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Angularly diverse or partially coherent illumination is widely
used for optical, x-ray, and electron microscopy. A long-
standing challenge in developing new partially coherent ap-
proaches is that the nonlinear image formation model does
not allow physical intuition into how the imaging and illumi-
nation pupils impact contrast and resolution. We report a
phase-space model, the phase-space imaging kernel, for parti-
ally coherent systems that describes image formation in terms
of a convolution and is analogous to the point spread function
model for coherent imaging. We simulate phase-space imag-
ing kernels for brightfield and differential interference con-
trast (DIC) microscopes to explain a seemingly paradoxical
experimental result that the DIC image of a point depends
on the coherence of the illumination. We discuss interpreta-
tion of the spatial and spatial-frequency marginals of the
kernel. We expect this intuitive model and simulations to
facilitate design of novel computational schemes for phase
imaging and optical lithography. © 2015 Optical Society of

America

OCIS codes: (050.5082) Phase space in wave optics; (110.4980) Partial

coherence in imaging; (110.4850) Optical transfer functions; (220.3740)
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We have recently shown that imaging properties of a general par-
tially coherent imaging system are elegantly represented by a par-
ticular phase-space distribution of the Cohen class, which we have
termed the phase-space imager (PSI) [1]. We have shown that the
PSI model can be used to compute images in different partially
coherent microscope systems [2]. The PSI model represents the
partially coherent system (consisting of the illumination and im-
aging pupils) in terms of a PSI-window that filters the specimen
mutual spectrum. The PSI-window provides an efficient method
of image computation, together with a direct link with Hopkins’
transmission cross-coefficient (TCC) model [3], widely used in
the optical lithography field. In this Letter, we develop an alter-
native description of the PSI that leads to deeper physical insight.
This new description of partially coherent imaging is in terms of a

system-dependent “kernel” that is convolved along the space di-
mension with the Wigner distribution of the specimen. The re-
sulting description of the imaging process is the partially coherent
generalization of the Wigner representation of coherent image
formation.

We consider imaging of a thin (2D) specimen. The coherence
of the imaging system is quantified by the coherence ratio
S � NAi∕NA, where NAi is the numerical aperture of illumina-
tion and NA is the numerical aperture of the imaging lens. Image
formation due to a partially coherent system is bilinear in nature,
i.e., the image intensity at a point in the image space depends on
pairs of points of the specimen. For brevity, we describe coordi-
nates in 2D space and spatial frequency as vectors indicated by
boldface characters. We describe pairs of points �x1; x2� by the
center and difference coordinates �x; x 0� in the normalized units
of λ∕NA, and pairs of spatial frequencies �m1;m2� by the center
and difference coordinates �m;m 0� in the normalized units of
NA∕λ, where λ is the illumination wavelength. Therefore,

m � 1

2
�m1 �m2�; m 0 � m1 −m2;

x � 1

2
�x1 � x2�; x 0 � x1 − x2: (1)

The expression for the PSI, as given as Eq. (5) in [1], is

Ψ�m; x� �
Z

T
�
m�m 0
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�
T �

�
m −

m 0

2

�
C�m;m 0�

× exp�2πim 0 · x�dm 0; (2)

where T �m� is the specimen spectrum and C�m;m 0� is the PSI-
window, basically a rotated version of the TCC of Hopkins’
theory [3]. This implies that the PSI is represented as an inverse
Fourier transform (along them 0 dimension) of the specimen mu-
tual spectrum M�m;m 0� � T �m�m 0∕2�T ��m −m 0∕2� fil-
tered by the PSI-window. The model for the PSI, Ψ�m; x�,
can be summarized as

Ψ�m; x� � F −1
m 0 �M �m;m 0�C�m;m 0��: (3)

After transforming the quantities on the right-hand side
according to the inverse Fourier transformation alongm 0, we have

Ψ�m; x� � W �m; x� ⊗x K �m; x�; (4)
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where W �m; x� � F −1
m 0 �M �m;m 0�� is the Wigner distribution of

the specimen’s transmission, K �m; x� � F −1
m 0 �C�m;m 0�� is the

“kernel” we name the phase-space imaging kernel (PSI-kernel),
and⊗x is the convolution of these two quantities along the spatial
dimensions. Then, the image intensity is given by the spatial
marginal of Ψ�m; x� [1].

Note that the PSI is not the Wigner function associated with
the image mutual intensity, and actually is not a Wigner function
at all. It is a phase-space representation of the Cohen class in
which the specimen and the imaging system can be separated
(as in the TCC model), because the quantity of interest is image
intensity and not mutual intensity. An analogous observation
about separability has been made in the context of the matrix for-
mulation of image formation [4]. The Wigner distribution of the
image amplitude in a coherent imaging system (given by the
convolution equation i�x� � t�x� ⊗x h�x�� is given by

W i�m; x� � W �m; x� ⊗x W h�m; x�; (5)

whereW h is the Wigner distribution of the amplitude PSF, h�x�.
Equations (4) and (5) describe partially coherent and coherent

imaging, respectively, both as linear operations between bilinear
quantities. Models of partially coherent imaging in two dimen-
sions involve four-dimensional quantities, and the PSI-kernel is
an intuitive four-dimensional quantity that reduces to Wigner
distribution of the PSF in the coherent limit. Therefore, the
PSI-kernel provides a phase-space equivalent of the point spread
function for partially coherent imaging.

Visualization 1 related to Fig. 1 shows the PSI-kernel of the
brightfield microscope as the coherence of illumination is reduced
by increasing the NA of the illumination. The kernel is displayed

using a nested coordinate system, the outer coordinates describing
the space coordinate and the inner coordinates describing the
spatial frequency.

The spatial marginal of the PSI-kernel (the sum within inner
tiles) is the image of a point and does not change with coherence
of illumination, because a point is coherent with itself. Figure 2
shows experimental images of a point object in a brightfield mi-
croscope, and a DIC microscope at two different biases, each with
varying NA of the illumination. It can be seen that the brightfield
image of a finite-sized point changes negligibly with coherence of
the illumination. It is well known that in a brightfield imaging
system, the image of a point object is not affected by the illumi-
nation aperture, but is given simply by the point spread function.

The frequency marginal (the sum of the inner tiles) of the PSI-
kernel changes with coherence of illumination. It is the same as
the modulation transfer function (MTF) for coherent illumina-
tion and the phase-gradient transfer function (PGTF) for partially
coherent illumination, as discussed later. Note that the PSI-kernel
is real valued, but can be negative valued to account for interfer-
ence effects, e.g., in microscopes with significant coherence and in
the differential interference contrast (DIC) microscope.

In what seems to be paradoxical behavior, the DIC image of
the point in Fig. 2 is affected by the coherence of the illumination.
Moreover, the change in the image due to coherence is the least
pronounced with bias of 90° and the most pronounced with bias
of 0°. These results can be simulated with purely spatial represen-
tation of partially coherent imaging [6], but that does not clarify
the physical reason for the observation. Computing and observing
the PSI-kernel of the DIC microscope and its marginals can ex-
plain this apparent paradox.

Assuming that the direction of shear in a DIC microscope
is along the x axis, the expression for the PSI-window of

Fig. 1. Frame at S � 0.5 from Visualization 1. (a) The PSI-kernel of a
brightfield microscope. The kernel is displayed using a nested coordinate
system, the outer coordinates describing the space coordinates and the
inner coordinates describing the spatial frequency. (b) The spatial
marginal is the sum within inner tiles. (c) The frequency marginal is
the sum of inner tiles.

Fig. 2. Experimental images of a point under brightfield and DIC
microscopes with multiple illumination aperture sizes. These are images
of a point defect in an aluminum coating on a coverslip, acquired with
100× 1.3 NA objective at a wavelength of λ � 532 nm. The shear of the
DIC prism was measured [5] to be 2Δ � 0.5λ∕NA, and bias �2ϕ� was
set to either 0° or 90°(180° bias provides brightfield-like contrast). Scale:
200 nm.
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the DIC microscope (from Eq. (15) of [7] and Eq. (10)
of [2]) is

CDIC�m;m 0� � C�m;m 0� sin
�
2π

�
mx −

m 0
x

2

�
Δ − ϕ

�

× sin
�
2π

�
mx �

m 0
x

2

�
Δ − ϕ

�

� C�m;m 0��cos�2πm 0
xΔ� − cos�4πmxΔ − 2ϕ��;

(6)

where C�m;m 0� is the PSI-window of a brightfield microscope,
�mx; m 0

x� are frequency coordinates along the direction of shear,
2Δ is the shear, and 2ϕ is the bias. The PSI-kernel of the DIC
microscope then is the inverse Fourier transform of CDIC�m;m 0�
along the m 0 dimension:

K DIC�m; x� � K �m; x� ⊗x �δ�x − Δ� � δ�x � Δ�
− δ�x� cos�4πmxΔ − 2ϕ��: (7)

The expression in the square brackets is recognizable as the
Wigner distribution of two points separated by 2Δ with mutual
phase of 2ϕ. Thus, the PSI-kernel of the DIC microscope is given
as the convolution of the PSI-kernel of the brightfield microscope
and the Wigner distribution of two points separated by the shear
of the microscope. This is expected, because the DIC microscope
interferes coherently the light produced by two shifted copies of
the specimen, as seen from Eq. (7) in [7]. Since the DIC micro-
scope effectively images two points separated by the shear distance
when the specimen is single-point, the image depends on the
coherence of illumination.

Visualization 2 related to Fig. 3 displays the simulated PSI-
kernel of the DIC microscope for zero bias at varying coherence,

which illustrates the effect on the PSI-kernel of the brightfield
microscope of convolution with the Wigner distribution of the
two points. The DIC image of a point is shown as a spatial
marginal of the kernel, and matches well with the experimental
images acquired with zero bias in Fig. 2. Figure 4 (Visualization 3)
shows simulation similar to Fig. 3, but with bias of 90°.
Remarkably, the simulated DIC image of a point in
Visualization 3 appears unaffected by the coherence of illumina-
tion. This simulated image matches well with experimental im-
ages in Fig. 2, bottom row—the slight mismatch is due to
experimental error in setting the bias of 90° precisely. Thus, sim-
ulating the PSI-kernel and its spatial marginal clarifies the appa-
rently paradoxical observations made with the DIC microscope.
Figures 1, 3, and 4 also show the frequency marginal of PSI-
kernel, whose interpretation is discussed next.

Since the spatial marginal and the spatial-frequency marginal
of the Wigner distribution of the image amplitude [W i in Eq. (5)]
are the image intensity and the power spectrum of the image, re-
spectively, it is natural to ask what the marginals of the PSI and
the PSI-kernel imply. We have already shown that the spatial mar-
ginal of the PSI is the image intensity produced by a partially
coherent system [1].

The frequency marginal of the PSI, from Eq. (3), isZ
Ψ�m; x�dx �

Z
F −1

m 0 �M �m;m 0�C�m;m 0��dx: (8)

Recognizing that the m 0 and x are Fourier conjugate variables,
and therefore projection along x implies taking a slice in the
Fourier domain along m 0 � 0, the frequency marginal of the
PSI can be written asZ

Ψ�m; x�dx � M�m; 0�C�m; 0�; (9)

Fig. 3. Frame at S � 0.5 from Visualization 2. (a) The simulated PSI-
kernel of the DIC microscope with shear of 0.5λ∕NA and bias of 0°,
(b) the spatial marginal of the PSI-kernel, or the DIC image of a point,
and (c) the frequency marginal of the PSI-kernel.

Fig. 4. Frame at S � 0.5 from Visualization 3. (a) The simulated PSI-
kernel of the DIC microscope with shear of 0.5λ∕NA and bias of 90°,
(b) the spatial marginal of the PSI-kernel, or the DIC image of a point,
and (c) the frequency marginal of the PSI-kernel.
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where M �m; 0� � jT �m�j2 is the power spectrum of the speci-
men transmission. Substituting m 0 � 0 in Eq. (6) of [1] shows
that C�m; 0� � jP�m�j2 ⊗ jPi�m�j2 is the convolution of the
magnitudes of the imaging pupil P and illumination pupil Pi.

The coordinate m of Wigner distribution is the instantaneous
spatial frequency, which is defined as the derivative of the local
phase for analytic signals [8]. Therefore, C�m; 0�, the frequency
marginal of the PSI-kernel, describes how instantaneous frequen-
cies of the specimen contribute to the image. In fact, it is identical
to the phase gradient transfer function (PGTF) for slowly varying
specimens [9,10], which gives the image intensity for a constant
phase gradient object. The asymmetric form of the frequency
marginal (PGTF) for DIC in Fig. 4(c) has been noted previously,
and is responsible for highlighting and shadowing in DIC
images [11].

For coherent illumination, i.e., Pi�m� � δ�m�, the quantity
C�m; 0� � jP�m�j2 is the modulation transfer function (MTF)
of the coherent system, i.e., the squared modulus of the coherent
transfer function. For coherent systems, the product of the power
spectrum of the specimen and the MTF is the power spectrum of
the image amplitude.

For partially coherent systems the image amplitude is not
defined, and the signal with real spatial frequency f, i.e.,
cos�2πf · x�, is not localized in the Wigner domain. Slowly vary-
ing objects and certain analytic signals have localized Wigner dis-
tributions and their images can be intuitively interpreted in terms
of the frequency marginal of the PSI-kernel. Consider an analytic
signal of the form

t�x� � a�x� exp�i2πm0�x� · x�: (10)

Here, for a single analytic spatial frequency, a � 1, m0�x� � f,
and for a linear chirp signal, a � 1,m0�x� � f x. For the general
case of a slowly varying specimen, the modulus a and the instan-
taneous frequency m0 can be regarded as locally constant such
that 2πm0 represents the local phase gradient. The Wigner
distribution function of such a specimen,

W �m; x� � a2�x�δ�m −mo�x��; (11)

is a delta line in phase space. Convolution with this delta line
samples the PSI-kernel along the trajectory of the line. Then there
is only a single instantaneous spatial frequency present at any
position x, so that m 0 � 0 and the image intensity is simply

I�x� � a2�x�C �mo�x�; 0�: (12)

For a linear chirp object, Eqs. (11) and (12) are exact, whereas for
a general variation of phase, the phase must be slowly varying for
the Wigner distribution function to be approximated by a delta-
line in phase space.

In summary, we have shown that imaging in a partially coher-
ent imaging system such as an optical, x-ray, or electron micro-
scope can be modeled as a filtering of the Wigner distribution
function of the object. Specifically, the filtering corresponds to
taking the spatial marginal of the space convolution with a
system-dependent phase-space kernel, called the PSI-kernel.
The method can be applied to brightfield or phase contrast sys-
tems. In the limit of a slowly varying object, as will be the case if
the Rytov approximation is valid, the model much simplifies to
give a spatially varying intensity that depends on the local phase
gradient of the sample according to the frequency marginal of the
PSI-kernel.
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