
Scalar time domain modeling and coupling of 
second harmonic generation process in GaAs 

discontinuous optical waveguide  
A. Massaro, V. Tasco, M. T. Todaro, R. Cingolani, M. De Vittorio, and A. Passaseo 

National Nanotechnology Laboratory of CNR-INFM , Distretto Tecnologico-ISUFI, Università del Salento, Via 
Arnesano 16, 73100 Lecce, Italy. 

alessandro.massaro@unile.it 

Abstract: We present in this work the scalar potential formulation of  
second harmonic generation process in χ(2) nonlinear analysis. This 
approach is intrinsically well suited to the applications of the concept of 
circuit analysis and synthesis to nonlinear optical problems, and  represents 
a novel alternative method in the analysis of nonlinear optical waveguide, 
by providing a good convergent numerical solution. The time domain 
modeling is applied to nonlinear GaAs asymmetrical waveguide with 
dielectric discontinuities in the hypothesis of quasi phase matching  
condition in order to evaluate the efficiency conversion of the second 
harmonic signal. The accuracy of the modeling is validated by the good 
agreement with the published experimental results. The effective dielectric 
constant  method allows to extend the analysis also to 3D optical 
waveguides.  
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1. Introduction 
 

With the introduction of rigorous time domain methods with analytical approximations it is 
possible to represents the physical phenomena such as light propagation and second harmonic 
generation (SHG) process inside a nonlinear optical device with a good convergent solution 
and low computational cost. For this reason a time domain simulator containing second-order 
nonlinearities, and including numerical approximations of dielectric step discontinuities, is 
presented in this work. The simulation algorithm is based on nonlinear wave equations 
associated to the circuital approach which considers the time-domain wave propagating in 
nonlinear transmission lines. The transmission lines represent the propagating modes of a non 
linear optical waveguide. Each propagating mode is solution of the scalar Helmholtz wave 
equation [1]-[5] and is associated to a transmission line with a characteristic impedance which 
depends on the modal effective refractive index. This analogy allows to model a nonlinear 
optical waveguide as a set of transmission line circuits which take into account the dielectric 
interfaces along the propagating direction as voltage and current generators. In the frequency 
domain, the transmission and reflection properties of dielectric discontinuities may be derived 
by means of an equivalent circuit [6],[7],[8] that automatically ensures continuity of the fields 
and their first derivatives along the propagation-directions. If potentials are used, instead, 
second derivatives are involved and generators are necessary at each dielectric interface in 
order to model accurately the discontinuous regions of the periodic nonlinear waveguide. 
These generators allow to model a discontinuous optical waveguide by decreasing the 
computational cost with good convergent solution [5]: the generators are placed directly on 
the interface nodes by optimizing the numerical error of the temporal second derivates at the 
dielectric boundary condition. In this way it is also possible to discretise complex nonlinear 
dielectric thin multilayer structure with cells size of the same order of the dielectric 
thicknesses, by obtaining a convergent solution [5]. By using this approach the SHG process 
is treated as a simple equivalent scalar problem with   a numerical accuracy provided by the 
generators.  

For a two-dimensional (2-D) SHG problem the proposed time-domain algorithm solves 
rigorously harmonic field by considering only two coupled equations between a fundamental 
nonlinear equation and a second harmonic (SH) nonlinear equation. For the same problem, the 
conventional finite difference time domain (FDTD) algorithm solves for three field 
components which are correlated, by increasing of 50% the central processing unit (CPU) 
time. In a 3D case the proposed algorithm solves again two scalar equations instead of six, 
and subsequently all the electromagnetic (EM) field components are obtained by the two 
scalar potentials as in Hertzian potential formulation (HPF) [4],[5]. By considering the 
numerical approximation (voltage and current generators of Fig. 1) with the analytical 
approximation (effective dielectric constant (EDC) method) we model in this work GaAs 
nonlinear discontinuous waveguides for wavelength conversion applications. Wavelength 
conversions of lasers are fundamental techniques in optoelectronics. These techniques require 
the phase coincidence of optical waves generated in nonlinear medium to obtain high 
conversion efficiency. Among various kind of phase matching device, quasiphase matching 
(QPM) is a most promising method because QPM can use the maximum nonlinear optical 
tensor component with flexibility of designed phase matching wavelength. The QPM 
application in high efficiency SHG processes is analyzed in this work in which we model the 
χ(2) non linear process in the asymmetrical GaAs slab waveguide with nonlinear core and 
dielectric discontinuities: in the nonlinear planar waveguides a fundamental mode can couple 
to a second-harmonic SH mode through an appropriate nonlinear susceptibility coefficient. 
The circuital model is applied to GaAs discontinuous slab waveguide at different working 
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wavelengths in order to estimate the SH conversion efficiency in QPM condition. A good 
agreement between experimental results (reported in [13]) and numerical results confirms the 
rigorous accuracy of the proposed time domain circuital approach. The EDC method is used 
in the time domain modeling in order to analyze a 2D problem in a 1D case. The same EDC 
approach and the coupling mode theory extend the analysis for a 3D GaAs discontinuous 
ridge waveguide in QPM condition, by providing also the optimum grating lengths for a high 
SH conversion efficiency: the coupling coefficient along the propagating direction allows to 
design the total grating length in order to obtain a good SH enhancement at the end of the 
periodic structure. In particular we analyze the 3D ridge waveguide commonly used in 
demultiplexing and  optical filtering applications.   

We summarize the presented work in the following steps: i) we first test the new time 
domain modeling including generators with the experimental results of a nonlinear GaAs 
waveguide at working wavelength (wavelength of the fundamental mode) λ=1.955 μm; ii) we 
apply the numerical method to discontinuous nonlinear GaAs waveguide for 
telecommunication applications at λ=1.55 μm by evaluating the SH efficiency conversion in 
QPM condition; iii) we use the QPM condition and the coupling mode theory in order to 
evaluate the total grating length of a practical 3D ridge waveguide with nonlinear GaAs core 
on AlGaAs substrate at the working wavelength of  λ=1.55 μm. The grating length design is 
analyzed by considering the coupled mode theory with the assumption of linear material in 
order to define the grating length related to a good coupling between the fundamental and SH 
mode, considered as ideal modes without losses in phase matching condition. The steps listed 
above are reported in details in the block diagram of Fig. 2.     

2. Second harmonic generation process: scalar time domain modeling of discontinuous 
waveguides.  

The formulation of the fundamental and second-harmonic fields starts with the Helmholtz 
wave equation for an homogeneous non-dissipative medium:   
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where ψe and ψh represent two guided modes of the asymmetrical waveguide shown in Fig.1 
(a), and εeff is the effective permittivity index evaluated by the EDC method [7]. Each mode 
propagates in the optical waveguide as a signal which travels in a transmission line (see Fig. 1 
(b)) characterized by a characteristic impedance given by 
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It is known that the scalar wave equation may lead to inconsistencies because, in 
inhomogeneous regions such as step discontinuities shown in Fig.1 (a), it is, in general, not 
equivalent to Maxwell’s equations. Electromagnetic scattering problems, including free space, 
involve the calculation of the fields produced in the presence of geometrical discontinuities by 
arbitrary currents and voltages [4]. Such discontinuities may be replaced by equivalent 
generators [4],[5], (see Fig. 1 (b)), giving an accurate solution of the EM field for structures 
with high dielectric contrast. In fact the scalar wave equation Eq. (1) for a non-dissipative 
medium can be rewritten as 
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where  
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represents the dielectric polarization and in a 1D case [4] 

 
1      longitudinal positioni i i zε ε ε+Δ = − =    (5) 

 
Equation (3) gives the effect of the generators Vf,s and If,s reported in Fig.1 (b) as variation 

of coefficients in the finite difference (FD) field discretisation [4]. In particular the wave 
solution in the homogeneous region (uniform slab region without discontinuities) is in the 
iterative form [4] 
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and in the nodes between dielectric interfaces of step discontinuities (inhomogeneous region)  
becomes:  
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with [4] 
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We observe that the Eq. (3) gives convergent solutions by considering also a non fine 

spatial discretisation, by decreasing the computational cost [5]. In a nonlinear material the 
wave equation Eq. (1) becomes  
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where Pe,h

NL is the polarization given by Pe,h
NL=χ(2)ΨeΨh, n is the material refractive index, 

and χ(2) is the dispersionless nonlinear susceptibility. The general field formulation considers 
three different fields propagating at three different frequencies Ψe(ω1), Ψh(ω2), Ψg(ω3) in 
material exhibiting an instantaneous second-order nonlinearity 
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where na, nb, nc are the refractive indexes of the wave Ψe(ω1), Ψh(ω2), Ψg(ω3) respectively. 
We observe that in a generic case χ(2) is a tensor and Eq. (10), Eq. (11) and Eq. (12) becomes 
systems of scalar equations to be solved for each crystal-direction. However most 
semiconductor, which crystallize in zinc-blende structures, have a symmetry and their second-
order susceptibility has a single nonzero independent component (for GaAs at the 
transparency region below the optical energy gap χx,y,z

(2)= 200 pm/V).  
Coupled equations Eq. (10), Eq. (11), and Eq. (12) can be rewritten as  
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We observe that Eq. (13), Eq. (14) and Eq. (15) for a generic three-wave-mixing process can 
refer also to a twin photon generation process [9].    

The fundamental and the second harmonic field in a SHG process, occurs whit ω1=ω2=ω, 
ω3=ω1+ω2=2ω, χ(2) =χ(2) (ω1)/2=χ(2) (ω3) [3], and Ψf  = Ψe = Ψh (na= nb= nf), and Ψs = Ψg 
(nc= ns). In this case the coupled equations to solve are the following 
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We observe from Eq. (16) and  Eq. (17) that the fundamental Ψf and the second harmonic Ψs 
field are characterized by the refractive indexes nf and ns respectively. For the asymmetrical 
slab shown in Fig. 1 (a), nf  represents the effective refractive index along the x-direction at 
ω1=ωs and ns represents the effective refractive index at ω3=ωf=2ωs. In this way it is possible 
to model the SHG by two transmission lines as reported in Fig. 1 (b), each one characterized 
by the characteristic impedance of Eq. (2), as  
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By using the finite difference (FD) discretisation Eq. (16) and  Eq. (17) become 
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where i represents the cell position in the z-propagation direction and n represent the time 
step. By separating the Ψn+1

f(i) in eq. (19) and Ψn+1
s(i) in Eq. (20) we obtain the iterative form 

of the fundamental and the second harmonic field as 
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The absorbing boundary conditions (ABCs) [10],[11] around the computational domain Ω, 

permit all outward-propagating numerical waves to exit Ω, as if the simulations were 
performed on a computational domain of infinite extent. In this case, extremely small 
boundary reflection coefficient of the order of 10-11 is obtained in the simulations by 
enhancing the accuracy of the solution allowing for long simulation times steps.    

3. QPM condition and time domain results: SH generation in GaAs discontinuous 
waveguide.  

Usually high intensity sources are necessary in order to observe a SH in a χ(2) nonlinear 
structure. For this purpose a nonlinear waveguide with dielectric step discontinuities can 
increase the SH efficiency conversion.  The proper choice of the grating periodicity can  
increase the SH intensity: the grating is designed to restore the proper phase relationship 
between the fundamental wave and the second harmonic in the presence of dispersion, thereby 
improving the efficiency of second-harmonic generation. The QPM technique is a practical 
method of substantially increasing the second-harmonic power by effectively reducing the 
phase mismatch between the fundamental and the SH fields: the technique relies on 
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introducing a grating in the waveguide to compensate for the difference of the propagation 
refractive indexes in the waveguide Δn= ns - nf

 . It is useful to define the coherence length 
[12], [13]:  
 

0

| 2 | 4 | |

f

f SH f s

Lc
n n

λπ
β β

= =
− −

   (23) 

 
where βf and βSH  are the propagation constant of the fundamental and the SH, respectively; 
λ0

f is the free-space wavelength of the fundamental wave; and nf
  and ns are the effective 

indices at the fundamental and second-harmonic frequencies, respectively. Lc represents the 
length scale when the fundamental and harmonic get out of phase by π radians with a  
corresponding mismatch in wave-k vectors of Δk=kSH –2kf=2k0Δn [12],  where k0=2π/λ0

f, kSH  
and kf are the waves vectors for the SH and fundamental waves, respectively. The QPM 
condition, applied to the grating period, is given by the relationship: 
 

2
k

π = Δ
Λ

    (24) 

 
which is equivalent to Λ=2LC. 

In order to test the accuracy of the time domain method presented in this work we 
compare  the published experimental results [13] of a QPM GaAS structure.  By considering 
the QPM technique we model a QPM semiconductor [13] device based on a methodology that 
involves a periodically switched nonlinearity. In this case a periodic modulation of the 
susceptibility coefficient along the direction of light-beam propagation is considered. As first 
implementation of Eq. (21) and Eq. (22) we model a grating periodicity given by χGaAs

(2) 
>χAlxGal-xAs

(2)  (see inset of Fig. 3). The coupled Eq. (21) and Eq. (22) with the circuital 
approach given by Eq. (6) and Eq. (7) and the EDC method, provide a good agreement with 
experimental SH intensity results of [13]: Fig. 3 shows the accuracy and the convergence of 
the numerical coupled equations. Figure 3 shows the ratio between the output SH power and 
the fundamental output power with respect to the input power. In particular the left vertical 
axis shows the numerical results, whereas on the vertical right axis is reported the 
experimental behavior (see [13]). Another verification of the time domain model is given by 
the frequency response reported in Fig. 4 (a) and (b) in which we show the SH and the 
fundamental simulated spectra obtained through the discrete Fourier transform (DFT) of the 
signals (evaluated at the end of the simulated waveguide) related to the fundamental signal 
(λ0

f =1.955 μm) and to the SH signal (λ0
s =0.9775 μm), respectively. A good agreement with 

the experimental spectra of [13] is observed.  
After this validation we calculate numerically the SH efficiency of a GaAs waveguide 

with a working wavelength λ0
f =1.55 μm (SH at λ0

s =0.775 μm). In this case the simulated 
structure is characterized by a QPM grating with Λ=6.021μm (Lc=Ls=Λ/2), χ(2) (GaAs)=200 
pm/V, n1(GaAs at λ0

f =1.55 μm)=3.374, n2=3. In Fig. 5 is shown the time domain evolution of 
the fundamental and of the SH field by exciting the periodic structure with a sinusoidal signal 
at λ0

f =1.55 μm: the coupled Eq. (21) and Eq. (22) generate automatically the SH coupled 
field which propagates in the asymmetrical slab waveguide. For the same structure, Fig. 6 
shows the fundamental and the SH spectrum, by considering, as source, a carrier modulated 
by an exponential signal defined by (see time evolution in Fig. 6 (a)): 
 

2
0 0exp( ( / ) ) cos( )f

f t t T t tωΨ = − ⋅ Δ ⋅ ⋅ ⋅ Δ    (25) 
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where ω0

f is the fundamental angular frequency, Δt is the time steps and the constant T0  
represents the modulation of the fundamental carrier.  

We observe from Fig. 6 (b) that the shape of the DFT signal spectrum may change with 
the parameter T0 defined in the source signals shown in Fig. 6 (a). The effect of the grating 
efficiency on the SH generation is observed in Fig. 7 in which is reported the SH amplitude in 
the case of uniform waveguide (without grating), and in the case of QPM waveguide (with 
grating): an increase of SH amplitude of two order of magnitude is observed, confirming the 
efficiency of the QPM grating in the enhancement of the SH signal.       
 

 
 

Fig. 1. (a) Asymmetrical slab waveguide with nonlinear GaAs core, ns1 and  nf1 are the effective 
refractive indexes (SH index and fundamental index respectively) of the region characterized 
by the thickness D, ns2 and nf2 are the effective refractive indexes (SH index and fundamental 
index respectively) of the region characterized by the thickness d; (b) and related transmission 
line model with generators at discontinuous interfaces.  
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Fig. 2. Block diagram: analysis of SH generation process in discontinuous GaAs waveguide.  
The testing is related to experimental results of [13]. 

 

 
Fig. 3. Measured and scalar time domain numerical results of a periodic GaAs/Al0,4Ga0,6As  
waveguide. Inset: simulated structure with Lc=2.97 μm, Ls=4.73 μm. The effective indexes of 
the region I are: ns1=  3.321, nf1=  3.29; the effective indexes of the region II are ns2=  3.1651, 
nf2=  3.161.  The time step used in the simulation is Δt=1.6679*10-16 sec. and the spatial step is  
Δz=5*10-8 m.  PSH  refers to the SH output power. 
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Fig. 4. Normalized discrete Fourier transform DFT at the end of the simulated waveguide of: a) 
fundamental mode Ψf, and b) SH mode Ψs, respectively.      
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Fig. 5. Time evolution of the normalized fundamental (λ0

f=1.55 μm) and SH (λ0
S=0.775 μm) 

signals generated at the end of grating region in an asymmetrical slab waveguide with 
nonlinear GaAs core: χ(2)=200 pm/V, d=0.22 μm, D=0.36 μm, Λ= 6.021 μm (QPM condition), 
ns1=3.2313, nf1=3.1052, ns2=3.3187, nf2=3.1895. The total grating length is 5Λ. 
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Fig. 6. (a) Pump source signals for different T0 values. (b) Fundamental and SH spectrum for 
different T0 values at the end of the grating (section a of the inset). The time step used in the 
simulation is Δt=1.6679*10-16 sec. and the spatial step is  Δz=5*10-8 m.  
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Fig. 7. SH conversion efficiency  in the case of uniform GaAs slab waveguide and of QPM 
GaAs grating and sinusoidal source as pump signal. 

 
4. SH process coupling in GaAs ridge waveguide and grating length design.  
 

The analytical approach of the coupling mode theory provides an alternative design criterium 
of grating length: the length of the step discontinuities (total grating length) can be chosen in 
order to obtain at the end of the grating a maximum SH signal corresponding to a maximum 
coupling coefficient. As application of this analytical model we analyze a typical optical 3D 
periodic waveguide commonly used in multiplexing or filtering applications, such as ridge 
waveguide shown in Fig. 8 (a) characterized by GaAs core on Al0,7Ga0,3As substrate at 
working wavelength of λ0=1.55 μm.  

This 3D waveguide can be analyzed in 2D dimension by the EDC [14] method, and the 
coupling mode theory provides the longitudinal position in which the coupling between the 
fundamental mode and the generated SH mode is characterized by an high intensity. For this 
structure we find through the time-domain modeling the same order of the conversion 
efficiency reported in Fig. 7. With the help of the analytical coupled theory approach it is also 
possible to define the minimum grating length for the best power conversion. In the EDC 
approach [14] we separately analyze region I and region II shown in Fig. 8 (b): we first 
evaluate the propagation constants in the y-directions then the effective constants εI ,and εII 
(belonging to region I and II); finally we evaluate the propagation constant in the x-direction. 
The coupling coefficient Cf,S couples the fundamental mode Af and the SH mode BS, as 
reported by the following linear simplified coupled-mode equations [15],[16]: 
 

            

*
,

2
,

( )
( ) ( ) ( ) exp( 2 )

( )
( )[ ( )] exp( 2 )

f
S f

f S

S
f

S f

dA z
jC z B z A z j z

dz

dB z
jC z A z j z

dz

δ

δ

= − −

= − −
     (26) 
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where 2δ=βSH – (2βf + Δk). The coupling coefficient Cf,S(z) is obtained by the coupling mode 
theory [13]  
 

, 0( ) ( )f t t
f S f SC z z E E dxdyω ε

+∞ +∞

−∞ −∞

= Δ∫ ∫    (27) 

 
where Et

f  and Et
S are the fundamental and the SH transverse field components associated to 

the lowest order modes of fundamental and SH waves respectively, and Δε(z) represents the 
variation of the refractive index along the longitudinal z-direction. This variation Δε(z) is a 
square-wave given by  the Fourier series: 
 

2 2
1 3

1

1 2
( ) sin

l c s

n n l z
z

l L L

πε
π

∞

=

⎛ ⎞⎛ ⎞−Δ = ⋅ ⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠
∑   (28)  

 
We observe that Eq. (26) refers to a periodic structure with linear material. This ideal 

assumption is used in order to estimate the grating length related to a good coupling condition 
between the fundamental and SH guided modes not considering the losses.  In Fig. 9 are 
shown the coupling coefficients Cf,S(z) in QPM condition and for different lengths (no phase 
matching condition) Lc and Ls: in the no phase matching cases the coupling coefficients will 
show other minima which decrease the efficiency conversion.    

The analyzed ridge waveguide is characterized by a single transverse electric TE mode 
[14] obtained with a working wavelength of λ0

f =1.55 μm (Et
f  profile of the single TE 

propagating mode), and with a working wavelength of λ0
s =0.775 μm (Et

S  profile of the single 
TE propagating mode). The fixed parameters chosen in the evaluation of the coupling 
coefficient are: n1(GaAs)=3.374, n3(air)=1, n2(Al0.7Ga0.3As)=3.02, s=0.4 μm, d=0.2 μm, D= 
0.32 μm. In Fig. 10 are shown the power associated to the fundamental field (|Af(z)|2), and the 
power (|BS(z)|2) associated to the SH field: Af(z) and BS(z) are solutions of Eq. (26) in the case 
of QPM condition. Figure 11 shows the peak development of the SH mode and the dip 
development of the fundamental one reported in Fig. 10.  It is clear from both the figures how 
the best coupling condition is found around z=1.25 μm (minimum grating length) where the 
coupling coefficient between the two modes and the SH power are maximum, and the 
fundamental power is minimum.     
         
 

 
Fig. 8.  (a) 3D ridge waveguide with nonlinear GaAs core; (b) EDC approach.   
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Fig. 9. Coupling coefficients Cf,S(z) for different values of Lc and LS . Cf,S(z) =C1(z) refers to a 
QPM grating with LC=LS=0.2275μm, Cf,S(z) =C2(z) refers to a grating with LC=0.2275μm and 
LS=0.5 μm, and finally Cf,S(z) =C3(z) refers to a grating with LC=0.2275μm and LS=0.1 μm.  

 

 

Fig. 10. Ridge waveguide (QPM condition): |Af(z)|2 ,|BS(z)|2 , and Cf,S(z) are the fundamental, 
the SH and the coupling coefficient amplitudes, respectively. The initial value |Af(z=0)|2=1 
represents the pump signal. 
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Fig. 11. SH mode peak development and fundamental mode dip development. The minimum 
length of coupling efficiency is at z=1,25 μm. The coupling efficiency is obtained with the 
ideal assumption of no mode-losses. 

 
5. Conclusion 

A flexible and computationally efficient circuital approach regarding to the second-order 
nonlinear processes is presented. The scalar potential modeling is applied to nonlinear GaAs 
optical waveguide with step discontinuities by providing a good agreement with the published 
experimental results. With the help of the EDC method, the scalar potential method can be 
generalized to complex 3D optical waveguides such as nonlinear ridge waveguides. The 
rigorous analysis of the fundamental/SH coupled equations provides the conversion efficiency 
of the GaAs/QPM grating. The circuital approach can be extended to twin photon generation 
process through the three wave mixing coupled wave equations. 
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