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This paper introduces an application of machine learning, on real data. It deals with Ensemble

Modeling, a simple averaging method for obtaining more reliable approximations using symbolic

regression. Considerations on the contribution of bias and variance to the total error, and

ensemble methods to reduce errors due to variance, have been tackled together with a specific

application of ensemble modeling to hydrological forecasts. This work provides empirical

evidence that genetic programming can greatly benefit from this approach in forecasting and

simulating physical phenomena. Further considerations have been taken into account, such as

the influence of Genetic Programming parameter settings on the model’s performance.
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NOTATION

y output variable

x set of input variables

1 random variable distributed according to some

law (residuals)

f(x) deterministic function

D data sample time series of size N

f̂ðxjDÞ estimation of f (x) using a particular training

data set D
�fðxÞ the average model

M independent subsets randomly resampled

(the number of bootstrap resampling)

Dtrain training set

Dtest testing set

G number of generations in GP runs

P size of population in GP runs

Rt rainfall at time sample t

Tt air temperature at time sample t

Ht average monthly groundwater head at time

sample t

Dt head information at time sample t (Dt ¼ Htþ1 2 Ht)

mj weight of the jth GP model within the EM

INTRODUCTION

In the last few years, the global climate changes are gradually

increasing their influence on regional water resource man-

agement policies as well as the hydrological stability of the

Southern Mediterranean areas (i.e. south of Spain, Greece,

Tunisia, Turkey, etc.) (Simeone 2001). In theparticular case of

southern Puglia (Italy), rainfall decrease is emphasized by the

particular water circulation path in which infiltration

phenomena prevail over surface runoff (i.e. rivers, lakes,

etc.), the area being deeply karstified. This situation is causing

a decrease in reservoir recharge from both groundwater

systems and surface catchment areas, which are particularly

necessary to satisfy the agricultural water demand (i.e.

agriculture is the main business of the region).

As a consequence, groundwater super-exploitation

causes a lot of problems, such as seawater intrusion and

groundwater salt contamination, leading to a loss of soil

fertility due to the lower quality water (Grassi & Tadolini

1992). The latest Italian regulations (i.e. L. n. 152/06 on

Landscape and Water Resources Management and Protec-

tion, Italian National Program against Desertification)

encourage water resources management on a large scale
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(i.e. groundwater), with particular emphasis on long time

planning, monitoring and safeguarding. Thus, water man-

agers need to know how much water will recharge the

aquifers in the near future (i.e. up to 6 months ahead),

because this will affect the volume of water that can be

withdrawn (‘abstracted’) safely from the groundwater

resources. Unfortunately, recharge can’t be measured

directly. An estimation method is required to be used to

support decisions about the future assets of water resources

within a particular area. The first step can be modeling the

rainfall/infiltration phenomena, which is a nonlinear

process due to a certain number of extra inputs which are

very expensive to check. Such a model should be (relatively)

easy to build and to update, as soon as new data become

available, and preferably simple to use by decision-makers.

In this paper, Ensemble Modeling (Breiman 1996a) has

been tested, using Genetic Programming for building single

models. Genetic Programming (Koza 1992) is a general

purpose search technique that can be applied to both

regression and classification problems. In contrast to linear

and nonlinear regressions, this technique does not assume a

concrete functional form, since it generally starts from a

definition of low level building blocks (the function set)

from which a functional form is induced. Here, Genetic

Programming (GP) was used as an induction engine on

which the Ensemble Modeling (EM) approach is based.

Starting from field data, a comparison between EM and

traditional GP Single Model technique was performed both

in one-step-ahead prediction and k-step-ahead prediction.

Sensitivity analyses were briefly performed in order

to understand the correlations between user-defined

parameters of GP and statistical coefficients used to

evaluate the performance of the models.

ENSEMBLE MODELING THEORY

In model induction both the bias and the variance of the

method should be minimized as they both contribute to the

total error. These two terms contradict each other, thus

implying a clearly unavoidable trade-off. Previous works

indicate that GP applied to symbolic regression is a low

bias, but high variance induction technique (Babovic &

Keijzer 2000).

Bias, variance and estimation error

In a statistical learning theory scenario, GP can be applied

to the problem of function estimation. In a standard

function estimation problem, one assumes that an output

variable y is somehow related to a set of input variables x as

y ¼ fðxÞ þ 1 ð1Þ

where f(x) is a deterministic function and 1 is a random

variable distributed according to some law. If the residuals 1

are expected to be (near) Gaussian (i.e. Eð1jxÞ ¼ 0 ;x), it is

possible to state that

fðxÞ ¼ EðyjxÞ ð2Þ

so that the goal of supervised learning is to obtain an

estimate

f̂ðxjDÞ ¼ Êðyjx;DÞ ð3Þ

where D is the training data sample of size N (Babovic &

Kejizer 2000). Therefore, inaccuracy of estimation can be

measured using the mean squared error statistic:

MSE½f̂ðxjDÞ� ¼ ED½ðy2 f̂ðxjDÞÞ2� ð4Þ

where the expected value in Equation (4) is calculated with

respect to the distribution in Equation (1). The estimated

probability f̂ðxjDÞ depends on the training data set D.

Differently sampled D generally results in the change of

probability estimate: yi, which are stochastic due to random

variable 1, and xi themselves are susceptible to observational

sampling. Therefore, estimation of f(x) using a particular

training data set D in principle results in a particular

random realization of f̂ðxjDÞ. Following Babovic & Kejizer

(2000), the prediction error in Equation (4) can be

decomposed as follows:

ED½ðy2 f̂ðxjDÞÞ2� ¼ ED½ðfðxÞ2 f̂ðxjDÞÞ2� þ E1ð1jxÞ: ð5Þ

Equation (5) represents the squared prediction error

averaged over all data sets D drawn from the same

population. The second term in (5) is independent of both

the target function and the training data as it originates in

the random nature of the output variable, as defined in

Equation (1). The first term in Equation (5) represents the

squared ‘estimation error’ in the target function f(x)
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averaged over the training samplesD. It depends on fðxÞ and

on the method to obtain f̂ðxjDÞ. Thus, it can be expanded as

ED½ðfðxÞ2 f̂ðxjDÞÞ2� ¼ ½fðxÞ2 EDðf̂ðxjDÞÞ�2

þ ½ED½f̂ðxjDÞ2 EDðf̂ðxjDÞÞ�2
ð6Þ

It is rather obvious from Equation (6) that the squared

‘estimation error’ depends on the statistical properties of the

distribution of f̂ðxjDÞ (i.e. its mean and its variance). The

first term on the right in square brackets in Equation (6) is

the square of the ‘bias’:

bias ¼ fðxÞ2 EDðf̂ðxjDÞÞ ð7Þ

The bias term (7) reflects the sensitivity of an estimate f̂ðxjDÞ

to the target function f(x). It represents how good an

estimate is able to approximate the target on the average.

The bias (7) describes the generic ability of a learning

method as well as the properties of kernel functions used by

the learning method to approximate the target function. The

second term in Equation (6) is simply the variance:

variance ¼ ED½f̂ðxjDÞ2 EDðf̂ðxjDÞÞ�2: ð8Þ

Variance does not depend on the target distribution directly

(Heskes 1998). Furthermore, it is non-negative and zero if

and only if all estimators are equivalent. The bias depends

only on the target distribution and the average model,

which is defined as the model that minimizes variance. For

a given bias (7), the variance (8) generally decreases with

increasing training sample size N. It can be expected that,

for training samples with large N, the bias remains the main

contributor to estimation error. This paper investigates the

circumstances where the availability of data is limited.

Equation (6) clearly illustrates that it is desirable to have

both low bias and low variance since both terms contribute

to the squared estimation error to the same extent.

However, these two objectives are contradicting each

other. The purpose of training is in approximating a target

function. Sensitivity to the training data is essential,

implying lower bias. At the same time, large sensitivity

increases variance. The contradictory nature of these two

objectives gives rise to a rather natural bias/variance trade-

off. This trade-off has been an objective of investigation in

many machine learning areas (Geman et al. 1992; Friedman

1997; Breiman 1999).

Ensemble method

Under a statistical viewpoint, the bias/variance trade-off is

often referred to as a dilemma. Geman et al. (1992) go so far

as to state that the dilemma can be circumvented only if one

is willing to sacrifice generality, that is, purposefully

introduce bias, in order to reduce the variance. Thus,

when this bias is attuned to the problem domain, such a

method will reliably give good results. In GP several

methods have been investigated for introducing such a

bias (Montana 1995; Whigham 1996; Martin et al. 1999). The

background knowledge about the problem domain is

introduced to increase the level of bias and to decrease

the magnitude of variance, due to the trade-off. When the

bias so introduced does not increase the bias error, the

method will produce better solutions. However, there are

methods of reducing the variance without increasing the

bias. One such method is selecting a single best model by

using cross-validation data. Another method for obtaining

better performance makes explicit use of the fact that the

error due to variance is caused by deviation from the

average model:

�fðxÞ ¼
1

M

XM

1

f̂jðxiÞ ) i ¼ 1…N: ð9Þ

As this average model can be easily calculated, it can be

used instead of a single best model. Therefore, given a data

set D, firstly a disjoint training Dtrain and testing set Dtest are

created. Dtrain is further subdivided by randomly drawing

cases to form M independent subsets. These M sets are then

used as the training sets for M independent runs of the GP

algorithm. Given these M models f̂1ðxÞ; … ; f̂MðxÞ and testing

data Dtest ¼ ðx1; y1Þ…ðxN ; yNÞ, the ensemble mean squared

error is defined as

1

NM

XN

i¼1

XM

j¼1

ðyi 2 f̂jðxiÞÞ
2: ð10Þ

By introducing the average model the mean squared

error can be decomposed into bias and variance by a
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straightforward rearrangement of terms in (10):

bias ¼
1

N

XN

i¼1

ðyi 2 �fðxiÞÞ
2: ð11Þ

variance ¼
1

NM

XN

i¼1

XM

j¼1

ð�fðxiÞ2 f̂jðxiÞÞ
2: ð12Þ

Again the bias term depends on the target distribution (y),

while the variance term does not. A more elaborate

formulation would further decompose the bias term into

true bias and noise (see Equation (6)) but, as in practice the

inherent noise is often unknown, here the current definition

is used. Note that the average model is calculated without

utilizing testing data. By using this average model as the

resulting model of many runs, the error due to the variance

is effectively eliminated. The remaining error contribution is

due to the bias alone, which represents the generic ability of

the method to deal with the problem. Therefore, using the

average model instead of a single model leads to a new bias/

variance trade-off. The difference is that a new decompo-

sition over different runs producing different average

models can be performed. The expected improvement

originates in the fact that the associated variance of these

average models is lower than the variance of the original

setup. As was shown in Babovic & Keijzer (2000), GP

exhibits low bias. Therefore this offers a simple and feasible

approach to reducing the generalization error in symbolic

regression. The technique of combining multiple models

into a single one is referred to as Ensemble Modeling. When

the process of averaging is used in conjunction with

bootstrapping to obtain the training sets, the technique is

referred to as bootstrap aggregating (bagging) (Breiman

1996a). Other Ensemble methods are boosting (Freund &

Scahpire 1996) and stacking (Breiman 1996b). Moreover,

Iba (1999) applied the ensemble methods of boosting

and bagging to genetic programming and obtained encoura-

ging results.

Resampling techniques

Generally speaking, observed datasets are often poor in the

quantitative and qualitative sense and it is not easy to get an

accurate, manageable, or even analytical description of the

distribution of these data. For these reasons it is usually not

possible to get analytical expressions for the statistics on

the desired uncertainties. Analytical approaches seem to be

restricted to very special cases only. Moreover, a proper

analytical description of the probability distribution of the

observed data is not easy to get, and an alternative

approach must be followed to obtain an expression for

the model uncertainties. In particular, techniques that are

generic or insensitive for the statistical properties of the

data are desired. The so-called resampling techniques form a

group of such statistical methods (van den Boogaard et al.

2000). As a result of this procedure an ensemble of

estimates is available for both the uncertain model

parameters and for the corresponding model output.

Depending on the used form of resampling these multiple

estimates must be combined in some way to obtain

the desired statistics (distribution, mean, spread, confidence

interval, etc.) of the involved quantities. The most common

form of resampling are jack-knifing (Wu 1986) and

bootstrapping (Heskes 1997). Bootstrapping is used in

this paper.

Bootstrapping

A bootstrap resample is a random selection of N

data out of the N original data. The N individual draws

within such resample are independent but with replace-

ment, so that every time there is a probability of 1/N that

a particular sample of the original set is selected. At

the end some samples are then selected more than once

while other samples are absent in the resample. Note

that the probability that an original sample is not present

in the resample is then (1–1/N)N which for large N is

close to 1/e ( ø 37%). In this way an ensemble of L of

such resamples is generated. This L should be sufficiently

large and in practice it is typically of the order of a

hundred or a few hundred, somewhat depending on the

statistics to be computed. This form of bootstrapping is

often called naive bootstrapping. There are alternative or

adapted forms for the bootstrap such as the weighted

bootstrap, bootstrapping of normalized residuals, the

smoothed bootstrap, the parametric bootstrap (Efron

1982; Wu 1986; Efron & Tibshirani 1993) or ‘bagging’

(Breiman 1996a).
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CASE STUDY: BRINDISI SURFACE AQUIFER LEVELS

MODELING

The particular case study is from the southern zone of

Puglia (Italy). In the last few years, this region has shown a

gradual decreasing of rainfall events with consequences on

the hydrological water surplus and the infiltration process

(Grassi & Tulipano 1983). In fact, in this region the

infiltration flows are prevalent with respect to the surface

organized ones, such as rivers or lakes, because of its

particular hydrogeological features (i.e. karst area)

(Simeone 2001). As consequence of this low availability of

surface water, the groundwater overexploitation has

become a widespread habit in agriculture, inducing a self-

increasing negative feedback between natural and human-

induced phenomena, whose final effect is not of easy

management and control. One of the most significant

consequences is seawater intrusion and groundwater salt

contamination leading to a severe loss of soil fertility due to

the lower quality of water (Grassi & Tadolini 1992). The

paper introduces an application of bias/variance decompo-

sition of mean squared error to real data from the Brindisi

area, as well as a presentation of experimental results on the

application of GP Ensemble Model. A concise description

of geographical and geological situation follows.

Background to hydrogeological information

This area, also called Piana di Brindisi, is characterized by

terraced surfaces gently sloping caused over the centuries by

the regression of sea levels. There are many natural streams

with small depth, but only a few of these have an

uninterrupted flow over the months. The Piana di Brindisi

consists of a wide structural depression of the Apulian karst

block, open towards the Adriatic coast. Over the centuries,

drifts have settled on this depression forming the actual

surface aquifer body. This water resource is fed by

infiltration because of its high permeability. Two different

hydrogeological systems can be distinguished: the first is the

local phreatic sandy surface aquifer, lying on an imperme-

able bed of Sub-Apennines clay; the second, is the regional

deep karst and fractured aquifer, underlying the first one,

whose waters, locally, can flow pressurized (Ricchetti &

Polemio 1996). During the year, there is usually a drought

period around July and rainfall peaks in November and

December. Observing Figure 1, it is clear that the aquifer

bed is tilted towards the north-east with a slight concavity

close to the coast line. The aquifer thickness has a modest

local variability showing a general increase in the central

area of the aquifer, along a NE–SW direction. On the basis

of piezometric information and direct measurements, it was

argued that the sea has a low drainage action on

groundwater. The gradients of the bottom and upper

surfaces are parallel to the global piezometric gradient.

Moreover, the aquifer thickness is smaller than the

gap between its upstream and downstream heads and

groundwater is drained through its bottom towards the

deep aquifer.

Available data

In order to outline the hydrogeological regimes of the surface

aquifer near the town of Brindisi many available data have

been considered from several phreatimetric and rainfall

gauges belonging to regional boards like Hydrographical

Service Office (Bari) and Meteorological Observatory

(Taranto). The two time series used in this paper are those

considered the most reliable ones. Both measurement

Figure 1 | Hydraulic heads of Brindisi’s aquifer.
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stationswere chosen because of their continuous and reliable

series of data, since they are located outside urbanized areas.

The available data are the totalmonthly rainfall (mm) and the

monthly average temperature (8C) and the average monthly

groundwater head (m abovemean sea level). A period of time

of 44 years, from 1953 to 1996, has been considered.

Modeling strategies

With the constraints of data availability, GP is able to

approximate the target function reliably, with an uncon-

strained program size. At the same time, small programs

appear to be strongly biased, exhibiting high variance.

This leads straightforwardly to the conclusion that the

GP algorithm needs many nodes (more than 15) (Babovic

& Keijzer 2000). Moreover, many techniques exist

that can approximate a target function to any degree of

accuracy with much less effort than GP, for example

Artificial Neural Networks (see Giustolisi & Laucelli

2004). Conversely, when data are sparse, the situation is

more complex. Small programs are strongly biased again

and highly variant, while large programs exhibit high

variance as well. In these situations, bias/variance

decomposition helps in selecting the optimal program

size. Examination of the contribution of bias and variance

to the total error helps in indicating the location of a low

bias/reasonable variance region where reliable models

might be found, while a reasonable bias and low variance

region is of less interest due to the strong influence of bias in

defining the squared estimation error, see Equation (6).

Application of trimming

EM provides an alternative approach to obtaining a single

model. It combines the results of many GP runs in a single

average model. This averaging process could be destabilized

due to GP’s ability to produce extremely poor solutions

(outliers) that destabilize bias, also producing high variance

(Babovic&Kejizer 2000). SinceEMreduces the total error to

the bias error alone, the question of destabilized bias needs to

be addressed with care. Thus, some post-processing needs to

be applied in order to obtain more insightful results. The

predictions will be trimmed before calculating error due to

bias (11) and variance (12). Themain purpose for trimming is

to remove extremely poor programs and thus stabilize bias.

Enlarging the trimming percentage even more would effec-

tively stabilize variance as well (Babovic & Kejizer 2000). As

is clear from the remainder, an optimal trimming scenario

should stabilize biaswhile leavingmost of the variance intact,

as a high degree of variance is instrumental in establishing an

ensemblemodel (Babovic&Keijzer 2000). As the calculation

of variance is independent of the target function, in this paper

trimming has been applied after the EMs have been created.

Moreover, a sensitivity analysis has been performed to

study the relationships between the trimming percentage

and the bias/variance performance of the EMs. Other kinds

of sensitivity analyses were carried out between the

statistical parameters used to identify the goodness of the

models (CoD, Bias and Variance) and, in order, the number

of bootstrap resampling (M), the number of generations in

GP runs (G) and the size of populations in GP runs (P). It is

noteworthy that these last analyses show no relevant

variation in the global performance of the EMs, even if a

low number of bootstrap resampling (M , 15) carries to

low performance models. The conclusion of trimming

analyses will be reported in the next paragraphs.

Experimental setup

This paper describes an approach using GP as the induction

engine for EM.

The case study starts from field data of rainfall,

temperature and groundwater heads from the Brindisi

surface aquifer. A comparison between EM and traditional

GP Single Model was performed in one-step-ahead predic-

tion. Moreover, EM was tested in k-step-ahead forecasting.

Starting from the considerations of Babovic & Keijzer

(2000) about the contributions of bias and variance to the

total error and from the prior physical knowledge about the

aquifer (Ricchetti & Polemio 1996) the following setup for

applying GP to the case study was build up:

† Building the input data matrix involving rainfall till four

samples (Rt, Rt21, Rt22 and Rt23), air temperature at the

present sample (Tt) and head information at the present

sample (Dt). It has been used that Dt ¼ (Htþ1 2 Ht)

because of the strong correlation among head data, in

order to perform bootstrapping with uncorrelated data

points.
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† Splitting the input data set into two main sets, the

training and the test sets, 75% and 25%, respectively, of

the whole input set. The training set was completely used

for performing GP runs and defining all the single

models, while the test set was split into two further sets,

one (calibration set) for determining the coefficients of

the single models in the EM and the other (evaluation

set) for really testing the performance of the whole EM.

For the single GP model, the calibration set was used in

selecting the best model, which was evaluated on the

evaluation set. Usually the calibration set was 25% of the

whole test set.

† Performing M different runs for every EM determination,

using bootstrap method as the resampling strategy,

creating unique datasets for different runs. M was

determined as a consequence of the above mentioned

sensitivity analyses. A value of 30 seems to be good also

according to the time efficiency of the computations.

Bootstrapping was performed both for EM and for the

single GP model.

† Fixing the maximum size of GP programs to three

different values: 20, 140 and 260 nodes, for every

experiment. For both the EM and the single GP model

M different runs with all three maximum sizes were

performed. For the single GP model only the best one

was selected, while the EM was built up with models

having different sizes. The other user-defined GP

parameters were fixed according to the above mentioned

sensitivity analyses. In particular, a number of gener-

ations (50) and a population of 100 individuals were

chosen, thus obtaining a very fast algorithm. Finally, note

that the function set consisted of addition, multipli-

cation, difference, square root, division and power two,

according to the authors’ GP insight (Babovic & Kejizer

2000; Giustolisi & Laucelli 2002).

† Combining the results of all the runs in a single ensemble

model. Indeed, Equation (10) can be rewritten as

1

N

XN

i¼1

XM

j¼1

mjðyi 2 f̂jðxiÞÞ
2: ð13Þ

In this way coefficients mj can be determined performing a

ridge regression on data (calibration set), being Smj ¼ 1 and

;Dj ¼ 1…M: mj $ 0. As a consequence of this variation Figure 2 | Trimmed EM vs. Single GP model on one-step-ahead prediction.

Table 1 | One-step-ahead statistics

CoD Bias Variance

Full_EM 0.953 08 0.019 06 0.004 07

Avg EM 0.952 95 0.019 11 0.003 78

Trimm EM 0.959 03 0.016 64 0.002 61

Single Model 0.950 68 0.020 04 –

Naive 0.942 38 – –
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Equation (12) also has to be rewritten as

variance ¼
1

N

XN

i¼1

XM

j¼1

mjð
�fðxiÞ2 f̂jðxiÞÞ

2 ð14Þ

The authors did not evaluate the mean value of variance

(useful for general considerations) but the variance value

for every test point, erasing 1/N in Equation (14). This

recipe refers to the one-step-ahead prediction perform-

ances, and following it a calibrated EM and a Single GP

model are obtained. In post-processing, the authors applied

a trimming scenario to the EM, aiming at deleting

predictions that destabilize its performances. According to

the sensitivity analyses a trimming percentage of 20% has

been chosen. At the same time, it was also to evaluate the

real average model in Equation (6). From the fitness point

of view, no strong differences were found between

untrimmed EM and average EM.

RESULTS AND DISCUSSION

Here are concisely reported the results with relative

diagrams, starting from one-step-ahead prediction. In

Table 1 there are all the statistics calculated in order to

Table 2 | k-step-ahead statistics, with k ¼ 2, 3, 4, 6

k CoD Bias Variance

2 Full_EM 0.894 85 0.043 05 0.001 15

Trimm EM 0.893 45 0.043 63 0.002 63

Naive 0.828 30 – –

3 Full_EM 0.819 32 0.074 63 0.001 24

Trimm EM 0.814 35 0.076 68 0.002 65

Naive 0.687 73 – –

4 Full_EM 0.778 32 0.092 40 0.001 41

Trimm EM 0.770 97 0.095 47 0.002 66

Naive 0.588 87 – –

6 Full_EM 0.766 42 0.099 26 0.001 33

Trimm EM 0.757 82 0.102 92 0.002 69

Naive 0.467 10 – –

Figure 3 | Highlight of trimmed EM vs. full EM prediction diagrams.
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evaluate performances of both EMs and the single GP

model. Coefficient of Determination (CoD), Bias and

Variance values are reported. In Table 1 the notation

‘Full_EM’ indicates the untrimmed EM, while the authors

used as common reference the performance of the naive

model, Htþ1 ¼ Ht. The improvement, given the naive

performances, is not particularly relevant, because of the

average monthly data of groundwater level.

A large water resource, such as an aquifer, represents a

system with a high inertial component (i.e. persistency) in

its behavior during days, weeks, etc. and this means that

Htþ1 is not much different from Ht. The one-step-ahead

comparison between EM and single GP model aims at

demonstrating the efficiency of the ensemble approach in

hydrological problems. Looking at Table 1, the trimmed

EM model seems to be the better performing one, in one-

step-ahead forecasting. Thus in Figure 2, it is compared

with the ‘traditional’ single GP model. Figure 2 shows the

predictions of the trimmed EM model and of the single GP

model, plotted against the experimental data in the

evaluation set.

In Figure 3, the untrimmed (full EM) model and the

trimmed EM model performances are compared for better

understanding of the efficacy of trimming. Figure 3 focuses

on a subarea of the relatives prediction plots. Trimmed EM

model appears to be more stable and smooth, especially at

Figure 4 | Full EM two-step-ahead and three-step-ahead predictions. Figure 5 | Full EM four-step-ahead and six-step-ahead predictions.
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low values. Moreover, looking at the whole evaluation test

it has a lower point variance on average (see Table 1).

Analyzing now the k-step-ahead forecasting, Table 2

reports the statistics for time horizons up to 6 months

ahead. These analyses are due to the aforementioned

discussion on the planning issues for the aquifer at stake.

Looking at Table 2, statistics are quite good, also consider-

ing that the sample rate is monthly, and they are

comparable with those of a well trained artificial neural

network (Giustolisi & Laucelli 2004). It is noteworthy that

this approach returns low variance models, overcoming GP

problems about high variance in symbolic regression

(Babovic & Keijzer 2000). Moreover, for time horizons

longer than one month, trimming seem to be no longer

necessary in order to improve both bias and variance

contribution to the total mean error. Thus, Figures 4 and 5

report the full EM model performances plotted against the

experimental data in the evaluation set.

Some considerations have been done aimed at under-

standing how the performance of the EM model could

change by modifying some relevant user-defined parameters

in the GP algorithm. The analyzed parameters were (i) the

dimension of population, P, ranging between 100 and 1000;

(ii) the number of generations for each GP run, G, varying

between 50 and 1050; and (iii) the number of resampling,

M, ranging between 5 and 100. Moreover, the sensitivity of

bias and variance to trimming percentage was studied, using

percentages between 0 and 50%.

For the first three parameters the analyses were

performed for both the trimmed and untrimmed EM,

returning that they are not influential on the performance

of EM models, relying on bias and variance values and on

MSE and CoD values (Laucelli 2004). About the trimming

scenarios, as in Figure 6, it can be stated that trimming

percentage positively influences decreasing the bias values

and can give good reduction of variance using a particular

range (between 5% and 20%). Therefore, trimming percen-

tage has to be chosen carefully, aiming at reducing both bias

and variance values.

Finally, in one-step-ahead prediction, beyond the

numbers, which are undoubtedly good, the results appear

to be satisfying because there is not a ‘phase error’ in

forecasts, see Figure 7. This error makes the naive model

unreliable for real uses. In the case study, the naive model is

a high performance reference because the phenomenon

dynamics are persistent. However, the statistical parameters

chosen for performance analyses show that both Ensemble

Model and single GP model have better performance than

the naive one, having also no ‘phase error’. The sensitivity

analyses of bias/variance values with trimming percentage

show that a percentage of 20% guarantees a good trade-off

between variance and bias, taking both on low values. These

facts demonstrate that trimming is useful in one-step-ahead

prediction eliminating those ‘outliners’ (Babovic & Keijzer

2000), which make EM performance worse, in particular

decreasing a lot of variance values. Conversely, trimming

Figure 6 | Bias and variance diagrams, for different values of trimming percentage.
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seems non relevant in k-step-ahead forecasting, with k . 1

(see Table 2), likely due to the fact that, with a longer

prediction horizon, GP produce a lower number of outliers.

In particular, the no-trimming scenario in k-step-ahead

predictions implies lower variance models. Finally, also in

k-step-ahead prediction the results are good. Due to

available data, which are under-sampled (monthly

sampled), the approach used by going on step by step,

month by month in the case study, better relies on a longer

time horizon, showing performances which are comparable

with well-trained neural networks, such as those in

Giustolisi & Laucelli (2004).

CONCLUSIONS

In a statistical learning theory scenario, GP can be applied

to the problem of function estimation. Then, in the limits of

data abundance, it is able to approximate the target function

reliably, starting from an unconstrained program size.

Otherwise, when data are sparse, small programs are

strongly biased again and highly variant, while large

programs exhibit high variance as well. In these situations,

bias/variance decomposition helps in selecting the optimal

program size. Aiming to obtain a single model, Ensemble

Modeling provides an alternative approach. On these

premises, this paper tests Ensemble Modeling using a

Genetic Programming numerical engine. Starting from

field data of rainfall, temperature and groundwater heads,

a comparison between EM and traditional GP Single Model

was performed in one-step-ahead prediction. The EM

model has been tested also in k-step-ahead prediction.

Ensemble methods, together with trimming, have substan-

tially deleted the contribution of variance to the total error,

also improving the absolute value of the bias and of the

Coefficient of Determination. Conversely, the single GP

model based on cross-validation did not guarantee the same

performance, because it is based on a single model, so there

are higher possibilities that undesired behavior occurs. In

one-step-ahead, the trimmed EM model results were more

stable along with the entire evaluation test, especially for

low target values, with respect to the traditional single GP

model. Otherwise, trimmed EM has a lower point variance

than the untrimmed EM model, and this could be a

constraint in using the model for planning. In k-step-

ahead prediction, the EM approach shows

good performances carrying to lower variance models

especially without trimming scenarios. Trimming is useful

in one-step-ahead prediction eliminating those ‘outliners’

that cause worse EM performances, strongly decreasing the

variance values.
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