 4.2
implies that hye(s} o f,f) = hye(f). Hence, as one may expect, hyg(sh, idy) = hgg(idy) which is 0
if, for example, M is an abelian group ([9]). Moreover, for every k € N\ {0} and every n € Z, the map
fxnt Z — Z defined as f ,(x) = kx + n, for every x € Z, and the endomorphism fj = fy o: Z — Z satisfy
haig(fi,ns fi) = hagg(fie) = log k ([9, Example 3.1)).

(b) Consider the action Z ~ N, defined as in Example 2.5(c), i.e., for every n € N, n: x — x + n, for every
x € Z.Let k € N and consider the endomorphism fj: x — kx, where x € Z, of 7. Consistently with
Example 2.5(c), define fi, : N — N such that fi(n) = kn, for every n € N. Then, since the action of N is free,
hee (fics fi) = halg(ﬁ). Moreover, by easily adapting the classical proof showing that h¢(fi) = log k (see,
for example [9, Example 3.1]), it is possible to prove that also h,,(fi) = log k. Hence, hyo(f) = hye(fi) =
halg(fk’ fk)

Example 4.4(b) inspires the following question.

Question 4.5. Let M be a left-cancellative commutative monoid, G(M) be its associated group, f be an endo-
morphism of G(M) such that M is f-invariant, and f : M — M the induced endomorphism defined as in Example
2.5(c). Is it true that hyg(f) = haie(f) = hye(f, £)?
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4.2 Relationship with the coarse entropy

Let Xbeaset, U,V C XxX, x € X,and A C X. Then we define
UoV={(,2) eXxX|IyeX:(,y)eU,(y,2) eV}, U'={(,x)eXxX|(xy)eU},
Ulxl={y e X|(x,y) € U}, and UlA]=|J{Ulalla € A}.
Moreover, note that (U o V)[A] = V[U[A]].

Definition 4.6 ([31, 36]). Let Xbeaset. A family & C P(X)is aquasi-coarse structureif it satisfies the following
propetrties:

(C1) € isanideal;

(CAx €&

(C3)foreveryE,Fc E,EoF € €.

If, moreover, € satisfies
(CL)Et e &, foreveryE € &,

then € is a coarse structure. The pair (X, €) is a quasi-coarse space (coarse space) if € is a quasi-coarse structure
(coarse structure, respectively).

Let (X, &) be a quasi-coarse space. Then (X, &) is locally finite if, for every x € X and every E € &, E[x] is finite.
Moreover, (X, &) has bounded geometry if, for every E € &, there exists N such that |E[x]| < N, for every
x € X. A quasi-coarse space with bounded geometry is, in particular, locally finite.

Amapf: (X, &x) — (Y, Ey) between quasi-coarse spaces is called
—  bornologous if, for every E € Ex, (f x f)(E) € Ey;
- anasymorphism if it is bijective and both f and f~! are bornologous.

Example 4.7. (a) Let (X, d) be a quasi-metric space, i.e., a set X endowed with a pseudo-quasi-metric (for
the sake of simplicity, we refer to it as quasi-metric in the sequel) d, which isamap d: X x X — R such
that
- d(x,x) =0, forevery x ¢ X;

- dx,z) <d(x,y)+d(y, z), forevery x,y, z € X.

Then d induces a quasi-coarse structure €, on X, called metric-quasi-coarse structure, as follows. We
define, for every R > 0, E = | J,x({x} x B(x, R)), where B(x, R) denotes the closed ball centred in x with
radius R, and then ;= {E C Xx X |3R 2 0 : E C Eg}. If d is a metric, then € is a coarse structure.

A quasi-coarse space (X, €) is quasi-metrisable (a coarse space (X, £) is metrisable) if there exists a quasi-
metric d (a metric d, respectively) on X such that & = €. Moreover, a quasi-coarse space (X, &) is quasi-
metrisable if and only if € contains a countable cofinal family ([36]). Similarly, a coarse space (X, €) is
metrisable if and only if € contains a countable cofinal family ([30, 31]).

(b) Let M be a monoid and X be an M-set. Then X can be endowed with a canonical quasi-coarse structure
&y induced by M as follows: we define, for every K € [M]*“,

Ex = |J({x} xxK), and &y = {E C Xx X | 3K € [M]*’ : E C Ex}.
xeX

The quasi-coarse structure & is called action-quasi-coarse structure. In order to see that it is actually a
quasi-coarse structure it is enough to prove property (C3) of Definition 4.6 while the other properties are
easy to check. The desired property follows from the observation that, for every F, K € [M]*“, Er o Eg =
Erg and FK € [M]‘“. Moreover, if M is a group, €y is a coarse structure, called action-coarse structure.
These coarse structures were deeply investigated in [27] in terms of balleans. Furthermore, (X, £;,) has
bounded geometry, in fact, for every E € &y, there exists K € [M]*“ such that E C E, and thus |E[x]| <
|Eg[x]| < |K|, for every x € X.

In the previous notation, (X, &) is quasi-metrisable if M is countable, and it is metrisable if M is a count-
able group.
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Note that, if we consider a group endowed with its right regular action, then the action-coarse structure
coincides with the finitary-group coarse structure ([12]).

Let M and N be two monoids, and X and Y be an M-set and an N-set, respectively. Suppose that (f, f) is a
homomorphism from X to Y. We claim that f: (X, &) — (Y, €y) is bornologous. In order to prove it, we
show that, for every K € [M]<,

(F % NEx) = Ezgoy N (FOX) % FX)). (®)
In fact, if (8) holds, for every E € &, there exists K € [M]*“ such that E C Eg, and thus (f x f)(E) C

E; k) € Ens which implies that f is bornologous. Let K € [M]*“. Then, for every (x, y) € E, there exists

k € K such that y = xk, and thus

(F xHx, y) = FX), fF(xk)) = (FX), fFOOf (k) € Eg ) N (FX) = f(X)).
As for the opposite inclusion, if (f(x), f(y)) € Ef(K) N (f(X) x f(X)), then there exists k € K such that
f) = FOOf (k) = f(xk), and so (f(x), f(¥)) = (f x f)(x, xk), where (x, xk) € E.

Let us add one more result concerning the action-quasi-coarse structure.

Proposition 4.8. Let M be a monoid and X be an M-set. Then, foreverya € UM) ={x e M|y e M: xy =
yx =e}, a: (X, &y) — (X, &) is an asymorphism.

Proof. Itis enough to prove that, for every a € UM), a: (X, Ey) — (X, &) is bornologous. In fact, once the
claim is proved, we can note that a and a™': X — X, which is the inverse of a, are bornologous, and so a is
an asymorphism. Let us now fix a € U(M). For every K € [M]““ and every point (x, xk) € Ex, where k € K,

(ax a)(x, xk) = (xa, xka) = (xa, xaa ‘ka) € Eiikas

and so (a x a)(Ex) C E4-1g,, where a *Ka e [M]*“, which proves that a is bornologous. O
Let (X, &) be a quasi-coarse space and f: X — X be a bornologous self-map. For every n € N\ {0}, x € X, and
E c &, we define
Ta(fs x, E) = (Eo (f x )(E) o -+ o (F*™" x f"H)(E)x] =
=< fTHYENG x BN [ x AENED - - 11,
which is called the n-coarse trajectory of f with respect to x and E. Note that, if X is locally finite, every trajec-

tory of a bornologous self-map is finite.
Let us define the coarse entropy.

)

Definition 4.9 ([37]). Let (X, &) be a locally finite quasi-coarse space and f: X — X be a bornologous self-
map. If x € Xand E € &, we define
C
Hc(f’ X, E) = lim sup M,
n—soo n
HC(f, x) = supHe(f, x, E), and, he(f) = sup HOC(f, x).
Ee& xeX

The value hc(f) is called the coarse entropy of f.

Proposition 4.10. Let M be a monoid, X be an M-set, and f: (X, &y1) — (X, Ey1) be a bornologous self-map.
Then, for every x € X, HPC(f, x) = sup{Hc(f, x, Ex) | K € [M]**}.

Proof. The proof follows from a more general result, [37, Proposition 2.2], stating that it is enough to take a
cofinal subfamily of € in order to compute HY¢(f, x). O
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For a monoid M, an M-set X, and an endomorphism (f, f) of X, we want to compare the algebraic entropy of
(f, f) with the coarse entropy of f: (X, Ex) — (X, Ep).

Lemma 4.11. Let M be a monoid, X be an M-set, and (f, f) be an endomorphism of X. For every n € N \ {0},
x € X,and K € [M]*?, |Ta(f, x, Ex)| < |Tn(f, f, x, K)|. Moreover, if f is surjective, |Tq(f, X, Ex)| = |Tn(f, f, X, K)|.

Proof. Letn € N\ {0}, x € X, and K € [M]*“. Then, according to (8),

Ta(f, X, Ex) = (F" < fOEQL - - [(F x AEQEk XN -+ -1 €

_ —n-1 _ (10)
[+ [Epgo [Ex[XN]] - - - T = xKf(K) - - £ (K) = Tu(f, f, X, K).

Q Ef"_l (K)
Thus the desired conclusion holds. Moreover, if f is surjective, again according to (8), the inclusion in (10) is
an equality, and thus |TS(f, x, Ex)| = |Ta(f, f, x, K)|. O

Theorem 4.12. Let M be a monoid, X be an M-set, and (f, f) be an endomorphism of X. Then

hc(f) < halg(fa f)

Moreover, if f is surjective, then

hc(f) = halg(f’ f)

Proof. Let x € X. Then, according to Lemma 4.11, we have that, for every K < [M]“, H¢(f, x, Ex) <
Hgio(f, f, x, K). Thus, by Proposition 4.10,

HYO°(f,x) = sup He(f,x,Ex) < sup Hae(f, f, x, K) = Hé"l;(f,f, X),
Ke[M]<w Ke[M]<w

which implies that he(f) < hye(f , f). If f is surjective, the equality hc(f) = he(f , f) can be similarly shown.
O

Corollary 4.13. Let M be a monoid and X be an M-set. Then h4(idy, idy) € {0, oo}.

Proof. Since the identity map is surjective, Theorem 4.12 implies that h4(idyx, idy) = hc(idx), and the con-
clusion follows since h¢(idy) € {0, oo} ([37, Theorem 4.4]). O

Remark 4.14. Let us discuss one more consequence of Theorem 4.12. A coarse structure £ on X is said to be
monogenic ([31]) if there exists E € € such that the countable family {E" C X x X | n € N}, where

E'=Eo---0E,
5,—/
n times
is cofinal in €. Let G be a group acting on a set X. Since, for every F, K € [G]*?, EroEg = Epg, ¢ is monogenic
if and only if G is finitely generated.

Let G be a finitely generated group acting on a set X. Since &; is monogenic, in particular, (X, &) is
metrisable, and thus there exists a metric d on X such that £; = &,. Suppose that G acts transitively on
X, which is equivalent to the requirement | J&; = X x X (i.e., (X, &) is connected). For a point x € X, we
consider the sequence «(n, x) = |B(x, n)|, for every n € N. We define the growth rate of X as the growth type
of the sequence {~(n, x)},cn, which does not depend on the point ([2]). Then, applying [37, Theorem 4.9], we
obtain the following properties:

— X has polynomial growth type if h,,(idx, idg) = he(idx) = 0;
- X has sub-exponential growth type if and only if h,(idx, ids) = hc(idx) = 0;
- X has exponential growth type if and only if h(idx, idg) = hc(idy) = oo.

Taking into account Theorem 4.2, this result extends the known relation between the growth type of finitely
generated groups (see [17]) and the algebraic entropy of their identity maps ([8]).
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We have seen how an endomorphism of a set endowed with a monoid action induces a bornologous self-map.
In Theorem 4.16 we discuss the opposite implication in some special cases.

Notation 4.15. In order to keep the notation uniform, in the sequel we consider the group Sy of permutation
of a set X acting on the right on X, while it usually acts on the left.

Theorem 4.16. Letf: (X, &) — (X, &) be an injective bornologous self-map of a coarse space X with bounded
geometry. Then there exists a subgroup G of Sy acting on X and an endomorphism f of G such that € = € and
(f, f) is an endomorphism of X ~ G.

Proof. Fix an entourage E € & such that Ay C E = E%. Let us consider a non-directed graph I'y(E) that has
X and (E o E) \ Ay as set of vertices and edges, respectively. Since (X, &) has bounded geometry, the degree
of I'y(E) is bounded by Ng.g because sup,{|E o E[x]|} < Ng.g. Then, by [16, Corollary 12.2], there exists a
partition

X=X5U---UXy,.,

of X satisfying the following property: for every i € {0, ..., Ng.g} and every x, y € Xf ,(x,y) € EoEifand

only if x = y. The existence of such a partition easily implies that, for every x € Xand everyi € {0, ..., Ng.g},
|E[x] N X{3 | < 1. Thus, in particular, we can enumerate
E[X] = {ag(x)9 ceey af]f(x)}y (11)
for some NE < N EoE, Where, without loss of generality, ag (x) = x.
Let us now fix two indices i, j € {0, ..., Ng.g} and n € N, and define a permutation
o= T ("0, f"(af ), (12)
XGX,-E:
jsNg

where f° = idy and (x, af (x)) denotes the permutation of X that swaps x and af (x) leaving untouched the
remaining points. Note that (12), for n = 0, is well-defined since, if there exists x, y € XiE such that aJE x) =
ajE (y), then (x, y) € E o E and so x = y. Moreover, the injectivity of f implies that, for every n € N, the single
swaps in (12) are disjoint, and so (12) is well-defined. For every n € N, set

S(E, n) = {idx} U{0};" | 1,j € {0, ..., NEog}}.
We claim that, for every n € N,
(f" xf")NE)UAx = Eggy = {(x,y) € XxX | y € XxS(E, n)}. (13)

Let (x,y) € (" xf")E) uAx and i € {0,..., Ng.g} such that x € XiE. If x = y, there is nothing to prove since
idx € S(E, n). Otherwise, there exists (z, w) € E such that f"(z) = x and f"(w) = y. Then, according to (11),
there exists j € {0, ..., Ng.g} such that a;(z) = w, and so

y=f"(w)= f"(Z)Gf;-" = xaf;-” € xS(E, n).

Conversely, let x € X and y € xS(E, n), for some n € N. Then either x = y or there exist i, j € {0, ..., Ngog},
zeXEnfM™(x)and w = af(z) such that f"(w) = y. In both cases, y € ((f* x f")(E) U Ax)[x]. Thus the claim is
proved.

Let G be the subgroup of Sy generated by the family | J{S(E,n) | Ax C E™! = E € &, n € N}, which is its
closure under composition since, forevery Ay C E'1 =Ec &, ne N,and1i,j € {0,..., Ngg}, OE}" o OE}." =
idy. Note that G trivially acts on X as a subgroup of Sy. We claim that & = &;. Equation (13) implies that
& C &g since f is bornologous. In order to prove the opposite inclusion, let us consider an arbitrary element
p € G.Thenp = 01 -+ Om, forsome m € N, where, forevery k € {1, ..., m}, thereexistAx C (Ek)’1 =E et

and ny € N such that oy € S(Ey, ng). Thus, according to (13), for every x € X and y € xp = x01 -+ - Om,

(x,y) = (x,x01) o (x01,x0103) 0+ 0(XO1+*+Opm_1,X01+++0m) €
€ ((f" x fMYE) UAx) o (F™ x fM)(E) UAx) o -+ - o (F™™ x f')(Em) U Ax) € €,
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which shows that E(,, € €. Then, since € is closed under finite unions, for every F ¢ [G]“, Ep € &.
Let now f: G — G be the map defined on the generators of G as f(oiE,}") = af}.””, for every Ay C E! =

Eec &, i,je{0,...,Ngr}and n € N, and then extended to a homomorphism of G. Then f is well-defined,
as of;.”” = 01;”1"”1 if Uf}" = ai”lm, forevery Ay C E'! = E,Ax C F! =F e &1i,j € {0,...,Ngog},
k,1€{0,...,Np.r},and n, m € N. Moreover, idy = aéj‘d", for every n € N, and so f(idx) = idy, which shows
that f is a endomorphism of G. It remains to prove that (f, f) is an endomorphism of X ~ G. Let p € G. Then,

_ oEun,, sEminm
P =0 imojm
-1 -1 .. . .
forsomem, ny,...,nm € N,Ax CE]" =Eq,...,Ax CEy =Em € &,andiq,j1 € {0,...,Ngog, }s .-+ im,jm €

{0, ..., Ng, o, }- Finally, it is easy to check that, for every x € X,
f(xp) = FOOF (oMY - Flommm) = F(x)f ().
O

Theorem 4.16 extends [27, Theorem 1], to which the provided proof is inspired. The mentioned theorem states
that, for every coarse space (X, &) with bounded geometry, there exists a group G < Sy satisfying & = ;.

Corollary 4.17. Let f: (X,&) — (X, &) be a bornologous bijective self-map of a coarse space (X, &) with
bounded geometry. Then there exists a group G acting on X and an endomorphism f of G such that

(a) €=¢Ep,

(b) (f,f)is a endomorphism of X ~ G, and

(c) hC(f) = halg(f’ f)

Proof. The desired claims follow from Theorems 4.16 and 4.12. O

Remark 4.18. Right after Definition 3.1 we claimed that the limit superior in the definition of H,(f, f,x,K)
is not a limit in general. We use Theorem 4.16 to prove this statement. In [37, Example 2.3(c)] the au-
thor provides a metric space (X, d) with bounded geometry with a point x € X such that the sequence
{(log|T5(idx, x, E1)|)/n}new (in the notation of Example 4.7(a)) has no limit. Let G be the subgroup of Sx such
that £; = €, whose existence is guaranteed by Theorem 4.16. Note that (idy, id) is trivially an automorphism
of X .~ G. Moreover, according to (13), there exists K € [G]*“ such that Er = E; since Ay C E; = (E;)~!. Since
idy is surjective, Lemma 4.11 implies that, for every n € N\ {0}, |T5(idy, x, E1)| = |Tn(idy, idg, X, K)|, and so
{(log|Ta(idy, idg, x, K)|)/n}ncn does not have a limit.

Question 4.19. In the notation of Theorem 4.16, can we loose the injectivity request on the map f?

Question 4.20. Let f be a bornologous self-map of a quasi-coarse space (X, £) with bounded geometry. Do
there exist a monoid M acting on X and an endomorphism f of M such that & = &y and (f, f) is an endomorphism
of X ~ M?

Question 4.21. Let f be a bornologous self-map of a quasi-coarse space (X, &) with bounded geometry. Let M
and N be two monoids acting on X such that & = &y = &y, and (f, fi) and (f, fy) be endomorphisms of X ~ M
and X ~ N, respectively. Is it true that h,(f e hye(f, fn)? What happens if X is a coarse space and M
and N are groups?

Let us spend a few words on the importance of Questions 4.19 and 4.21. Suppose that they were true. Then
the algebraic entropy of endomorphisms of G-sets would induce as a new entropy notion h. of bornologous
self-maps of coarse spaces with bounded geometry in the following way: in the notation of Theorem 4.16, let
us define h..(f) = h, 1(f f). This new entropy would coincide with the usual coarse entropy h. on surjective
maps. Outside this realm, h. often takes value 0 ([37]), while h, would be more meaningful. Furthermore,
hg;¢ would extend both the algebraic entropy of group endomorphisms and this new notion h;.
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