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Abstract 

In this paper we study a semilinear elliptic equation in all IFtN. This equation 
depends on a parameter A, and we obtain, for small X < 0, solutins which are 
small in H1(IRN). In this sense we have solutions bifurcating from the origin 
and, as the differential operator involved is the laplacian, we say that we have 
solutions bifurcating from the bottom of the essential spectrum of the laplacian. 
By a change of variables we transform the original bifurcation problem into a 
perturbation one. We adopt a variational procedure, looking for critical points of 
a suitable functional. We apply a recently developped reduction method, which 
allows to reduce the original variational problem in H1(FtN) to a variational 
problem in a finite-dimensional manifold, and then we solve this last problem. In 
this way we are also able to manage the presence of critical nonlinearities, in the 
sense of Sobolev embedding. 
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1 Introduction and main results 

We consider the following equation 

where N > 1, 1 < p < q 5 if N 2 3 (and q < +oo if N = 1,2), p < 1 + 4 / N .  
X is a negative parameter, and we look for families of solutions bifurcating from 
the origin in H1(lRN), that is for couples (X,$x) such that $A E H1(lRN), $A is 
a solution of (1) in the weak sense of H ~ ( I R ~ ) ,  X E (AO,  0) for some Xo < 0 and 

+ 0 in H1(IRN) as X + 0. Hence these families of solutions bifurcate not from 
an eigenvalue but from a point of the essential spectrum of -A in lRN. This kind 
of bifurcation has been studied in several recent papers, see for example [14], [15], 
[16]. In this paper we continue the work initiated in [2] and (31, where problem (1) 
was studied in the case N = 1, and in [9], where many results of [2] where extended 
to any dimension N. In [2] and [9] it is assumed that the function a has, in some 
sense, a positive limit A at infinity, and through a change of variables the equation 
(1) is reduced to a perturbation problem (see below). The hypotheses used in [9] 
are, roughly speaking, of two different kinds: it is assumed either that the function 
a(x) - A is integrable and SRN (a(x) - A)dx # 0, ot that it is asymptotic, at infinity, 
to l/ 1x17 with 7 E 10, N[. So two interesting limit cases are left out: the case in 
which a(x) -A is integrable but SRN (a(x)-A)dx = 0, and the case in which a(x)-A 
is asymptotic to l / ( ~ ( ~ .  In this paper we will see that also in these cases, adding 
some more hypotheses, we obtain existence of solutions bifurcating from the origin 
in H ~ ( I R , ~ ) .  Furthemore, in the case SRN(a(x) - A)dx = 0 we obtain bifurcation 
of two families of solutions. 

Now let us state precisely our results. For our first result (theorem 1.1 below) 
we will use the following hypotheses. 

(hl) a is continuous and bounded. 

(h2) There exists A > 0 such that the function x -t (a(x) - A)(%( is in L ~ ( I R ~ ) .  

(hs) JRN(a(x) - A)dx = 0 and SRN (a(x) - A)xidx # 0 for some i = 1,. . . , N .  

(h4) b is continuous and bounded. 

(h.) b E L*(R*). If N 2 2 5  - 1 we also assume that there exists p E [I, p*[ 
such that b E L ~ ( I R ~ ) ,  where 

For our next result (theorem 1.2 below) we will use the following hypotheses. 
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Bifurcation from the essential spectrum 

(he) a is continuous. 

(h7) There are A > 0, A1 # 0 sucht that IxlN(a(x) - A) + A1 as 1x1 + m. 

(h.) The function a(x) - A - belongs to L ' ( I R ~ ) .  

(ha) b is continuous and bounded. 

(hm) b E L*(lFtN). If N > 2 3 ,  we also assume that there exists ,B E [1,@*] 

such that b E L@(lFtN), where 

We can now state our main results. 

Theorem 1.1 Assume 1 < p < q 5 E if N 2 3, and q < +m i f  N = 1,2. 
Assume p < 1 + $. Suppose that (hl), . . . , (h5) hold. Then (1) has two families of 
solutions bifurcating from the origin in H'( IR~) .  

Theorem 1.2 Assume 1 < p < q 5 E if N 2 3, and q < +GO i f  N = 1,2. 
Assume p < 1 + $. Suppose that (he), . . . , (hlo) hold. Then (1) has a family of 
solutions bifurcating from the origin i n  H'(IR~).  

Remark 1.3 When p 2 1 + 4 / N ,  the families of solutions that we find still bifur- 
cate from the origin in LOD(mN), but in H1(IRN) they can bifurcate from infinity 
or can be bounded away both from zero and infinity. 

To prove our results, we need a change of variables, which tranforms the original 
problem in a perturbation one. Let us set u(x) = E~/('-P)$(x/E), X = - E ~ ,  SO that 
equation (1) changes to 

If u, E H1(IRN) is a family of solutions of (2), bounded as E + 0, then $,(x) = 
E~/(P-~)u,(Ex) is a family of solutions of (1) and $,(x) + 0 in H1(IRN), as E + 0 
(because p < 1 + 4 / N ) .  Hence, to find solutions of (1) bifurcating from the origin, 
we will look for bounded families of H1-solutions of (2). 

The paper is organized as follows: after the introduction (section 1) we give in 
section 2 a brief sketch of the critical point theory for perturbed functionals that 
we use to prove theorems 1.1 and 1.2. In section 3 we prove theorem 1.1 and in 
section 4 we prove theorem 1.2. 

Notations 

We collect below a list of the main notation used throughout the paper 
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By B(x,r) we mean the open ball in IRN of center x and radius r.  

a:. y is the usual scalar product of a, y E R N .  

WN is the (N - 1)-surface area of the sphere dB(0,l).  

2' = & is the critical exponent for the Sobolev embedding, when N 1 3. 

We will use C to denote any positive constant, that can change from line to line. 

2 Abstract theory for perturbed functionals 

In the proof of our results we use a variational method to study critical points of 
perturbed functionals. The method has been developed in [4], [I] , [2] and then has 
been applied to many different problems, see [5] ,  [6], [7], [8], [12]. We do not repeat 
here the main idea of the method. We just state the results that we need, referring 
to the quoted papers, in particular to [4], [l] , [2], for the proofs. Let us consider 
the Hilbert space E = fI1(RN) with norm ))u1 l2 = SRN (IVuI2 + u2) dx and the 
family of functionals 

1 
f.(u) = Illu112 - F(u) + G(E, u), 

where 

and G = G I  + G2 where 

We need the following properties: 

(Go) G is continuous in (E, u) E R x E and G(0, U) = 0 for all u E E ;  

(GI) G is of class C2 with respect to u E E. 

(G2) The maps (s, u) c, G'(E, u), (E, u) c) GI1(&, u) are continuous. 

If DF(u), DUG(&, u) are the first differentials of F and G with respect to u, and 
D2F(u), D:,G(&, u) are the second differentials and L(E, E) is the space of linear 
endomorphism of E, we define by F1(u), respectively GI(€, u), the functions defined 
by setting 

(F1(u)lv) = DF(u)[v], V v E E,  
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and, respectively, 
(G1(~,u)Iv) = DUG(&, u)[v], V v E E, 

where (. I a )  is the scalar product in E. Similarly, F1'(u), resp. GI1(&, u), denotes the 
maps in L(E, E) defined by 

Let us recall that the equation fA(u) = 0 is the following nonlinear equation 

It is well known (see [lo], [ll] ,  [13]) that there exists a unique positive radial solution 
z of (3), that z is strictly radial decreasing, has an exponential decay a t  infinity 
together with its derivatives, and that fo possesses a N-dimensional manifold of 
critical points 

Z = ( ~ ~ ( 2 )  = Z(X + 0 )  I O  E RN). 
Of course z~ = z. We make the following further assumptions on G. 

(G3) There exists a function cp : (-co, E ~ )  -+ R, such that cp(~) -+ 0 as e -+ 0, and 
a continuous function I? : Z -+ IR such that, for all 20  E Z, 

G(E, ze) I'(ze) = lim - 
,+o $4) 

and 
GI(&, z) = o( l cp (~ ) I~ /~ ) .  

With the same arguments of [2] (see also [I], [4]) we can prove the following 
theorem. 

Theorem 2.1 Suppose that (Go - G3) hold and assume there exist an  open bounded 
set U c and O* E U such that, setting z* = ze* E Z, we have 

either minI'(z6) > r ( z * ) ,  o r  maxI'(ze) < I'(z*). 
0€U OEU 

(4) 

Then, for E small, f, has a critical point u,. 

Notice that in [2] only the case U = B(O*, 6) and ~ ( e )  = E" (a  > 0) is treated, 
but it is easy to see that the same arguments hold for general cp and U. 

To apply teorem 2.1 we have to verify hypotheses (Go - G3). The verification 
of (Go - Gz)  is the same as in [9], so we state this fact, without proof, in the 
following lemma. 

Lemma 2.2 Assume that f,, F ,  G are defined as before. Assume that either 
the hypotheses of theorem 1.1 or those of theorem 1.2 are satisfied. Then  also 
(Go), (GI), (G2) are satisfied. 

We are left with the verification of (G3), and this will be done in the next two 
sections. 
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3 Proof of theorem 1.1 

In this section we prove theorem 1.1. As we pointed out above, we only have to 
verify that hypothesis (Gs) holds. 

Lemma 3.1 Let us assume (hl), . . . .(h5). Let us define y = (71,. . . ,-yN) E I R ~  
by % = JRN (a(x)  - A) xidz. For 8 E 1ltN we also define 

1 lye) = -- + I V b +  ' ( 8 )  - y. 

Then 

G(E, ze) lim - = I'(0) 
r-o  EN+^ 

and 

Notice that in this case ( P ( E )  = E ~ + ' .  

Proof. The argument to prove (7) is the same as in [9] and we don't repeat it here. 
So let us prove (6). We will prove 

lim G ~ ( E ,  ze) = 0, 
E-0 EN+l 

which of course imply (6). Let us begin by proving (8). By the change of variables 
y = X/E we have 

By Lagrange's theorem, we get 

zp+'(8 + E Y )  = zp+'(8) + E V Z ~ + ' ( ~  + hey) y, 

where h = h(y, 8, E )  E [0, 11. Hence 
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As (a(y) - A)yi E L I ( I R ~ )  and Dizp+l is bounded, by dominated convergence, we 
obtain 

hence 

so (8) is proved. To prove (9), we distinguish two cases. Assume first N < 2 3  - 1. 
In this case 

and this expression of course vanishes as E + O, uniformly with respect to O, because 
the integral is bounded. Hence, let us assume N > 2 5  - 1. We have 

where p is given by (hs). This term goes to zero as, by (hs), 2 3  - N - 1 + $ > 0. 

We can then conclude the proof of theorem 1.1. We know that z is radial and 
strictly radial decreasing. Hence we can write zo(x) = q(lx1) where q : IR' 4 IR+, 
qf(r)  < 0 if T > 0, qf(0) = 0 and ql(r) -+ 0 as r + m. This implies that C(r) = 
&rf-'+'(r) has a negative absolute minimum, that is, there are TO > 0 and mo < 0 
such that m~ = C(rO) 5 C(T) < 0 for all r > 0. It is ~zp+'(B) = 6(101)h0, hence 
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It is then easy to see that B* = r o h Y  is an absolute maximum point for I', and 
-8' is an absolute minimum point. It is also possible to take R > 0 such that for 
all 8 with 181 2 R or 18.rl < we have Ir(8)I < $lr(O*)l = ill?(-8*)I (recall that 
<(r)/r is bounded in (0, +OD)). Let us define 

It is then easy to see that 

r(8*) > inf r(8), I?(-8*) < sup I'(8). 
e€ul ~ E U Z  

We can then apply theorem 2.1. We obtain two families {(E,U;)), { (E ,U~)}  of 
solutions of (2) such that {uf} is a bounded set in H' ( IR~) .  To be precise, we have 
(see [2] and [9]) 

u: (5) = zg (x + 0:) + w (El 8;) (x) 

where 8f E Ui and w ( ~ , e f )  3 0 as E + 0. Hence 8f + Bi E v i ,  as E + 0, so 
uf (x) + zo(x + 8') and O1 # 02. This implies that ui # uz, so the two families are 
distinct (at least for small E'S) and they give rise to two distinct families of solutions 
of (1) bifurcating from the origin. 

4 Proof of theorem 1.2 

To prove theorem 1.2 we have, as before, to prove only that hypothesis (Gs) holds. 
Let us define P(E) = ~ ~ l l o g ~ l .  

Lemma 4.1 Let us assume (he), . . . .(hlo) Define 

Then we have 

and 

Proof. The proof of (12) is the same as in [9], and we do not repeat it. To prove 
( l l ) ,  we prove the following two statements. 

Unauthenticated
Download Date | 4/4/16 3:28 PM



Bifurcation from the essential spectrum 269 

lim G2(&, ze) = 0. 
$4~) 

Again, the proof of (14) is the same as in [9], so we only have to prove (13). For 
this, let us write 

By the change of variables y = X/E, and using the hypothesis a(x/c) - A - A1(l + 
Ix/&IN)-I E L' ( IR~) ,  it is easy to get 

Let us study the second integral on the right-hand side of (15). We have 

+-J PN-l 

= cN 1 &N + pN [lB(o,l) zp+l(py + 8)da, 1 dp. 

Here by do, or do, we mean the surface measures of dB(0, p) or dB(0,l).  
By an integration by parts, this is equal to 

Unauthenticated
Download Date | 4/4/16 3:28 PM



M. Badiale 

vzp+'(8 + py) . ydoy 

Let us now study these two terms. We know that, for some K,  6 > 0, it is zp+l(x) 5 
~ e - ~ l ~ l .  Hence we easily get 

for suitable Kl, 61 > 0, independent from 8 when 8 is in a fixed bounded set. From 
this we get easily 

and hence, for small E'S, 

We estimate the other integral in (16) in the following way: for small a's, 

1 - I+* 1 
+ EN) ( L = ~  O N  

VZ~+'(B + py) - ydo, 

This last integral converges, because the integrand function 

is continuous in (0, +m), in p = 0 is dominated by the integrable function I log(p)l 
and has an exponential decay at infinity, uniformly in 8 when 8 is in a bounded set. 
Hence we can write 

+O0 1 
vzp+l(8 + py) yduy I CaN = o(p(~) ) .  

Collecting all these results we obtain 
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hence (11) is proved. Let us now prove (12). We give the arguments in the case 
N 2 3; the cases N = 1,2 are similar and in fact easier. We have 

2N 
By hypothesis (h7), the function la(y) - AlN+:! is asymptotic, a t  infinity, to  the 

2 ~ '  

functions I y l - m ,  so of course it belongs to L ~ ( I R ~ ) .  Hence, by the change of 
variables X/E = y, we obtain 

so (12) is proved. rn 
To conclude the proof of theorem 1.2 we notice that z(8) has a strict maximum 

at  0 = 0, so the same holds for zp+l(O). Hence we can apply theorem 2.1, taking 
U = B(0,l)  and 8* = 0. We obtain a family {u,) of solutions of (2), from which 
we come back, in the usual way, to a family (A, +A) of solutions of (1) bifurcating 
from the origin. 

Remark 4.2 Let us try to explain the meaning of hypothesis (he). From (h7) we 
deduce that g(x) = IxlN(a(x) - A) - A1 + 0 as 1x1 + m. We can write 

and 

The function a(x) - A - *N is of course locally integrable, so hypothesis (he) 
, is integrable at  deals with its behavior at infinity. I t  is obvious that & - 

infinity, so (ha) is equivalent to the hypothesis that 3 is integrable a t  infinity. 
We know that g(x) + 0, so what we need is that g(x) decays fast enough a t  infinity: 
for example if g(x) is asymptotic to l/lxla, for any cu > 0, or to l / ( l o g l ~ l ) ~ ,  for 
any a: > 1, then (he) is satisfied, while it is not satisfied if g(x) is asymptotic to 
l/loglxl. 
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