
Novel grating design approach by radiation 
modes coupling in nonlinear optical waveguides  

A. Massaro
*
, R. Cingolani

*
, M. De Vittorio

*
, and A. Passaseo

*A
 

* National Nanotechnology Laboratory of CNR-INFM , Distretto Tecnologico-ISUFI, Università del Salento, Via 
Arnesano 16, 73100 Lecce, Italy. 

A Permanent address: IMM CNR sezione Lecce, University Campus, Lecce-Monteroni 73100, Italy     
alessandro.massaro@unile.it 

Abstract: In integrated optics the radiation modes represent a negative 
aspect regarding the propagation of guided modes. They characterize the 
losses of the substrate region but can contribute to enhance the guided 
modes by considering the coupling through properly designed gratings 
arranged at the core/substrate interface. By tailored gratings, the radiation 
modes become propagating modes and increase the guided power inside the 
waveguide guiding region. This enhancement is useful especially in low 

intensity processes such as second harmonic χ(2)
 conversion process. For 

this purpose, we analyze accurately the radiation modes contribution in a 

χ(2)
 GaAs/AlGaAs nonlinear waveguide where second harmonic  signal is 

characterized by a low power intensity. This analysis considers a new 
design approach of multiple grating which enhances a fundamental guided 

mode at λFU =1.55 µm and a codirectional second harmonic guided mode at 

λSH =0.775 µm. In particular we analyze the second harmonic conversion 
efficiency  by studying the coupling effect of three gratings. The combined 
effects of the gratings provide an efficient second harmonic field 
conversion. Design considerations, based on the coupled mode equations 
analysis, are theoretically discussed. A good agreement between analytical 
and numerical results is observed.  
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1. Introduction 

Studies of χ(2)
 and the quasi-phase matching (QPM) technique promote research works on 

nonlinear optic (NLO) devices for ultrafast signal processing based on second-order 
nonlinearity. After the development of high-efficiency QPM- second harmonic generation 
(SHG) devices using ferroelectric crystal waveguides, the research was directed to 
implementation of a compact and efficient coherent light source by combining the SHG 
device with a semiconductor laser. Moreover a strong motivation of research on NLO devices 
has been the need for the development of all-optical wavelength converters for dense 
wavelength division multiplexing (DWDM) optical communication systems. In particular the 

second harmonic generation in χ(2) 
nonlinear process represents a good solution for DWDM 

applications in telecommunication systems. But this process requires high intensity input 
power and large interaction lengths for a good second harmonic (SH) conversion. For this 
reasons the introduction of tailored gratings which enhance the SH field is important.    

The novel design approach proposed in this work takes into account the multiple grating 
effects which enhance the guided SH signal along the symmetrical waveguide shown in Fig. 
1. The new accurate analysis concerns the coupling of the radiation modes with the 
propagating fundamental and SH modes: properly designed gratings,  arranged at the 
core/substrate interface, generate scattered waves which increase the guided modal power 
inside the waveguide guiding region. By tailored gratings, the radiation modes supply energy 
to the low intensity SH mode by providing an efficient SH conversion in short structures. In 
the presented structure three grating are considered: the first grating (grating 1 of Fig. 1), 
considered at one interface between core and substrate, is designed by quasi phase matching 
QPM condition. The QPM technique is a practical method of substantially increasing the 
second-harmonic power by effectively reducing the phase mismatch between the fundamental 
and the SH fields: the technique relies on introducing the grating 1 in the waveguide to 
compensate for the difference of the propagation refractive indexes in the waveguide.     

A second grating (grating 2 of Fig. 1), placed at second the interface between the core and 
the substrate region, increases the fundamental power through the coupling between the 
substrate modes and the fundamental guided mode. On the same second interface, after the 
grating 2, we consider a third grating (grating 3 of Fig. 1) which enhances the power 
transferred to the SH mode through the coupling between the substrate modes and the SH 
guided mode by optimizing the conversion efficiency.  

The substrate modes are excited through the diffraction effect of the grating 2 and 3 of 
Fig. 1 which supply the energy to both the propagating fields through the coupled energy of 
the radiation modes. The coupling effect is analyzed by combining the coupled mode 
equations systems related to the three grating. The novelty of this work is in the combined 
effect of the three gratings applied to a symmetrical GaAs/AlGaAs waveguide typically used 

in NLO devices [1]-[3]. In particular we analyze the enhancement of a SH signal (λSH= 0.775 

µm) generated by a codirectional fundamental mode (λFU= 1.55 µm). The goal of the 
presented work is to find the optimum geometrical configuration which overcomes the 
problems associated to the total waveguide length such as reflections and losses, by providing 
a good SH field conversion. With the introduction of the multiple grating configuration it is 
possible to decrease the total waveguide length by obtaining a good conversion efficiency 
according to real input powers. 

We resume the analysis of this work in the following steps: i) we analyze the modes 
involved in  the designed structure including substrate modes and diffraction theory; ii) we 
study the coupled mode equations systems by combining the effect of each grating; iii) we 
provide the design criteria steps of the periodic structure; iv) finally we model the tailored 
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waveguide through the time domain Hertzian potential formulation (HPF) used to solve 

nonlinear χ(2)
 processes [4], and by the finite difference time domain (FDTD) modelling. A 

good agreement between numerical and analytical results is checked.   
 

 
 

Fig. 1. Multiple gratings design in nonlinear optical symmetrical waveguide. 

2. Modes of the discontinuous periodic waveguide.  

As shown in Fig. 2, the symmetrical waveguide is characterized by a discrete set of 
orthogonal guided modes and by radiation modes. The radiation field (related to the radiation 
modes) thus qualifies in all aspects as a mode, except that is not confined to the waveguide 
core but reaches undiminished to infinite distance in x direction normal to the core. The 

modes of this type are called radiation modes. Their propagation constant β are not 
constrained to a discrete set of values, since they are related to the angle of the incident can be 
chosen arbitrarily. The values of the propagation constant thus form a continuum, so that we 
also speak of the radiation modes as modes of the continuum. The guided and radiation modes 
form a complete orthogonal set of modes. Any field distribution can be expressed by series 
expansion into these modes. All the modes are classified as transverse electric (TE) and as 
transverse magnetic (TM) modes. According to the assumption of TE polarized source, we 
limit the discussion to TE waves.   

For the transverse electric (TE) field with no variation along the y-direction, only three 
field components exists, and they are related as follows  
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and ak and b(kx) are the amplitudes of the guided and continuum modes respectively. In the 
case of  two TE guided modes (fundamental and SH modes) the guided field are represented 
by [5] 
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where the parameters σω,2ω
 and ∆ω,2ω

  are defined by the following equations 
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Fig. 2. Modes in symmetrical planar waveguide.  

The radiation modes are necessary to describe radiation phenomena in region around the 
core. Imperfections, such as step discontinuities and sinusoidal core interface deformations, 
cause some of the guided mode power to radiate into the space outside and inside the core. 
The diffraction theory [6] of plane wave scattering from a sinusoidally deformed dielectric 
interface explains the radiation modes excitation mechanism. We assume that only two TE 
modes (fundamental and SH mode) are propagated inside the guiding core. The diffraction 
theory is applied at interface related to the grating 2 and 3 of Fig. 1. The theory is  based on 
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approximate plane wave analysis [7] and on the sinusoidal approximation of one core-
substrate interface [6],[7]. The function f(z) which represents the sinusoidal interface 
deformation is given as 

2,3

2
( ) sinf z t z

π 
=   Λ 

    (8) 

 

As reported in Fig. 3 the sinusoidally deformed dielectric interface scatters the incident 
radiation. The arrows shown in the Fig. 3 indicate the propagation vector of the incident, 
reflected, and transmitted plane waves labeled i, r, and t. The shorter arrows labeled 1 and -1 
indicate scattered plane waves. Two scattered waves emerge on either side of the interface. 
One set of scattered waves accompanies the reflected wave in the core region and another set 

accompanies the transmitted wave in the substrate region. The angle φ of the direction of each 
wave indicated in Fig. 3 is obtained from the equation  
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for i=1, and i=2, propagating scattered waves will exist. Far from the surface only the zero-
order reflected and transmitted waves can be observed. Only in the immediate vicinity of the 
distorted surface is there any field distortion. Though the grating, this distorted field 
exchanges power with the zero-order field by increasing the guided power. The field of zero-
order are the incident i, reflected r, and transmitted t plane waves corresponding to the 
fundamental and SH fields. In particular in the TE case the zero-order field is given by 
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where (15) indicates the phase matching between the zero order field and the scattered waves.  

 
 

 
 

 

Fig. 3. The sinusoidally distorted core-substrate interface acts like a phase grating. The incident 
i, reflected r, and diffracted rays are shown. The sinusoidal approximation is applied to the 
grating 2 and 3 of Fig. 1.       

3. Coupled mode theory. 

In our analysis three coupled equations system are considered. The first set of coupled 
equations is related to grating 1 of Fig. 1. The function of this grating is to couple the 

fundamental field with the SH field. In particular by indicating with A
ω
  the amplitude of the 

pump fundamental field and with A
2ω

 the amplitude of the SH wave we obtain [8],[9] 
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is the first term of the nonlinear coefficient Fourier series, and a denotes the duty ratio of the 
period.  

The grating 2 of Fig. 1 enhances the low pump fundamental field coupled into the 
waveguide. In this case coupling between the fundamental field and the scattered fields 
(generated by grating 2) is considered. In particular the equations to solve are the following 
[10] 
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with the coupling coefficient defined as  
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Finally the grating 3 optimize the SH conversion by coupling the SH field with the 

scattered field. In particular we take into account the system  
 

2

2

2
*

3,

2 *

3,

( )
( ) exp[ ( ( 2 / ) ]

( )
( ) exp[ ( ( 2 / ) ]

i i A
i

i

i A

dA z
j a z k j z d

dz

da z
jA z k j z

dz

ω

ω

ω
ω

γ γ

γ ω ω
γ

β β π β

β β π

± ± ±

±
±


= − − − − Λ


 = − − − − Λ

∑∫
 (27) 

 
where 
 

2

2 2

,
( ) ( )S

S y yi A
k k E x E x dxω

ω ω
γ

ε= = ∆∫    (28) 

#106111 - $15.00 USD Received 7 Jan 2009; revised 24 Feb 2009; accepted 9 Mar 2009; published 13 Apr 2009

(C) 2009 OSA 27 April 2009 / Vol. 17,  No. 9 / OPTICS EXPRESS  6988



 4. Design and results 

We assume that the fundamental pump source (λFU=1.55 µm) is a polarized TE field. The 

GaAs core (n1(λFU=1.55 µm)=3.374 and n1(λSH=0.755 µm)=3.691) is characterized by a 

thickness d=0.22 µm and supports only a TE fundamental mode at λFU=1.55 µm and only a 

SH TE mode at λFU=0.775 µm. In this way all the TE power is matched with the two 
propagating modes and the modal dispersion is low. In order to minimize the reflections along 
the z- propagating the direction and to conserve the single mode condition, the parameters h 

and t of Fig. 1 are fixed to the low value of 0.025 µm. The substrate material is Al0.4Ga0.6As 

(n2(λFU=1.55 µm)=3.2 and n2(λSH=0.755 µm)=3.4). The GaAs core, combined with the 
Al0.4Ga0.6As, characterizes the periodically switched nonlinearity (PSN) [1]. For the PSN 

effect to occur, a medium is required in which susceptibility coefficient χ(2)
 is modulated 

periodically along the direction of light propagation. We observe that in a generic case χ(2)
 is a 

tensor, however most semiconductor, which crystallize in zinc-blende structures, have a 
symmetry and their second-order susceptibility has a single nonzero independent component 

(for GaAs at the transparency region below the optical energy gap χx,y,z
(2)

= 200 pm/V). The 

grating 1 couples the fundamental mode with the SH one. The period Λ1=2.31*10
-6

 µm 

satisfies the QPM condition (phase mismatch δ=0):  

2 2

1

1

2
2     or      ( ) /( )

FU
N N

ω ω ω ωπ
β β λ+ = Λ = −

Λ
  (29) 

where N
ω,2ω

 are the effective refractive indices of both modes. The duty ratio a is assumed 
equal to ½. In Fig. 4 we show the normalized coupling coefficient kNL versus z obtained by 
applying the QPM condition. Usually the input power is of the order of 1-100 mW [1], but the 
SH conversion requires high intensity fundamental power. For this purpose the grating 2 is 
designed in order to enhance the fundamental power inside the waveguide through the 

coupling with the scattered field generated by the fundamental mode A
ω(z). In this case the set 

of equations to solve are (18) and (25) with the initial conditions A
ω(0)=(P0)

1/2 and 

A
2ω(0)= 0 where P0 is the input pump power. Moreover the grating 3 is added in order to 

optimize the SH conversion efficiency by increasing the SH coupled power. Concerning the 

grating 3 the set of equations to solve are (18) and (27) with the initial conditions A
ω(0)= 

A
ω(L1) and A

2ω(0)= A
2ω(L1). The period Λ2 and Λ3 satisfy the propagation condition (10) and   

provide a constructive interference given by the phase matching condition (15) between the 
incident and the scattered field. In particular we choose a strong coupling condition by 
analyzing the coupling coefficient versus the period and versus the z-direction. Figure 5 shows 

that regular coupling coefficients kS
ω,2ω  (strong coupling) are obtained with Λ2=0.95*10

-6
 µm 

and Λ3=1*10
-6

 µm. The plots of Fig. 5(a) and Fig. 5(b) are obtained by evaluating the 
scattered fields Ey

S
 (see Fig. 6(a) and Fig. 6(b)) generated by the fundamental and SH modes. 

Figures 7 and 8 illustrates the normalized substrate coupling coefficientsµ kS
ω and  kS

2 ω versus 

z-propagating direction. The SH conversion efficiency is given by η(z)=|A
2ω(z)|2/|Aω(0)2| [8]. 

Figure 9 shows the analytical solution of the conversion efficiency η by considering the 
grating 1, the grating 1 with the effect of the grating 2, and finally the effect of the three 
grating together by fixing a reference length of L1=2mm. The input power used during the 
calculus is P0 =100 mW. A conversion efficiency of about 70 % is obtained after a length of 
z=10 mm. It is clear from the Fig. 9 that the grating 3 increases the efficiency of about 20 % 
(optimization) respect to the case of grating 1 combined with the grating 2. In this way is 
possible to reduce the total length of the device by overcoming the problems of losses and 
reflections along the propagating direction.  Concerning the total length of the structure, we 

observe that the theoretical effective interaction length [8] Leff≅2.4(Λ1/2a)
1/2

 =3.6 mm not 
considers the variation of the fundamental power along the longitudinal direction, and not 
takes into account the grating parameters h and t which characterize the power reflected on 
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each step discontinuity, thus, in our practical case, a high interaction efficiency is obtained 

with grating lengths larger than Leff. Moreover the choice of the parameter h=t=0.025 µm is 
justified by the following considerations. As reported in Fig. 10, low reflection coefficients 

[5] Γω,2ω
=(βd

 ω,2ω− βD
 ω,2ω

)/(βd
 ω,2ω+ βD

 ω,2ω
) at each step discontinuity are obtained in the single 

SH mode region by decreasing the values of h. But a strong coupling is obtained in the single 
mode SH region by increasing the h values (see Fig. 11 where are reported the coupling 

coefficients versus h). Figure 12 justifies the final choice of h=t=0.025 µm: the figure 

analyzes the numerical and analytical efficiency η versus z for different h values by showing a 
good convergence between numerical HPF, numerical two dimensional (2D) FDTD, and 
analytical results. A good matching between the HPF and 2D FDTD spectra is  observed in 
Fig. 13 where we calculate the discrete Fourier transform (DFT). The convergence of the 
solutions confirms the accuracy of the presented theoretical model. The numerical simulations 

are performed by parallel calculus with time steps ∆t=1.66*10-
16

 sec., dimension of spatial 

cell ∆z=0.05 µm, and sinusoidal source at λ0= 1.55 µm given by 
 

0 sin( )fundamental fundamental
E t tω= ⋅ ⋅ ∆    (30) 

The used numerical boundary conditions are the absorbing boundary conditions (ABCs) 
[13].              
 
 

 

Fig. 4.  Grating 1: normalized nonlinear coupling coefficient versus z. 
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Fig. 5. Substrate coupling coefficient: (a) coupling coefficient versus Λ2 ; (b) coupling 

coefficient versus Λ3 . Strong couplings are obtained with Λ2 = 0.95 µm and Λ3 = 1 µm, where 
the coupling coefficients are regular respect to the z- direction. 

 

 
Fig. 6. (a) Scattered field generated by the fundamental mode. (b) Scattered field generated by 
the SH field. The coordinate system is the same of Fig. 1.   
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Fig. 7. Grating 2: substrate coupling coefficient versus L1. 

 

Fig. 8.  Grating 3: substrate coupling coefficient versus L2. 
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Fig. 9.  Analytical and  HPF numerical results of the efficiency SH conversion versus z. 

 

Fig. 10. Reflection coefficients Γω,2ω=(βd
 ω,2ω− βD

 ω,2ω)/(βd
 ω,2ω+ βD

 ω,2ω) of the propagating 
modes at each step discontinuity. Inset: schematic diagram of a step discontinuity. The 

propagation constants βω,2ω
d and βω,2ω

D are related to region with core thickness d and D, 
respectively. 
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Fig. 11.  Coupling coefficients versus h calculated by assuming z=0. 

 

 
 

Fig. 12. Structure with grating 1, 2 and 3: analytical, 2D-FDTD  and HPF results of the 
efficiency SH conversion versus z for different h values. The analytical results are averaged 
values.  
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Fig. 13. Comparison between HPF and 2D-FDTD normalized spectra of the fundamental and 
second harmonic modes. Inset: time evolution of the fundamental and second harmonic 
normalized fields generated inside the waveguide of Fig. 1. 

5. Conclusion 

We presented in this work a new theoretical model for low intensity linear and nonlinear 
processes. The novel accurate model analyzes the effect of the radiation modes coupling on 
modal conversion efficiency. In particular we applied the theory in a nonlinear GaAs/AlGaAs 
waveguide with discontinuous core-substrate interfaces by providing design criteria for 
second harmonic enhancement through the use of multiple gratings. A good agreement 
between analytical and numerical results proves   the second harmonic enhancement obtained 
through the radiation modes interaction.    The design approach can be applied also to 
complex 3D optical waveguides such as ridge and channel waveguides which behave as 
multiplexers or polarizers. Technological and experimental works are now under study.   
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