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Abstract: The usual notion of algebraic entropy associates to every group (monoid) endomorphism a value
estimating the chaos created by the self-map. In this paper, we study the extension of this notion to arbi-
trary sets endowed with monoid actions, providing properties and relating it with other entropy notions. In
particular, we focus our attention on the relationship with the coarse entropy of bornologous self-maps of
quasi-coarse spaces. While studying the connection, an extension of a classi�cation result due to Protasov is
provided.
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1 Introduction
After Clausius’ de�nition in thermodynamics in 1865, entropy in mathematics was �rstly introduced by

Shannon in information theory ([32]). Inspired by his de�nition, this notionwas implemented in several other
areas. In each of the latter settings, entropy associates to every self-map of a space a value in R≥0 ∪ {∞} es-
timating the chaos created by it. Let us mention, for example, Kolmogorov ([21]) and Sinai’s ([33]) measure
theoretic entropy in ergodic theory, Adler, Konheim and McAndrew’s topological entropy ([1]), and, more
recently, coarse entropy in coarse geometry ([37] and [14], where the authors of the latter were inspired by
Bowen’s de�nition of topological entropy in uniform spaces, [3]). We refer to [8] for a wide survey of many
entropy notions, and we also cite [10] where the authors used normed semigroups to provide a unifying ap-
proach to study several entropy notions.

Let us now focus on the situation in group theory. The �rst idea of extending entropy to the realm of
abelian groups is contained in the work of Adler, Konheim and MacAndrew ([1]), and this entropy was later
studied by Weiss ([35]) in the class of torsion abelian groups. Let us cite also [11] for a more recent reference
to Weiss’ algebraic entropy, and [15] for the algebraic entropy of endomorphisms of locally �nite groups.
A di�erent approach was provided by Peters in [23], and then it was generalised for all endomorphisms of
abelian groups in [9]. The samede�nition canbe readily extended to semigroup andmonoid endomorphisms.
Let us also address the interested reader again to the survey [8].

Algebraic entropy was later generalised to consider continuous endomorphisms of topological groups.
Peters in [24] gave an extension of the algebraic entropy de�ned in [23] for topological automorphisms of
locally compact abelian groups. Peter’s de�nitionwas then further generalised by Virili ([34]) to all endomor-
phisms of locally compact abelian groups. Virili’s notion canbe found in [8] also for non-abelian groups.More
recently, a growing interest was paid to entropies associated to actions of amenable semigroups and groups,
instead of single morphisms. In the algebraic setting, Dikranjan, Fornasiero and Giordano Bruno studied the
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algebraic entropy of actions of amenable cancellative semigroups on abelian groups ([7]). The authors were
inspired by the measure and topological counterparts (see [4] and [18])

In the sequel, as algebraic entropy ofmonoid endomorphismswe always refer to the de�nition contained
in [10] and reported in De�nition 4.1. In this paper we present a di�erent way to generalise the algebraic
entropy of a single monoid endomorphism. In order to do that, instead of using monoids, we consider sets
endowed with monoid actions, which are calledM-sets, for somemonoidM. We then introduce in De�nition
3.1 the entropyof their endomorphisms (De�nition 2.3). In addition to its intrinsic interest and the connections
to other known entropies thatwe shortlymention in the following paragraph, this generalisation ismotivated
since M-sets are very �exible objects, and so it has possible applications in di�erent areas of mathematics
where they appear.

This new notion of algebraic entropy extends the usual one in the following sense. Every monoid M can
be canonically seen as anM-set, and an endomorphismof the correspondingM-set can be associated to every
endomorphism of M. The algebraic entropy of the endomorphism of the M-set coincides with the algebraic
entropy of the original endomorphism (Theorem 4.3). According to this observation, we extend several prop-
erties that hold for the usual algebraic entropy of group endomorphisms to this wider setting. Examples of
these properties are the weak logarithmic law (Proposition 3.8), the invariance under conjugation (Corollary
3.11), the monotonicity for subspaces (Corollary 3.12) and quotients (Corollary 3.13), and the weak addition
theorem (Theorem 3.18). We refer to [8] for their classical counterparts in the realm of group endomorphisms.

We establish a strong connection also with another notion of entropy, the coarse entropy introduced in
[37] in the realm of coarse geometry. This branch of mathematics, also known as large-scale geometry, stud-
ies the large-scale, global, properties of spaces, ignoring their topological ones. It was at �rst developed for
metric spaces (see [17] and [22] for applications to geometric group theory and geometric topology, respec-
tively) and then Roe introduced coarse spaces to deal with non-metrisable spaces ([31]). Other structures that
are equivalent to coarse spaces are balleans ([28]), asymptotic proximities ([26]), and large-scale structures
([13]). More recently, this approach was generalised to non-symmetric spaces with the introduction in [36]
of quasi-coarse spaces (De�nition 4.6). The morphisms between those spaces are called bornologous maps.
Every monoid action on a set induces a quasi-coarse space, which is a coarse space if the monoid is a group
([27]). In [27] and [25] several classes of such coarse spaces are characterised. Moreover, every endomorphism
of anM-set induces a bornologous self-map of the corresponding quasi-coarse space, and we show that, pro-
vided that this morphism is surjective, its coarse entropy coincides with the algebraic entropy of the original
endomorphism (Theorem 4.12). We also prove that, for a large class of coarse spaces, every injective bornolo-
gous self-map can be induced by an endomorphismof G-sets, for some subgroup G of permutations (Theorem
4.16), generalising a result due to Protasov ([27, Theorem 1]).

This paper is organised as follows. In Section 2 we recall some basic de�nitions in the realm of M-sets,
such as monoid and group actions, orbits and endomorphisms ofM-sets, and prove results concerning these
objects. Moreover, we de�ne the category FlowMon-Set of M-sets endowed with endomorphisms. Then in
Section 3 we de�ne the algebraic entropy, present some examples of easy computations and discuss conse-
quences of the results proved in §2.1. More standard properties of this entropy (e.g., weak logarithmic law,
invariance under conjugation, monotocity for subspaces and quotients) are collected in §3.1, while in §3.2 we
provide the weak addition theorem and the coproduct formula. Section 4 is devoted to the comparison of the
algebraic entropy with other entropy notions. In particular, in §4.1 we focus on the relationship with the alge-
braic entropy of monoid endomorphisms, while in §4.2 with the coarse entropy. More precisely, in the latter
subsection, we provide all the necessary background in coarse geometry, show when the coarse entropy and
the algebraic entropy coincide, and generalise Protasov’s result.

We would like to thank the referee for the careful reading and the interesting suggestions.



Algebraic entropy of endomorphisms of M-sets | 55

2 Endomorphisms ofM-sets
The theory ofM-sets and their homomorphisms that we use in this paper is self-contained. For the inter-

ested reader, we refer to [5], [6] and [20].
LetM be a monoid and X be a set. In the sequel, we denote by eM the neutral element ofM. If there is no

risk of ambiguity, we write e. A right action of M on X is a map α : M → XX satisfying the following properties:
– α(e) = idX;
– α(b) ◦ α(a) = α(ab), for every a, b ∈ M.
Since in the sequel we always refer to right actions, we call them actions. If the action involved is clear, we
usually simplify the notation by writing xa instead of α(a)(x), for every x ∈ X and a ∈ M. It is easy to check
that, if a ∈ M is invertible (i.e., there exists a−1 ∈ M such that aa−1 = a−1a = e) then α(a) is a bijection.
In particular, if M is a group, then it acts via bijections, which means that α(M) ⊆ SX, where SX denotes the
group of permutations of X.

An action α of a monoid M on a set X is said to be:
– free if, for every a, b ∈ M, a = b provided that there exists x ∈ X such that α(a)(x) = α(b)(x);
– weakly free if, for every a, b ∈ M, α(a) = α(b) provided that there exists x ∈ X such that α(a)(x) = α(b)(x).
Of course, an action is weakly free if it is free.

LetM be a monoid. A right M-set, brie�y, for the purpose of this paper, anM-set, is a set X endowed with
an action of M on it, and we write X x M.

Let M be a monoid and X be an M-set. The orbit of a point x ∈ X is the subset xM = {xa ∈ X | a ∈ M} of
X. A subset Y of X is called a ceiling of X if YM :=

⋃
{yM | y ∈ Y} = X. Moreover, an element x ∈ X is a top

element if {x} is a ceiling.

Remark 2.1. Let G be a group and X be a G-set. Then the notion of orbit coincides with the usual one (see,
for example, [19]). Thus, the family of orbits {xG | x ∈ X} creates a partition of X. A ceiling of X has to contain
at least one point for each orbit. Moreover, the following properties are trivially equivalent:
– X consists of just one orbit (i.e., the action is transitive);
– every point of X is a top element.

Example 2.2. LetM be amonoid. Then the right regular action ρ of M on itself is de�ned as follows: for every
a ∈ M, ρ(a) is the right shift sρa by a, i.e., ρ(a) = sρa : M → M, where sρa(b) = ba. Moreover, the following
properties are equivalent:
(a) M is left-cancellative (i.e., for every a, b, c ∈ M, if ab = ac then b = c);
(b) ρ is free;
(c) ρ is weakly free.

The implications (a)→(b)→(c) are trivial. Suppose that ρ is weakly free and a, b, c ∈ M satisfying ab = ac.
Since ρ is weakly free, for every x ∈ M, ρ(b)(x) = ρ(c)(x), and thus, b = ρ(b)(e) = ρ(c)(e) = c.

Hence, in particular, for a group G, the right regular action is free.
Note that the right regular action always has a top element: the neutral element e ∈ M. However, this top

element may not be unique. In fact, every invertible element of M is a top element, and so, if M is a group,
every element is a top element.

If M and N are two monoids, a map f : M → N is a homomorphism if f (eM) = eN and, for every a, b ∈ M,
f (ab) = f (a)f (b).

De�nition 2.3. Let M and N be two monoids, and X and Y be an M-set and an N-set, respectively. A homo-
morphism from theM-set X to the N-set Y is a pair (f , f ) consisting of a map f : X → Y and a homomorphism
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of monoids f : M → N such that, for every a ∈ M, the diagram

X
f //

a
��

Y

f (a)
��

X
f // Y

commutes. More explicitly, we require that, for every x ∈ X and a ∈ M, f (xa) = f (x)f (a). Moreover, we say
that (f , f ) is
– an endomorphism if X x M = Y x N;
– an isomorphism if both f and f are bijections;
– an automorphism if it is both an endomorphism and an isomorphism.

Note that, if M and N are two monoids and (f , f ) is an isomorphism from the M-set X to the N-set Y, then
(f −1, f −1) is an isomorphism from Y to X.

Remark 2.4. Let (f , f ) be an endomorphismof theM-set X, whereM is amonoid. Since f is a homomorphism,
for every a, b ∈ M, the subdiagrams in the following diagram commute:

X a //

f
��

ab

  
X

f
��

b // X

f
��

X
f (a) //

f (ab)
??X

f (b) // X

Moreover, with a routine argument we can show that, for every x ∈ X, n ∈ N, and a ∈ M, f n(xa) = f n(x)f n(a).

Example 2.5. (a) Let X x {e}be the action of the trivial groupona set X. Then, for every self-map f : X → X,
the trivial endomorphism f : {e} → {e} shows that (f , f ) is an endomorphism of X x {e}.

(b) Let f : M → N be a homomorphism of monoids. In Example 2.2 we described the construction of the
right regular action. Let us show how f can induce a homomorphism from M x M to N x N in a
canonical way. It is enough to consider the pair (f , f ) and the desired properties are ful�lled because
f is a homomorphism.

(c) LetM be a (left-)cancellative commutative monoid, G(M) be the abelian group generated byM ([5]), and
ı : M → G(M) the inclusion homomorphism. Then the right regular action of M on itself induces an
action of M on G(M) as follows: for every a ∈ M, a : g 7→ g + ı(a). The action on G(M) is free. Moreover,
for every endomorphism f : G(M)→ G(M) such that f (ı(M)) ⊆ ı(M) (i.e., ı(M) is f -invariant), there exists
an endomorphism f : M → M such that (f , f ) is an endomorphism of G(M) x M. In fact, de�ne, for every
a ∈ M, f (a) = ı−1(f (ı(a))) ∈ ı(M), which satis�es, for every g ∈ G(M),

f (ga) = f (g + ı(a)) = f (g) + f (ı(a)) = f (g) + ı(f (a)) = f (g)f (a).

Remark 2.6. Let M and N be two monoids, X be an M-set, Y be an N-set, and (f , f ) be a homomorphism
from X to Y. Denote by αM and αN the actions on X and Y, respectively. Let Z be a ceiling of X. Then, for every
x ∈ X, there exists z ∈ Z and a ∈ M such that x = za, and so f (x) = f (za) = f (z)f (a). Thus f |Z and f uniquely
determine the map f .

Conversely, given a map h : Z → Y and a homomorphism g : M → N, the existence of a map g : X → Y
such that g|Z = h and (g, g) is a homomorphism from X to Y is not granted in general. In fact, consider the
group X = Z = Y = Z2 = {0, 1}, endowed with its right regular action, and the homomorphisms h = idX and
g(G) = {0}. Then the only possible extension g of h is h itself, but 0 = h(0) = h(1 + 1), while h(1) + g(1) = 1.

Let us now suppose that for every pair of distinct points of Z, their orbits are disjoint and the homomor-
phism g satis�es the following property: for every a, b ∈ M, αN(g(a)) = αN(g(b)) provided that there exists
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x ∈ X such that αM(a)(x) = αM(b)(x). Then the desired extension g of h can be de�ned. In fact, for every
x ∈ X, there exists an element ax ∈ M and a unique zx ∈ Z such that x = zxax, and thus we can de�ne
g(x) = h(zx)g(ax). Note that, for every other a′x ∈ M such that x = zxa′x, αN(g(ax)) = αN(g(a′x)) thanks to the
required property on g.

Let us now introduce the category FlowMon-Set of �ows of sets endowed with monoid actions. Its objects
are quintuplets (M, X, α, f , f ), where M is a monoid, X is an M-set, α is the action of M on X, and (f , f ) is
an endomorphism of X. Given two objects (M, X, α, f , f ) and (N, Y , β, g, g) of FlowMon-Set, a morphism
between them is ahomomorphism (h, h) fromX x M to Y x N such that the following two squares commute:

X
f //

h
��

X

h
��

Y
g // Y ,

and M
f //

h
��

M

h
��

N
g // N .

(1)

Since (f , f ) and (g, g) are endomorphisms of X and Y, respectively, (1) implies that, for every a ∈ M, all
subdiagrams in the following diagram commute:

X
f //

a
��

h

��<
<<

<<
<<

<<
<<

<<
<<

<<
X

f (a)
�� h

��=
==

==
==

==
==

==
==

==

X
f //

h

��<
<<

<<
<<

<<
<<

<<
<<

<<
X

h

��=
==

==
==

==
==

==
==

==

Y
g //

h(a)
��

Y

g(h(a))=h(f (a))
��

Y
g // Y .

In the previous notation, the pair (h, h) is an isomorphism of FlowMon-Set if (h, h) is an isomorphism from
X x M to Y x N, i.e., both h and h are bijective.

If there is no risk of ambiguity, in the sequel we denote the objects of FlowMon-Set as quadruplets
(M, X, f , f ), not explicitly mentioning the action of M on X.

2.1 Relationship between the components of a homomorphism

In this subsection we study the relationship between the two maps f and f composing a homomorphism
(f , f ) between an M-set and an N-set.

Proposition 2.7. Let M and N be two monoids, X be an M-set, and Y be an N-set. Let (f1, f ) and (f2, f ) be two
homomorphisms from X to Y.
(a) If x ∈ X satis�es f1(x) = f2(x), then f1|xM = f2|xM .
(b) Let Z ⊆ X. Then the following properties are equivalent:

(b1) Z is a ceiling of X;
(b2) f1|Z = f2|Z if and only if f1 = f2.

Proof. For every a ∈ M, f1(xa) = f1(x)f (a) = f2(x)f (a) = f2(xa). Thus item (a) and the implication (b1)→(b2)
follow.

Let now Z be a subset of X. De�ne Y = ZM. Let i1 and i2 be the canonical injections of X in the disjoint
union X t X, and ∼ be the equivalence relation on X t X de�ned as follows: for every x, y ∈ X, i1(x) ∼ i2(y)
if and only if x = y ∈ Y. Let X tY X = X t X/∼, q : X t X → X tY X be the quotient map, and, for k ∈ {1, 2},
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jk = q◦ ik. If α is the action ofM on X, we de�ne an action β ofM on XtY X as follows: for every jk(x) ∈ XtY X,
jk(x) = jk(xa), which is well-de�ned since YM = Y. Note that (j1, idM) and (j2, idM) are two homomorphisms
from X x M to X tY X x M. If Z is not a ceiling, then j1 ≠ j2, although j1|Y = j2|Y and so, in particular,
j1|Z = j2|Z .

Corollary 2.8. Let M and N be two monoids, X be an M-set, Y be an N-set, and (f1, f ) and (f2, f ) be two
homomorphisms from X to Y. If x is a top element of X, then f1 = f2 if and only if f1(x) = f2(x).

Corollary 2.9. Let M and N be two monoids endowed with their right regular actions. Then the following prop-
erties are equivalent:
(a) the pair (f , f ) is a homomorphism from M to N;
(b) there exists a ∈ N such that f = sλa ◦ f , where sλa : N → N is the left shift by a, de�ned as sλa(x) = ax, for

every x ∈ N.

Proof. Let f : M → N be a homomorphism. Then, for every a ∈ N, (sλa ◦ f , f ) is a homomorphism fromM x M
to N x N. Moreover, if f : M → N is another map such that (f , f ) is a homomorphism, then f = sλf (eM) ◦ f
according to Corollary 2.8 since eM is a top element in M (Example 2.2).

Proposition 2.10. Let M and N be two monoids, X be an M-set, and Y be an N-set. Let us denote by α the
action of N. Let (f , f1) and (f , f2) be two homomorphisms from X to Y.
(a) For every a ∈ M, α ◦ f1(a)|f (X) = α ◦ f2(a)|f (X).
(b) If either f is surjective or α is weakly free, then α ◦ f1 = α ◦ f2.
(c) If α is free, then f 1 = f 2.

Proof. Item (a) can be easily deduced since, for every a ∈ M, and x ∈ X, f (x)f1(a) = f (xa) = f (x)f2(a). Then
items (b) and (c) trivially follow.

Corollary 2.11. Let M be a monoid, X be an M-set, α be the action of M on X, and (f , f1) and (f , f2) be two
endomorphisms of X. Then:
(a) for every n ∈ N, α ◦ f1

n = α ◦ f2
n provided that either f is surjective or α is weakly free;

(b) for every n ∈ N, f1
n = f2

n provided that α is free.

Proof. Both claims follow from Proposition 2.10 and Remark 2.4.

The following result immediately descends from Corollary 2.11 and Example 2.2.

Corollary 2.12. Let M be a left-cancellative monoid endowedwith its right regular action, and (f , f1) and (f , f2)
be two endomorphisms of M. Then, for every n ∈ N, f1

n = f2
n.

3 Algebraic entropy of endomorphisms
Let M be a monoid and X be an M-set. Then, for every K ⊆ M and Y ⊆ X, de�ne YK = {yk ∈ X | y ∈

Y , k ∈ K}. This notationwill also be used if we considerMwith its right regular action. For every set X, denote
by [X]<ω the family of �nite subsets of X.

LetM be amonoid, X be anM-set, and (f , f ) be an endomorphism of X x M. For every n ∈ N \{0}, x ∈ X
and K ∈ [M]<ω, de�ne

Tn(f , f , x, K) = xKf (K) · · · f
n−1(K),

which is called the n-algebraic trajectory of (f , f ) with respect to x and K. If K contains the neutral element e,
then {Tn(f , f , x, K)}n is an increasing sequence of subsets. We now want to de�ne the algebraic entropy of
(f , f ).
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De�nition 3.1. LetM be amonoid, X be anM-set, and (f , f ) be an endomorphism of X x M. For every x ∈ X
and K ∈ [M]<ω, we de�ne

Halg(f , f , x, K) = lim sup
n→∞

log|Tn(f , f , x, K)|
n ,

Hlocalg(f , f , x) = sup{Halg(f , f , x, K) | K ∈ [M]<ω}, and halg(f , f ) = sup{Hlocalg(f , f , x) | x ∈ X},

and halg(f , f ) is called the algebraic entropy of (f , f ).

In the notations of De�nition 3.1, the limit superior in the de�nition of Halg(f , f , x, K) is not a limit in general.
We prove it in Remark 4.18.

Example 3.2. Let M be a monoid, X be an M-set, and (f , f ) be an endomorphism of X x M.
(a) If M = {e} (as in Example 2.5(a)), then halg(f , f ) = 0 since, for every n ∈ N \ {0} and x ∈ X,

Tn(f , f , x, {e}) = {x}.
(b) If either M or X are �nite, then it is easy to see that halg(f , f ) = 0.
(c) Suppose now that the orbits of X are �nite. Then, for every x ∈ X and K ∈ [M]<ω, {Tn(f , f , x, K)}n∈N is

bounded since Tn(f , f , x, K) ⊆ xM, for every n ∈ N \ {0}. Hence halg(f , f ) = 0.
(d) If M is locally �nite (i.e., every �nite subset of M generates a �nite submonoid) and f = idM, then

halg(f , idM) = 0. In fact, for every x ∈ X, K ∈ [M]<ω, and n ∈ N \ {0},

|Tn(f , idM , x, K)| = |xKn| ≤ |〈K〉| < ∞.

In the de�nition of the algebraic entropy, the morphism f : X → X does not play any explicit role. Hence, the
following fact trivially holds.

Fact 3.3. If M is a monoid acting on a set X, and (f1, f ) and (f2, f ) are two endomorphisms of X, then
halg(f1, f ) = halg(f2, f ).

The following results are devoted to understand the implications of what we obtained in §2.1, where we dis-
cussed the relationship between the components of a homomorphism.

Proposition 3.4. Let M be a monoid, X be an M-set, and (f , f1) and (f , f2) be two endomorphisms of X. If, for
every n ∈ N, α ◦ f1

n = α ◦ f2
n, then halg(f , f1) = halg(f , f2).

Proof. The claim follows once we show that, for every n ∈ N \ {0}, x ∈ X, and K ∈ [M]<ω,

Tn(f , f1, x, K) = Tn(f , f2, x, K). (2)

Let us prove the desired equality by induction. The case n = 1 is trivial. Suppose that (2) holds for a given n
and we show that the equality holds also for n + 1. In fact,

Tn+1(f , f1, x, K) = xf1(K) · · · f1
n(K) = Tn(f , f1, x, K)f1

n(K) =
⋃
k∈K

α(f1
n(k))(Tn(f , f1, x, K)) =

=
⋃
k∈K

α(f2
n(k))(Tn(f , f1, x, K)) = Tn(f , f2, x, K)f2

n(K) = Tn+1(f , f2, x, K).

Corollary 3.5. Let M be a monoid, X be an M-set, α be the action of M on X, and (f , f1) and (f , f2) be two
endomorphisms of X. Then halg(f , f1) = halg(f , f2) provided that either f is surjective or α is weakly free.

Proof. The claim trivially follows from Proposition 3.4 and Corollary 2.11.
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3.1 Basic properties of the algebraic entropy

Let us now enlist some basic properties of the algebraic entropy.
Let X be a set. An ideal I of subsets of X is a family closed under taking subsets and �nite unions. For

example, for every set X, the family [X]<ω is an ideal. A subfamily F ⊆ I is co�nal in I if, for every K ∈ I, there
exists F ∈ F such that K ⊆ F.

Proposition 3.6. Let M be a monoid, X be an M-set and (f , f ) be an endomorphism of X.
(a) If K ⊆ F ∈ [M]<ω, then Halg(f , f , x, K) ≤ Halg(f , f , x, F), for every x ∈ X. Hence, if F is a co�nal family of

[M]<ω, then
Hlocalg(f , f , x) = sup{Halg(f , f , x, K) | K ∈ F}.

(b) If x, y ∈ X are two points such that y ∈ xM, then Hlocalg(f , f , x) ≥ H
loc
alg(f , f , y).

(c) If Y is a ceiling of X, thenhalg(f , f ) = supy∈Y Hlocalg(f , f , y). In particular, if x is a top element of X,halg(f , f ) =
Hlocalg(f , f , x).

Proof. Item (a) is trivial, and item (c) follows from (b).
(b) Let x, y ∈ X and a ∈ M be an element such that y = xa. Pick an arbitrary K ∈ [M]<ω and de�ne

K′ = aK ∪ K. We claim that Halg(f , f , x, K′) ≥ Halg(f , f , y, K) and thus Hlocalg(f , f , x) ≥ H
loc
alg(f , f , y). In fact, for

every n ∈ N,

Tn(f , f , x, K′) = xK′f (K′) · · · f
n−1(K′) ⊇ xaKf (K) · · · f n−1(K) = Tn(f , f , y, K).

Proposition 3.7. Let M be amonoid, X be an M-set, and (f , f ) be an automorphism of X. Suppose the following
further properties:
(a) there exists a ceiling Y of X consisting of �xed points for the map f ;
(b) M is either commutative or a group acting freely.

Then halg(f −1, f
−1) = halg(f , f ).

Proof. According to Proposition 3.6(c), it is enough to evaluate the trajectories on points of the ceiling Y. Let
us now notice that, for every n ∈ N \ {0}, x ∈ Y, and K ∈ [M]<ω,

f n−1(Tn(f −1, f
−1, x, K)) = f n−1(xKf −1(K) · · · f −n+1(K)) = f n−1(x)f n−1(K) · · · f (K)K =

= xf n−1(K) · · · f (K)K,

because of the hypothesis (a). Hence, since f is bijective,

|Tn(f −1, f
−1, x, K)| = |xf n−1(K) · · · f (K)K|. (3)

IfM is commutative, then (3) implies that |Tn(f −1, f
−1, x, K)| = |Tn(f , f , x, K)|, which leads to the thesis. Sup-

pose now that M is a group acting freely on X. According to Proposition 3.6(a), we can assume without loss
of generality that K = K−1. Hence, (3) and the fact that the action is free imply that

|Tn(f −1, f
−1, x, K)| = |xf n−1(K) · · · f (K)K| = |f n−1(K) · · · f (K)K| = |(f n−1(K) · · · f (K)K)−1| =

= |Kf (K) · · · f n−1(K)| = |Tn(f , f , x, K)|,

from which the claim descends.

Proposition 3.8 (Weak logarithmic law). Let M be a monoid, X be an M-set, and (f , f ) be an endomorphism
of X.
(a) For every k ∈ N \ {0}, halg(f k , f

k) ≤ k halg(f , f ).



Algebraic entropy of endomorphisms of M-sets | 61

(b) Suppose that X has a ceiling consisting of �xed points for themap f , and M is either commutative or a group
acting freely. Then, if (f , f ) is an automorphism, for every k ∈ Z \ {0}, halg(f k , f

k) ≤ |k|halg(f , f ).

Proof. (a) Fix k ∈ N \ {0}. Then, for every n ∈ N \ {0}, x ∈ X and e ∈ K ∈ [M]<ω,

log|Tn(f k , f
k , x, K)|

n = log|xKf k(K) · · · f k(n−1)(K)|
n ≤ log|Tkn−k+1(f , f , x, K)|n =

= log|Tkn−k+1(f , f , x, K)|
kn − k + 1 · kn − k + 1n .

Hence Halg(f k , f
k , x, K) ≤ kHalg(f , f , x, K), and so the claim follows in virtue of Proposition 3.6(a) and (c).

(b) It follows from item (a) and Proposition 3.7. In fact, if k ∈ N \ {0}, then halg(f k , f
k) ≤ k halg(f , f )

because of item (a), otherwise, if k ∈ Z \ N, then halg(f k , f
k) = halg(f −k , f

−k) ≤ −k halg(f , f ).

Theorem 3.9. Let (M, X, f , f ) and (N, Y , g, g) be two objects of FlowMon-Set, and (h, h) be a morphism of
the category FlowMon-Set from (M, X, f , f ) and (N, Y , g, g).
(a) If h is injective, then halg(f , f ) ≤ halg(g, g).
(b) If h and h are surjective, then halg(f , f ) ≥ halg(g, g).
(c) If h is bijective and h is surjective, then halg(f , f ) = halg(g, g).

Proof. Item (c) trivially follows from items (a) and (b). To prove them, let n ∈ N \ {0}, x ∈ X, and K ∈ [M]<ω.
Then

h(Tn(f , f , x, K)) = h(xKf (K) · · · f
n−1(K)) = h(x)h(Kf (K) · · · f n−1(K)) =

= h(x)h(K)h(f (K)) · · · h(f n−1(K)) = h(x)h(K)g(h(K)) · · · gn−1(h(K)) =
= Tn(g, g, h(x), h(K)).

(4)

Suppose that h is injective. Then (4) implies that |Tn(f , f , x, K)| = |Tn(g, g, h(x), h(K))|, and thus

Halg(f , f , x, K) = Halg(g, g, h(x), h(K)). (5)

Since the inequality (5) holds for every x ∈ X and K ∈ [M]<ω, halg(f , f ) ≤ halg(g, g).
Suppose otherwise that h and h are surjective. Then, for every y ∈ Y and every F ∈ [N]<ω, there exists

x ∈ X and K ∈ [M]<ω such that h(x) = y and h(K) = F. Then, according to (4),

|Tn(g, g, y, F)| = |Tn(g, g, h(x), h(K))| = |h(Tn(f , f , x, K))| ≤ |Tn(f , f , x, K)|.

Thus Halg(g, g, y, F) ≤ Halg(f , f , x, K), and so, since y ∈ Y and F ∈ [N]<ω can be taken arbitrarily, halg(g, g) ≤
halg(f , f ).

Remark 3.10. In the notation of Theorem 3.9, let us note that the injectivity of h implies that h satis�es amild
version of injectivity. More precisely, we claim that, for every a, b ∈ M, if β(h(a)) = β(h(b)), then α(a) = α(b).
In fact, β(h(a)) = β(h(b)) implies that, for every x ∈ X, h(xa) = h(x)h(a) = h(x)h(b) = h(xb), and so the claim
follows since h is injective.

The following consequences of Theorem 3.9 can be deduced.

Corollary 3.11 (Invariance under conjugation). The algebraic entropy is invariant along isomorphisms of the
category FlowMon-Set.

Corollary 3.12 (Monotonicity for subspaces). Let M be amonoid, X be anM-set, and (f , f ) be a endomorphism
of X. Suppose that Y is a subset of X and N is a submonoid of M satisfying the following properties:
(a) YN = Y;
(b) f (Y) ⊆ Y (i.e., Y is f -invariant);
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(c) f (N) ≤ N (i.e., N is f -invariant).

Then (f |Y , f |N) is an endomorphism of Y x N, and halg(f |Y , f |N) ≤ halg(f , f ).

Proof. If we denote by h the inclusion of Y in X and by h the inclusion of N in M, we can apply Theorem 3.9
to obtain the desired result.

Let q : X → Y be a map. For every E ⊆ X × X, we de�ne (q × q)(E) = {(q(x), q(y)) ∈ Y × Y | (x, y) ∈ E} and
Rq = {(x, y) ∈ X × X | q(x) = q(y)}.

Corollary 3.13 (Monotonicity for quotients). Let M and N be two monoids, X and Y be an M-set and an N-set,
respectively, (f , f ) be an endomorphism of X x M, q : X → Y be a surjective map and p : M → N be a surjective
homomorphism. Suppose that the following properties hold:
(a) (f × f )(Rq) ⊆ Rq;
(b) (f × f )(Rp) ⊆ Rp;
(c) the pair (q, p) is a homomorphism from X x M to Y x N.

Then there exists an endomorphism (g, g) of Y x N making the pair (q, p) a morphism of the category
FlowMon-Set from (M, X, f , f ) to (N, Y , g, g). Moreover, halg(g, g) ≤ halg(f , f ).

Proof. Let y ∈ Y and b ∈ N. Since q and p are surjective, then there exist x ∈ X and a ∈ M such that q(x) = y
and p(a) = b. Then we de�ne g(y) = g(q(x)) = q(f (x)) and g(b) = g(p(a)) = p(f (a)), and these two maps are
well-de�ned because of the properties (a) and (b), respectively. Moreover, g is an endomorphism of N since
both p and f are homomorphisms. Then it is easy to check that (q, p) has the desired properties. The last
claim follows from Theorem 3.9(b).

Let us specify Corollary 3.13 in some particular situations, in order to get a better understanding of the hy-
potheses (a)–(c).

Corollary 3.14. Let q : M → N be a surjective homomorphism of monoids, and f be an endomorphism of M.
Moreover, suppose that (f×f )(Rq) ⊆ Rq. Then there exists an endomorphism g of N such that (q, q) is amorphism
of FlowMon-Set from (M,M, ρ, f , f ) to (N, N, ρ, g, g). Moreover, halg(g, g) ≤ halg(f , f ).

Proof. In order to apply Corollary 3.13, it is enough to check that the properties (a)–(c) hold. Since (f ×f )(Rq) ⊆
Rq, both items (a) and (b) are ful�lled. Moreover, item (c) follows from Example 2.5(b).

Note that, in thenotation of Corollary 3.14, ifM andN are groups, the request that (f ×f )(Rq) ⊆ Rq is equivalent
to asking that ker q is f -invariant.

Corollary 3.15. Let M be a monoid, X be an M-set, q : X → Y be a surjective map between sets, and (f , f ) be
an endomorphism of X. Suppose that the following properties hold:
(a) (f × f )(Rq) ⊆ Rq;
(b) for every a ∈ M, (a × a)(Rq) ⊆ Rq.

Then there exists an action of M on Y and a map g : Y → Y such that (g, f ) is an endomorphism of Y x M, and
(q, idM) is a morphism of FlowMon-Set from (M, X, f , f ) to (M, Y , g, f ). Moreover, halg(g, f ) ≤ halg(f , f ).

Proof. First of all, because of item (b), we can de�ne an action of M on Y as follows: if y is a point of Y and
x ∈ X satis�es q(x) = y, then ya = q(x)a = q(xa), for every a ∈ M. Because of the de�nition, it is easy to
check that (q, idM) is actually a homomorphism from X x M to Y x M. Thus items (a) and (c) of Corollary
3.13 are ful�lled. Moreover, item (b) is trivial, and thus the claim follows from Corollary 3.13 since the map g
de�ned in the proof coincides with f .

For every set X, denote by ∆X the diagonal of X, i.e., the family ∆X = {(x, x) ∈ X × X | x ∈ X}.
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Corollary 3.16. Let p : M → N be a surjective homomorphism of monoids, α be an action of M on X, and (f , f )
be an endomorphism of X x M. Suppose that the following properties hold:
(a) (f × f )(Rp) ⊆ Rp;
(b) (α × α)(Rp) ⊆ ∆XX .

Then there exists an action β of N on X and an endomorphism g of N such that (f , g) is an endomorphism of
X x N, and (idX , p) is amorphism of FlowMon-Set from (M, X, α, f , f ) to (N, X, β, f , g). Moreover, halg(f , g) ≤
halg(f , f ).

Proof. Let us de�ne the action β. Let b ∈ N and a ∈ M be an element such that p(a) = b. Then we put
β(b) = β(p(a)) = α(a), which is well-de�ned because of item (b). Because of the de�nition of β, (idX , p) is a
homomorphism from X x M to X x N. Thus the properties (b) and (c) of Corollary 3.13 are satis�ed, while
item (a) is trivial. Then the claim follows once we notice that the map g de�ned in the proof of Corollary 3.13
coincides with f .

Let us consider an application of Corollary 3.16.

Remark 3.17. Let M be a monoid with a weakly free action α on a set X, and (f , f ) be an endomorphism of
X x M. We can introduce an equivalence relation ∼X on M as follows: for every a, b ∈ M, a ∼X b if and
only if α(a) = α(b). It is not hard to check that∼X is actually a congruence (i.e., an equivalence relation such
that, for every a, b, c, d ∈ M, if a ∼X b and c ∼X d, then ac ∼X bd), and thus we can consider the quotient
monoidM/∼X . Let p : M → M/∼ denote the quotient map. It is easy to check that the hypothesis of Corollary
3.16 is ful�lled. Thus there exist an action β ofM/∼X on X and an endomorphism g ofM/∼X such that (idX , p)
is amorphism from (M, X, α, f , f ) to (M/∼X , X, β, f , g). Moreover, note that β is free according to its de�nition
in the proof of Corollary 3.16.

The mentioned corollary also implies that halg(f , g) ≤ halg(f , f ). We claim that, in this setting, also the
opposite inequality holds, and thus halg(f , g) = halg(f , f ). Let K ∈ [M]<ω and x ∈ X. Then, since (idX , p) is a
morphism from (M, X, α, f , f ) to (M/∼X , X, β, f , g), for every n ∈ N \ {0}, we have that

Tn(f , g, x, p(K)) = xp(K)g(p(K)) · · · (g)n−1(p(K)) = xp(K)p(f (K)) · · · p(f
n−1(K)) =

= idX(x)p(Kf (K) · · · f
n−1(K)) = idX(xKf (K) · · · f

n−1(K)) = Tn(f , f , x, K).

The previous chain implies that Halg(f , f , x, K) = Halg(f , g, x, p(K)), and thus the claim follows since x ∈ X
and K ∈ [M]<ω can be arbitrarily taken.

3.2 Basic properties of some categorical constructions

Let M and N be two monoids, and X and Y be an M-set and an N-set respectively. Then we de�ne the
product action ofM ×N on X × Y as follows: for every (x, y) ∈ X × Y and (a, b) ∈ M ×N, (x, y)(a, b) = (xa, yb).
Moreover, if (f , f ) and (g, g) are two endomorphisms of X x M and Y x N, respectively, then the pair
(f × g, f × g) is an endomorphism of X × Y x M × N. In fact, for every (x, y) ∈ X × Y and (a, b) ∈ M × N,

(f × g)((x, y)(a, b)) = (f × g)(xa, yb) = (f (xa), g(yb)) = (f (x)f (a), g(y)g(b)) = ((f × g)(x, y))((f × g)(a, b)).

Theorem 3.18 (Weak addition theorem). Let M and N be twomonoids, X be anM-set, Y be an N-set, and (f , f )
and (g, g) be endomorphisms of X and Y, respectively. Then halg(f × g, f × g) = halg(f , f ) + halg(g, g).

Proof. For every n ∈ N \ {0}, (x, y) ∈ X × Y, and F × K ∈ [M × N]<ω, where F ∈ [M]<ω and K ∈ [N]<ω, it is easy
to check that

Tn(f × g, f × g, (x, y), F × K) = Tn(f , f , x, F) × Tn(g, g, y, K),

and thus Halg(f × g, f × g, (x, y), F × K) = Halg(f , f , x, F) + Halg(g, g, y, K). Then, according to Proposition
3.6(a), Hlocalg(f × g, f × g, (x, y)) = Hlocalg(f , f , x) + H

loc
alg(g, g, y), and so the claim follows.
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Let {Mk}k∈I be a family of monoids and, for every k ∈ I, Xk be an Mk-set. For every k ∈ I, denote by
ik : Xk →

⊔
k Xk the canonical inclusion of Xk in the disjoint union. We de�ne the coproduct action of ΠkMk

on
⊔
k Xk as follows: for every ij(x) ∈

⊔
k Xk and every (ak)k ∈ ΠkMk, ij(x)(ak)k = ij(xaj). Moreover, if, for

every k ∈ I, (fk , fk) is an endomorphism of Xk x Mk, we de�ne the map
⊕

k∈I fk :
⊔
k Xk →

⊔
k Xk by the

law (
⊕

k∈I fk)(ij(x)) = ij(fj(x)), for every ij(x) ∈
⊔
k Xk. Then the pair (

⊕
k fk , Πk fk) is an endomorphism of⊔

k Xk x ΠkMk. In fact, for every ij(x) ∈
⊔
k Xk and (ak)k ∈ ΠkMk,⊕

k∈I

fk(ij(x)(ak)k) =
⊕
k∈I

fk(ij(xaj)) = ij(fj(xaj)) = ij(fj(x)fj(aj)) = ij(fj(x))(fk(ak))k =

=
(⊕

k∈I

fk(ij(x))
)((∏

k∈I

fk
)
((ak)k)

)
.

Theorem 3.19. Let {Mk}k∈I be a family of monoids, and, for every k ∈ I, Xk and (fk , f k) be an Mk-set and an
endomorphism of Xk, respectively. Then halg(

⊕
k fk , Πk fk) = sup{halg(fk , fk) | k ∈ I}.

Proof. For every k ∈ I, denote by qk : ΠkMk → Mk the canonical projection. It is easy to check that, because
of the de�nition of the coproduct action, for every K ∈ [ΠkMk]<ω and every ij(x) ∈

⊔
k Xk, ij(x)K = ij(xqj(K)).

Then, for every n ∈ N \ {0}, ij(x) ∈
⊔
k Xk and K ∈ [ΠkMk]<ω,

Tn
(⊕

k∈I

fk ,
∏
k∈I

fk , ij(x), K
)

= ij
(
xqj(K

(∏
k∈I

fk(K)
)
· · ·
(∏
k∈I

fk
n−1(K)

)))
=

= ij
(
xqj(K)qj

(∏
k∈I

fk(K)
)
· · · qj

(∏
k∈I

fk
n−1(K)

))
= ij(Tn(fj , fj , x, qj(K))),

which implies that Halg(
⊕

k fk , Πk fk , ij(x), K) = Halg(fj , fj , x, qj(K)). Hence, we obtain the inequality
Hlocalg(

⊕
k fk , Πk fk , ij(x)) ≤ H

loc
alg(fj , fj , x). Moreover, since qj is surjective, every �nite subset of Mj is the image

of a �nite subset of ΠkXk, and so Hlocalg(
⊕

k fk , Πk fk , ij(x)) = Hlocalg(fj , fj , x). Finally, note that

halg
(⊕

k∈I

fk ,
∏
k∈I

f k
)

= sup
ij(x)∈

⊔
k Xk

Hlogalg

(⊕
k∈I

fk ,
∏
k∈I

f k , ij(x)
)
= sup

j∈I
sup
x∈Xk

Hlocalg
(⊕

k∈I

fk ,
∏
k∈I

f k , ij(x)
)
=

= sup
j∈I

sup
x∈Xk

Hlocalg(fj , f j , x) = sup
j∈I

halg(fj , f j).

4 Relationship with other entropies
Let us compare the algebraic entropy introduced in the previous section with other known entropies.

4.1 Relationship with the algebraic entropy of group endomorphisms

Let M be a monoid. Let f : M → M be an endomorphism of M. Fix a �nite subset K ∈ [M]<ω, and n ∈
N \ {0}. Then we de�ne the subset

Talgn (f , K) = Kf (K) · · · f n−1(K) ⊆ M.

De�nition 4.1 ([8], for group endomorphisms). Let M be a monoid, and f : M → M be an endomorphism of
M. Then the algebraic entropy of f with respect to K is de�ned as

Halg(f , K) = lim
n→∞

log|Talgn (f , K)|
n . (6)

Finally, the algebraic entropy of f is halg(f ) = sup{Halg(f , K) | K ∈ [M]<ω}.
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A standard approach to prove that the limit in (6) exists is by using Fekete’s Lemma (see, for example, [8]).
We refer to [8] for a comprehensive survey on the algebraic entropy of monoid and group endomorphisms.

Theorem 4.2. Let M be a monoid, X be an M-set, and (f , f ) be an endomorphism of X. Then

halg(f , f ) ≤ halg(f ).

Moreover, if the action of M on X is free,
halg(f , f ) = halg(f ).

Proof. Let x ∈ X and K ∈ [M]<ω. Then, for every n ∈ N \ {0},

|Tn(f , f , x, K)| = |xKf (K) · · · f
n−1(K)| ≤ |Kf (K) · · · f n−1(K)| = |Talgn (f , K)|, (7)

which implies that Halg(f , f , x, K) ≤ Halg(f , K). Since x and K can be taken arbitrarily, halg(f , f ) ≤ halg(f ).
If the action of M is free, for every x ∈ X, K ∈ [M]<ω, and n ∈ N \ {0}, (7) becomes a chain of equalities

and thus the desired claim can be deduced.

Let us specialise the previous result for endomorphisms ofmonoids equippedwith their right regular actions.

Theorem 4.3. Let M be amonoid and f be an endomorphism of M. If we endow M with its right regular action,
then

halg(f , f ) = halg(f ).

Proof. Since e ∈ M is a top element, halg(f , f ) = Hlocalg(f , f , e) according to Proposition 3.6(c). Then the
conclusion follows from the observation that, for every K ∈ [M]<ω and every n ∈ N \ {0}, Tn(f , f , e, K) =
Talgn (f , K).

The previous corollary proves that the algebraic entropy of endomorphisms of sets endowed with monoid
actions extends the usual algebraic entropy ofmonoid endomorphisms. Hence, we can see the results proved
in §3 as generalisations of results known for the usual algebraic entropy ([8, 10]).

Example 4.4. (a) Let M be a left-cancellative monoid endowed with its right regular action. According to
Corollary 2.9, every morphism (f , f ) of M is of the form (sλa ◦ f , f ), for some a ∈ M. Then Theorem 4.2
implies that halg(sλa ◦ f , f ) = halg(f ). Hence, as one may expect, halg(sλa , idM) = halg(idM) which is 0
if, for example, M is an abelian group ([9]). Moreover, for every k ∈ N \ {0} and every n ∈ Z, the map
fk,n : Z→ Z de�ned as fk,n(x) = kx + n, for every x ∈ Z, and the endomorphism fk = fk,0 : Z→ Z satisfy
halg(fk,n , fk) = halg(fk) = log k ([9, Example 3.1]).

(b) Consider the action Z x N, de�ned as in Example 2.5(c), i.e., for every n ∈ N, n : x 7→ x + n, for every
x ∈ Z. Let k ∈ N and consider the endomorphism fk : x 7→ kx, where x ∈ Z, of Z. Consistently with
Example 2.5(c), de�ne fk : N→ N such that fk(n) = kn, for every n ∈ N. Then, since the action ofN is free,
halg(fk , fk) = halg(fk). Moreover, by easily adapting the classical proof showing that halg(fk) = log k (see,
for example [9, Example 3.1]), it is possible to prove that also halg(fk) = log k. Hence, halg(f ) = halg(fk) =
halg(fk , fk).

Example 4.4(b) inspires the following question.

Question 4.5. Let M be a left-cancellative commutative monoid, G(M) be its associated group, f be an endo-
morphism of G(M) such that M is f -invariant, and f : M → M the induced endomorphism de�ned as in Example
2.5(c). Is it true that halg(f ) = halg(f ) = halg(f , f )?
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4.2 Relationship with the coarse entropy

Let X be a set, U, V ⊆ X × X, x ∈ X, and A ⊆ X. Then we de�ne

U ◦ V = {(x, z) ∈ X × X | ∃y ∈ X : (x, y) ∈ U, (y, z) ∈ V}, U−1 = {(y, x) ∈ X × X | (x, y) ∈ U},

U[x] = {y ∈ X | (x, y) ∈ U}, and U[A] =
⋃
{U[a] | a ∈ A}.

Moreover, note that (U ◦ V)[A] = V[U[A]].

De�nition 4.6 ([31, 36]). LetX bea set. A familyE ⊆ P(X) is aquasi-coarse structure if it satis�es the following
properties:
(C1)E is an ideal;
(C2)∆X ∈ E;
(C3)for every E, F ∈ E, E ◦ F ∈ E.

If, moreover, E satis�es
(C4)E−1 ∈ E, for every E ∈ E,

thenE is a coarse structure. Thepair (X, E) is aquasi-coarse space (coarse space) ifE is a quasi-coarse structure
(coarse structure, respectively).

Let (X, E) be a quasi-coarse space. Then (X, E) is locally �nite if, for every x ∈ X and every E ∈ E, E[x] is �nite.
Moreover, (X, E) has bounded geometry if, for every E ∈ E, there exists NE such that |E[x]| ≤ NE, for every
x ∈ X. A quasi-coarse space with bounded geometry is, in particular, locally �nite.

A map f : (X, EX)→ (Y , EY ) between quasi-coarse spaces is called
– bornologous if, for every E ∈ EX, (f × f )(E) ∈ EY ;
– an asymorphism if it is bijective and both f and f −1 are bornologous.

Example 4.7. (a) Let (X, d) be a quasi-metric space, i.e., a set X endowed with a pseudo-quasi-metric (for
the sake of simplicity, we refer to it as quasi-metric in the sequel) d, which is a map d : X × X → R such
that
– d(x, x) = 0, for every x ∈ X;
– d(x, z) ≤ d(x, y) + d(y, z), for every x, y, z ∈ X.
Then d induces a quasi-coarse structure Ed on X, called metric-quasi-coarse structure, as follows. We
de�ne, for every R ≥ 0, ER =

⋃
x∈X({x} × B(x, R)), where B(x, R) denotes the closed ball centred in x with

radius R, and then Ed = {E ⊆ X × X | ∃R ≥ 0 : E ⊆ ER}. If d is a metric, then Ed is a coarse structure.
A quasi-coarse space (X, E) is quasi-metrisable (a coarse space (X, E) ismetrisable) if there exists a quasi-
metric d (a metric d, respectively) on X such that E = Ed. Moreover, a quasi-coarse space (X, E) is quasi-
metrisable if and only if E contains a countable co�nal family ([36]). Similarly, a coarse space (X, E) is
metrisable if and only if E contains a countable co�nal family ([30, 31]).

(b) Let M be a monoid and X be an M-set. Then X can be endowed with a canonical quasi-coarse structure
EM induced by M as follows: we de�ne, for every K ∈ [M]<ω,

EK =
⋃
x∈X

({x} × xK), and EM = {E ⊆ X × X | ∃K ∈ [M]<ω : E ⊆ EK}.

The quasi-coarse structure EM is called action-quasi-coarse structure. In order to see that it is actually a
quasi-coarse structure it is enough to prove property (C3) of De�nition 4.6 while the other properties are
easy to check. The desired property follows from the observation that, for every F, K ∈ [M]<ω, EF ◦ EK =
EFK and FK ∈ [M]<ω. Moreover, if M is a group, EM is a coarse structure, called action-coarse structure.
These coarse structures were deeply investigated in [27] in terms of balleans. Furthermore, (X, EM) has
bounded geometry, in fact, for every E ∈ EM, there exists K ∈ [M]<ω such that E ⊆ EK, and thus |E[x]| ≤
|EK[x]| ≤ |K|, for every x ∈ X.
In the previous notation, (X, EM) is quasi-metrisable ifM is countable, and it is metrisable ifM is a count-
able group.
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Note that, if we consider a group endowed with its right regular action, then the action-coarse structure
coincides with the �nitary-group coarse structure ([12]).
LetM and N be twomonoids, and X and Y be anM-set and an N-set, respectively. Suppose that (f , f ) is a
homomorphism from X to Y. We claim that f : (X, EM)→ (Y , EN) is bornologous. In order to prove it, we
show that, for every K ∈ [M]<ω,

(f × f )(EK) = Ef (K) ∩ (f (X) × f (X)). (8)

In fact, if (8) holds, for every E ∈ EM, there exists K ∈ [M]<ω such that E ⊆ EK, and thus (f × f )(E) ⊆
Ef (K) ∈ EN , which implies that f is bornologous. Let K ∈ [M]<ω. Then, for every (x, y) ∈ EK, there exists
k ∈ K such that y = xk, and thus

(f × f )(x, y) = (f (x), f (xk)) = (f (x), f (x)f (k)) ∈ Ef (K) ∩ (f (X) × f (X)).

As for the opposite inclusion, if (f (x), f (y)) ∈ Ef (K) ∩ (f (X) × f (X)), then there exists k ∈ K such that
f (y) = f (x)f (k) = f (xk), and so (f (x), f (y)) = (f × f )(x, xk), where (x, xk) ∈ EK .

Let us add one more result concerning the action-quasi-coarse structure.

Proposition 4.8. Let M be a monoid and X be an M-set. Then, for every a ∈ U(M) = {x ∈ M | ∃y ∈ M : xy =
yx = e}, a : (X, EM)→ (X, EM) is an asymorphism.

Proof. It is enough to prove that, for every a ∈ U(M), a : (X, EM)→ (X, EM) is bornologous. In fact, once the
claim is proved, we can note that a and a−1 : X → X, which is the inverse of a, are bornologous, and so a is
an asymorphism. Let us now �x a ∈ U(M). For every K ∈ [M]<ω and every point (x, xk) ∈ EK, where k ∈ K,

(a × a)(x, xk) = (xa, xka) = (xa, xaa−1ka) ∈ Ea−1Ka ,

and so (a × a)(EK) ⊆ Ea−1Ka, where a−1Ka ∈ [M]<ω, which proves that a is bornologous.

Let (X, E) be a quasi-coarse space and f : X → X be a bornologous self-map. For every n ∈ N \ {0}, x ∈ X, and
E ∈ E, we de�ne

Tcn(f , x, E) = (E ◦ (f × f )(E) ◦ · · · ◦ (f n−1 × f n−1)(E))[x] =
= (f n−1 × f n−1)(E)[(f n−2 × f n−2)(E)[· · · [(f × f )(E)[E[x]]] · · · ]],

(9)

which is called the n-coarse trajectory of f with respect to x and E. Note that, if X is locally �nite, every trajec-
tory of a bornologous self-map is �nite.

Let us de�ne the coarse entropy.

De�nition 4.9 ([37]). Let (X, E) be a locally �nite quasi-coarse space and f : X → X be a bornologous self-
map. If x ∈ X and E ∈ E, we de�ne

Hc(f , x, E) = lim sup
n→∞

log|Tcn(f , x, E)|
n ,

Hlocc (f , x) = sup
E∈E

Hc(f , x, E), and, hc(f ) = sup
x∈X

Hlocc (f , x).

The value hc(f ) is called the coarse entropy of f .

Proposition 4.10. Let M be a monoid, X be an M-set, and f : (X, EM) → (X, EM) be a bornologous self-map.
Then, for every x ∈ X, Hlocc (f , x) = sup{Hc(f , x, EK) | K ∈ [M]<ω}.

Proof. The proof follows from a more general result, [37, Proposition 2.2], stating that it is enough to take a
co�nal subfamily of E in order to compute Hlocc (f , x).
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For a monoid M, an M-set X, and an endomorphism (f , f ) of X, we want to compare the algebraic entropy of
(f , f ) with the coarse entropy of f : (X, EM)→ (X, EM).

Lemma 4.11. Let M be a monoid, X be an M-set, and (f , f ) be an endomorphism of X. For every n ∈ N \ {0},
x ∈ X, and K ∈ [M]<ω, |Tcn(f , x, EK)| ≤ |Tn(f , f , x, K)|. Moreover, if f is surjective, |Tcn(f , x, EK)| = |Tn(f , f , x, K)|.

Proof. Let n ∈ N \ {0}, x ∈ X, and K ∈ [M]<ω. Then, according to (8),

Tcn(f , x, EK) = (f n−1 × f n−1)(EK)[· · · [(f × f )(EK)[EK[x]]] · · · ] ⊆

⊆ Ef n−1(K)[· · · [Ef (K)[EK[x]]] · · · ] = xKf (K) · · · f
n−1(K) = Tn(f , f , x, K).

(10)

Thus the desired conclusion holds. Moreover, if f is surjective, again according to (8), the inclusion in (10) is
an equality, and thus |Tcn(f , x, EK)| = |Tn(f , f , x, K)|.

Theorem 4.12. Let M be a monoid, X be an M-set, and (f , f ) be an endomorphism of X. Then

hc(f ) ≤ halg(f , f ).

Moreover, if f is surjective, then
hc(f ) = halg(f , f ).

Proof. Let x ∈ X. Then, according to Lemma 4.11, we have that, for every K ∈ [M]<ω, Hc(f , x, EK) ≤
Halg(f , f , x, K). Thus, by Proposition 4.10,

Hlocc (f , x) = sup
K∈[M]<ω

Hc(f , x, EK) ≤ sup
K∈[M]<ω

Halg(f , f , x, K) = Hlocalg(f , f , x),

which implies that hc(f ) ≤ halg(f , f ). If f is surjective, the equality hc(f ) = halg(f , f ) can be similarly shown.

Corollary 4.13. Let M be a monoid and X be an M-set. Then halg(idX , idM) ∈ {0,∞}.

Proof. Since the identity map is surjective, Theorem 4.12 implies that halg(idX , idM) = hc(idX), and the con-
clusion follows since hc(idX) ∈ {0,∞} ([37, Theorem 4.4]).

Remark 4.14. Let us discuss one more consequence of Theorem 4.12. A coarse structure E on X is said to be
monogenic ([31]) if there exists E ∈ E such that the countable family {En ⊆ X × X | n ∈ N}, where

En = E ◦ · · · ◦ E,︸ ︷︷ ︸
n times

is co�nal inE. Let G be a group acting on a set X. Since, for every F, K ∈ [G]<ω, EF ◦EK = EFK,EG ismonogenic
if and only if G is �nitely generated.

Let G be a �nitely generated group acting on a set X. Since EG is monogenic, in particular, (X, EG) is
metrisable, and thus there exists a metric d on X such that EG = Ed. Suppose that G acts transitively on
X, which is equivalent to the requirement

⋃
EG = X × X (i.e., (X, EG) is connected). For a point x ∈ X, we

consider the sequence γ(n, x) = |B(x, n)|, for every n ∈ N. We de�ne the growth rate of X as the growth type
of the sequence {γ(n, x)}n∈N, which does not depend on the point ([2]). Then, applying [37, Theorem 4.9], we
obtain the following properties:
– X has polynomial growth type if halg(idX , idG) = hc(idX) = 0;
– X has sub-exponential growth type if and only if halg(idX , idG) = hc(idX) = 0;
– X has exponential growth type if and only if halg(idX , idG) = hc(idX) = ∞.

Taking into account Theorem 4.2, this result extends the known relation between the growth type of �nitely
generated groups (see [17]) and the algebraic entropy of their identity maps ([8]).
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Wehave seen how an endomorphism of a set endowedwith amonoid action induces a bornologous self-map.
In Theorem 4.16 we discuss the opposite implication in some special cases.

Notation 4.15. In order to keep the notation uniform, in the sequel we consider the group SX of permutation
of a set X acting on the right on X, while it usually acts on the left.

Theorem 4.16. Let f : (X, E)→ (X, E) be an injective bornologous self-map of a coarse space X with bounded
geometry. Then there exists a subgroup G of SX acting on X and an endomorphism f of G such that E = EG and
(f , f ) is an endomorphism of X x G.

Proof. Fix an entourage E ∈ E such that ∆X ⊆ E = E−1. Let us consider a non-directed graph ΓX(E) that has
X and (E ◦ E) \ ∆X as set of vertices and edges, respectively. Since (X, E) has bounded geometry, the degree
of ΓX(E) is bounded by NE◦E because supx{|E ◦ E[x]|} ≤ NE◦E. Then, by [16, Corollary 12.2], there exists a
partition

X = XE0 t · · · t XENE◦E
of X satisfying the following property: for every i ∈ {0, . . . , NE◦E} and every x, y ∈ XEi , (x, y) ∈ E ◦ E if and
only if x = y. The existence of such a partition easily implies that, for every x ∈ X and every i ∈ {0, . . . , NE◦E},
|E[x] ∩ XEi | ≤ 1. Thus, in particular, we can enumerate

E[x] = {aE0(x), . . . , aENEx (x)}, (11)

for some NEx ≤ NE◦E, where, without loss of generality, aE0(x) = x.
Let us now �x two indices i, j ∈ {0, . . . , NE◦E} and n ∈ N, and de�ne a permutation

σE,ni,j =
∏
x∈XEi :
j≤NEx

(f n(x), f n(aEj (x))), (12)

where f 0 = idX and (x, aEj (x)) denotes the permutation of X that swaps x and aEj (x) leaving untouched the
remaining points. Note that (12), for n = 0, is well-de�ned since, if there exists x, y ∈ XEi such that aEj (x) =
aEj (y), then (x, y) ∈ E ◦ E and so x = y. Moreover, the injectivity of f implies that, for every n ∈ N, the single
swaps in (12) are disjoint, and so (12) is well-de�ned. For every n ∈ N, set

S(E, n) = {idX} ∪ {σE,ni,j | i, j ∈ {0, . . . , NE◦E}}.

We claim that, for every n ∈ N,

(f n × f n)(E) ∪ ∆X = ES(E,n) = {(x, y) ∈ X × X | y ∈ xS(E, n)}. (13)

Let (x, y) ∈ (f n × f n)(E) ∪ ∆X and i ∈ {0, . . . , NE◦E} such that x ∈ XEi . If x = y, there is nothing to prove since
idX ∈ S(E, n). Otherwise, there exists (z, w) ∈ E such that f n(z) = x and f n(w) = y. Then, according to (11),
there exists j ∈ {0, . . . , NE◦E} such that aj(z) = w, and so

y = f n(w) = f n(z)σE,ni,j = xσE,ni,j ∈ xS(E, n).

Conversely, let x ∈ X and y ∈ xS(E, n), for some n ∈ N. Then either x = y or there exist i, j ∈ {0, . . . , NE◦E},
z ∈ XEi ∩ f −n(x) and w = aEj (z) such that f n(w) = y. In both cases, y ∈ ((f n × f n)(E) ∪ ∆X)[x]. Thus the claim is
proved.

Let G be the subgroup of SX generated by the family
⋃
{S(E, n) | ∆X ⊆ E−1 = E ∈ E, n ∈ N}, which is its

closure under composition since, for every ∆X ⊆ E−1 = E ∈ E, n ∈ N, and i, j ∈ {0, . . . , NE◦E}, σE,ni,j ◦ σ
E,n
i,j =

idX. Note that G trivially acts on X as a subgroup of SX. We claim that E = EG. Equation (13) implies that
E ⊆ EG since f is bornologous. In order to prove the opposite inclusion, let us consider an arbitrary element
ρ ∈ G. Then ρ = σ1 · · · σm, for somem ∈ N, where, for every k ∈ {1, . . . ,m}, there exist ∆X ⊆ (Ek)−1 = Ek ∈ E

and nk ∈ N such that σk ∈ S(Ek , nk). Thus, according to (13), for every x ∈ X and y ∈ xρ = xσ1 · · · σm,

(x, y) = (x, xσ1) ◦ (xσ1, xσ1σ2) ◦ · · · ◦ (xσ1 · · · σm−1, xσ1 · · · σm) ∈
∈ ((f n1 × f n1 )(E1) ∪ ∆X) ◦ ((f n2 × f n2 )(E2) ∪ ∆X) ◦ · · · ◦ ((f nm × f nm )(Em) ∪ ∆X) ∈ E,



70 | Nicolò Zava

which shows that E{ρ} ∈ E. Then, since E is closed under �nite unions, for every F ∈ [G]<ω, EF ∈ E.
Let now f : G → G be the map de�ned on the generators of G as f (σE,ni,j ) = σ

E,n+1
i,j , for every ∆X ⊆ E−1 =

E ∈ E, i, j ∈ {0, . . . , NE◦E} and n ∈ N, and then extended to a homomorphism of G. Then f is well-de�ned,
as σE,n+1i,j = σF,m+1k,l if σE,ni,j = σF,mk,l , for every ∆X ⊆ E−1 = E, ∆X ⊆ F−1 = F ∈ E, i, j ∈ {0, . . . , NE◦E},
k, l ∈ {0, . . . , NF◦F}, and n,m ∈ N. Moreover, idX = σ∆X ,n0,0 , for every n ∈ N, and so f (idX) = idX, which shows
that f is a endomorphism of G. It remains to prove that (f , f ) is an endomorphism of X x G. Let ρ ∈ G. Then,

ρ = σE1 ,n1i1 ,j1 · · · σ
Em ,nm
im ,jm ,

for somem, n1, . . . , nm ∈ N, ∆X ⊆ E−11 = E1, . . . , ∆X ⊆ E−1m = Em ∈ E, and i1, j1 ∈ {0, . . . , NE1◦E1}, . . . , im , jm ∈
{0, . . . , NEm◦Em}. Finally, it is easy to check that, for every x ∈ X,

f (xρ) = f (x)f (σE1 ,n1i1 ,j1 ) · · · f (σEm ,nmim ,jm ) = f (x)f (ρ).

Theorem 4.16 extends [27, Theorem 1], to which the provided proof is inspired. Thementioned theorem states
that, for every coarse space (X, E) with bounded geometry, there exists a group G ≤ SX satisfying E = EG.

Corollary 4.17. Let f : (X, E) → (X, E) be a bornologous bijective self-map of a coarse space (X, E) with
bounded geometry. Then there exists a group G acting on X and an endomorphism f of G such that
(a) E = EM ,
(b) (f , f ) is a endomorphism of X x G, and
(c) hc(f ) = halg(f , f ).

Proof. The desired claims follow from Theorems 4.16 and 4.12.

Remark 4.18. Right after De�nition 3.1 we claimed that the limit superior in the de�nition of Halg(f , f , x, K)
is not a limit in general. We use Theorem 4.16 to prove this statement. In [37, Example 2.3(c)] the au-
thor provides a metric space (X, d) with bounded geometry with a point x ∈ X such that the sequence
{(log|Tcn(idX , x, E1)|)/n}n∈N (in the notation of Example 4.7(a)) has no limit. Let G be the subgroup of SX such
thatEG = Ed whose existence is guaranteed by Theorem4.16. Note that (idX , idG) is trivially an automorphism
of X x G. Moreover, according to (13), there exists K ∈ [G]<ω such that EF = E1 since ∆X ⊆ E1 = (E1)−1. Since
idX is surjective, Lemma 4.11 implies that, for every n ∈ N \ {0}, |Tcn(idX , x, E1)| = |Tn(idX , idG , x, K)|, and so
{(log|Tn(idX , idG , x, K)|)/n}n∈N does not have a limit.

Question 4.19. In the notation of Theorem 4.16, can we loose the injectivity request on the map f?

Question 4.20. Let f be a bornologous self-map of a quasi-coarse space (X, E) with bounded geometry. Do
there exist amonoidM acting on X andan endomorphism f of M such thatE = EM and (f , f ) is an endomorphism
of X x M?

Question 4.21. Let f be a bornologous self-map of a quasi-coarse space (X, E) with bounded geometry. Let M
and N be two monoids acting on X such that E = EM = EN , and (f , fM) and (f , fN) be endomorphisms of X x M
and X x N, respectively. Is it true that halg(f , fM) = halg(f , fN)? What happens if X is a coarse space and M
and N are groups?

Let us spend a few words on the importance of Questions 4.19 and 4.21. Suppose that they were true. Then
the algebraic entropy of endomorphisms of G-sets would induce as a new entropy notion h′c of bornologous
self-maps of coarse spaces with bounded geometry in the following way: in the notation of Theorem 4.16, let
us de�ne h′c(f ) = halg(f , f ). This new entropy would coincide with the usual coarse entropy hc on surjective
maps. Outside this realm, hc often takes value 0 ([37]), while h′c would be more meaningful. Furthermore,
halg would extend both the algebraic entropy of group endomorphisms and this new notion h′c.
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