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ABSTRACT

The paper introduces the use of phase-state modelling as a means of estimating expected benefits

or losses when dealing with decision processes under uncertainty of future events. For this reason

the phase-space approach to time series, which generally aims at forecasting the expected value of

a future event, is here also used to assess the forecasting uncertainty. Under the assumption of local

stationarity the ensemble of generated future trajectories can be used to estimate a probability

density that represents the a priori uncertainty of forecasts conditional on the latest measurements.

This a priori density can then be used directly in the optimisation schemes if no additional

information is available, or after deriving an a posteriori distribution in the Bayesian sense, by

combining it with forecasts from deterministic models, here taken as noise-corrupted

‘pseudo-measurements’ of future events. Examples of application are given in the case of the Lake

Como real-time management system as well as in the case of rainfall ensemble forecasts on the

River Reno.
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INTRODUCTION

Management and control of flooding generally require the

use of forecasting techniques to assist in the analysis of the

effects of decisions under the uncertainty of future events.

In a utopian world of linear systems the expected

value of the forecasts would be sufficient for taking re-

liable and effective decisions; unfortunately, the highly

nonlinear and discontinuous behaviour of rainfall runoff

and routing processes, of the control structures (such as

reservoirs and dykes) and of the loss mechanisms, make

the forecast, for expected value of rainfall, for flows or

levels, a useless quantity if it is not associated with a

description of the probability density of the forecasting

errors, or at least of a measure of the uncertainty. This is

essential owing to the inherently uncertain nature of fore-

casts, which rarely coincide with what will happen at a

future time: this implies that the forecast must be taken

not as a real image of future (certainty), but as a means for

reducing the original a priori uncertainty.

Several authors have used phase-space approaches

for forecasting, but have rarely provided a measure of

uncertainty associated with the forecast, and in any

case the use of this measure is not conceived to be

operational tool. For instance, Smith (1992) provides

an estimate of the confidence limits of the phase-

space forecast only to show the variable performance in

time.

Therefore, the novelty of this paper is in the introduc-

tion of phase-state modelling so as to construct an a priori

probability density of future events based upon historical

information and conditional on the latest measurements,

to be used either directly for optimisation purposes, as in

the case of the Lake Como real-time management system,

or to be combined with additional information to produce

an a posteriori distribution, as was done in the case of

the real-time rainfall and flood forecasting system of the

River Reno.
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THE PHASE-SPACE MODEL

Consider a deterministic system with phase space

dimension Mx. A trajectory, X(t), of this system is recon-

structed in M dimensions from a time series of a single

observable, x(t), by the method of delays (Packard et al.

1980; Takens 1981). At time t, we consider the time series of

interest that could be hourly or daily flow measured at a

specific section, or rainfall averaged over a basin. The

trajectory X(t) in phase-space may be represented with M

degrees of freedom, as:

where t is the sampling interval.

In general the problem is to construct a predictor (or

map), F(X):RM→R1 which estimates x for any X. F(X) is

usually taken of the form:

where:

Xc
j , j = 1, 2, . . . , nc; Xc

j ∈RM represents a set of nc

centres in an M-dimensional space; (\X − Xc
j \) are radial

basis functions and lj are constants to be determined by

observations using a learning set:

Estimating the weights lj corresponds to the solution of

the linear problem:

where l is a vector of length nc whose jth component is lj
and A and b are given by:

and

where the weights vi reflect the confidence associated

with the ith observation.

Casdagli (1989) solved this problem considering the

special case of exact interpolation where the centres are

chosen from the learning set and the number of obser-

vations nl equals the number of centres nc, whereas others

such as Broomhead & Lowe (1988) solved this problem in

the least squares sense with nl>nc.

Because of the presence of noise and the high degree

of non-stationarity in the natural systems to be analysed in

the sequel, a slightly different approach has been taken in

this paper, which leads to a linear locally stationary

model.

In this case the learning set is based upon the latest

measurements and its size equals the space dimension,

namely nl = M, which is smaller than the number nc of

centres to be used to filter out the noise. The centres are

selected using a Nearest Neighbour technique (Yakowitz

1987; Yakowitz & Karlsson 1987) based upon a Euclidean

distance and assumed to be independent from each other.

Under these assumptions the centres correspond to

independent observations of a locally stationary process; a

set of independent linear regressions can be established to

relate each centre to the learning set X(t). This state vector

is compared with past vectors Xc
j (t′), representing the

selected centres, showing the same temporal succession

pattern (where t′ < t − ft; f being the forecasting horizon).

The jth weight lj is thus determined via a linear regression

on the following model:

where ej(t) is taken as an M-dimensional Normal Indepen-

dent Process.

Future values are then calculated as:

Each new estimate x̂cj (t + kt) is considered as a possible

and equally probable event of a stochastic process,

assumed to be locally stationary. The forecast at time

t + kt will be given, over a single series, in terms of the

expected value and standard deviation of the conditional

distribution calculated as a function of the nc generated

x̂cj (t + kt) state vectors:
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If the spread of the generated traces x̂cj (t + kt) is far from

being Normal, additional moments are needed to repro-

duce the conditional density, which can be estimated from

the generated sample of nc values, with nc sufficiently large

to produce reliable moment estimates.

THE LAKE COMO REAL-TIME
MANAGEMENT SYSTEM

Lake Como is in northern Italy and is mainly used for

irrigation and hydro-electrical power production, and its

outlet is controlled through a dam at Olginate. Manage-

ment of the lake has to cope with the necessity of saving

water to respond to the agricultural and hydro-electrical

demands and, at the same time, must guarantee safety

against the risk of flooding which has increased in the past

30 years, because of the increasing subsidence of the main

square of Como.

The management problem is also complicated on the

one hand by the relatively small reservoir control (246.5

million m3, which is roughly 1/20 of the yearly inflow

volume), and on the other hand by the small downstream

gates that allow a release of 900–1,000 m3/s while the

inflow can reach 1,800–2,000 m3/s, which may lead to

rapid rising and filling of the lake (3–5 days) in the case of

large flood events.

The management operation must then respond to two

basic requirements: the first is to optimise water resources

on a yearly basis, and the second is to cope with fast

reservoir responses to inflowing flood waters. Therefore

the management operation was first established on a

10-day basis using a Stochastic Dynamic Programming

(SDP) algorithm. This 10-day rule was then taken as the

target rule for a finer optimisation based upon daily inflow

forecasts.

The Stochastic Dynamic Programming (SDP) approach

The 10-day operation rule was obtained using an SDP

approach by modifying the original scheme developed at

the Massachusetts Institute of Technology for the manage-

ment of Lake Nasser (Alarcon & Marks 1979). The opti-

misation is based upon two state variables, the reservoir

volume at the beginning of the 10-day period (St
i) and the

last 10-day observed inflow (Qt − 1
j ). The state variables

discretisation has led to the identification of 97 volume

values (St
i, I = 1, . . . , 97) and 8 equally probable inflow

values (Qt − 1
j , j = 1, . . . , 8) for each 10-day period. The

stochastic conditioning is performed by assuming a

Markovian inflow for which the 10-day conditional

probability matrices were derived as a function of the

inflow discrete states.

The optimal release for each 10-day period,

conditional on the previous inflow, was calculated by

minimising the expected value of the following cost

function:

subject to the reservoir state transition equation

where:

St
i storage at the beginning of period t equal to the ith

discrete value of that state variable,

Qt
l inflow during decade t equal to the lth discrete

value of that state variable,

Rt
ij optimal release when at the beginning of period t

the storage state is i, the previous period inflow

state is j,

E(St
i,Q

t
l,R

t
i,j) the reservoir evaporation when the storage is

equal to the ith discrete value for period t, the

previous period inflow equals the jth discrete value

and the release decision is R,

Pt
j,l probability of occurrence of inflow j in decade t,

given that inflow l was realised in decade t − 1,

dt(S
t
i) cost in period t associated with initial volume St

i

(namely due to flooding or low flow),

gt(R) cost in period t when R is not the optimal release,

ftn(St
i,Q

t − 1
j ) minimum expected cost for the release policy

from the present period until the end of the process.
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The daily rule

As previously mentioned, owing to the small size of the

operational volume and the limited outflow from the lake

due to the downstream gates, the 10-day rule, derived on

the assumption of a stochastic cyclo-stationary process,

although reflecting the long-term objectives of expected

minimum losses, cannot be considered the most efficient

rule for coping with short transient events such as high

inflows that can fill the lake in 3–5 days.

Therefore it was necessary to modify the long-term

policy in real time on the basis of daily inflow forecasts.

Data of daily inflows to the lake over 35 years were used to

develop the forecasting model based upon the phase-space

approach presented above, with nl = M = f = 10 (days) and

nc = 20 under the assumption of a Normal distribution of

forecasting errors.

The first 20 years were used as a priori knowledge,

whereas the additional 15 years were used as a test set to

analyse the quality of the forecasting mechanism. Figure 1

shows the results in terms of the expected value of the

error statistics. One can observe that the forecasting mech-

anism is virtually unbiased with a variance, expressing the

uncertainty that increases with the forecasting lead time.

The Stochastic Conditional Optimisation (SCOOP)

Using the new information provided by the phase-space

model in terms of a probability density of future inflows to

the lake conditional on the latest measurements, it is

possible to set up a new stochastic optimisation scheme

aimed at coping with emergency situations.

For this purpose a daily objective function is formu-

lated by penalising on the one hand the departure from the

10-day rule here taken as a target, and on the other hand

the expected value of losses due to low flows or to flood-

ing, conditional upon the inflow forecast. This gives rise to

the following objective function:

where:

Rt 10-day target release,

Rm minimum allowed release,

Rv river vital minimum flow,

ct cost for failing the target release (ct≠0∀ x<RT),

cm cost for failing the minimum release (cm≠0∀
x<RM),

cv cost for failing the minimum river flow (cv≠0∀
x<RV),

ai,bi,gi coefficients of the stepwise quadratic objective

function when the lake volume exceeds its allowed

maximum; they differ from zero only for

Vi≤x≤Vi + 1,

aj,bj,gj coefficients of the stepwise quadratic objective

function when the lake volume drops below its

allowed minimum; they differ from zero only for

Vj≤x≤Vj + 1.

As can be seen from Equation (13), in the SCOOP

formulation the chance constraints used by the

Extended Linear Quadratic Gaussian Control (ELQG)

(Georgakakos & Marks 1987; Georgakakos 1989) to limit

the lake surface elevation are introduced in the objective

function in terms of expected losses from the penalty

function given in Figure 2.
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Figure 1 | Expected value of error statistics for the phase-space model lake inflow

forecasts.
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It should also be noted that in the SCOOP formu-

lation, the conditional inflow forecasts, as well as the

conditional variance of forecasting errors, are expressed in

terms of cumulative values (total inflow volume in increas-

ing time intervals) because, as shown by Todini (1990), it is

possible to avoid the use of stochastic dynamic program-

ming if the cost coefficients do not vary during the opti-

misation period by solving f independent problems to

estimate the optimal cumulative release. The optimal

release value for each time step (1 day) is then

calculated backward as the difference between two

optimal consecutive solutions.

The optimal solution is found by setting the first

derivative of the objective function, for which an analyti-

cal solution is available, equal to zero and solving with a

dichotomic method between zero and a large release

value. The final daily release is then decided on the basis of

a weighted average between the 10-day long-term cyclo-

stationary rule and the 1-day non-stationary one on the

basis of a weighting parameter representing, in a Bayesian

sense (Berger 1980) the relative uncertainty of the daily

forecast and of the 10-day conditional probabilities.

The results of the different simulations using the 15

test years (1981–95) are synthesised in Figures 3 and 4.

Figure 3 indicates the number of times that four

critical levels in the lake are exceeded. The first level,

− 40 cm, represents the minimum allowed level for the

lake; at 120 cm the main square of the city of Como starts

flooding; at 140 cm traffic must be stopped; and the legal

status of flooding is finally associated with 173 cm (i.e. a

level of 53 cm above the main square in Como). The

results of the two levels of optimisation, SDP and SCOOP,

clearly show the reduction in the frequency of undesired

events when compared with what has happened in reality:

the lake is never below − 40 cm and the frequency of the

intermediate floods is noticeably reduced. Nothing can be

done to mitigate the very large floods owing to the small

size of the lake operational volume.

What is interesting is that at the same time as improv-

ing flood control, the water deficit drops by more than

100 × 106 m3 per year on average (see Figure 4), passing

from historical management to that resulting from

SCOOP. Even using an extremely conservative estimate

such as 0.1 Euro per m3, one can estimate an average gain

of 10 million Euros per year.
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Figure 2 | The penalty function applied to the lake levels from which an expected cost

objective function is computed.
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Figure 3 | Improvement in lake management in terms of exceeding lake critical levels.
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Figure 4 | Average water deficit in 15 years for historical management, SDP and SCOOP.
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THE RIVER RENO REAL-TIME FLOOD
FORECASTING SYSTEM

The second use of the phase-space forecast relates to the

problem of extending the lead time of rainfall and flood

forecasts, which has become of interest to meteorologists

dealing with the recently developed Limited Area Models

of the atmosphere (LAMs). Unfortunately, for several

reasons these models have not yet reached the accuracy

needed for issuing reliable flood forecasts. It was therefore

necessary to find a technique that allowed for the use of

the LAM rainfall forecasts in a statistical framework in

order to take into account their uncertainty. The following

approach, set up under the EU-funded TELFLOOD

Project (Todini & Cerlini 1999), uses a Bayesian combi-

nation of a set of 20 precipitation traces, conditional on

the latest ground measurements generated with a phase-

space approach similar to the one described above,

with the LAM forecasts, which are taken as biased and

noise-corrupted measurements of future precipitation.

The procedure was tested on nine real flood events at

Casalecchio, listed in Table 1, which were chosen to

represent various rain and flood typologies.

The LAM forecasts from 1 to 48 hours in advance

were compared for hourly areal rainfall over the River

Reno catchment at Casalecchio (1,051 km2), with the

corresponding rainfall measured by a dense raingauge

network. The results in terms of bias and standard

deviation are shown in Figure 5.

Because the forecast is issued at midnight, from

Figure 5 a diurnal error pattern can be detected show-

ing problems in the LAM parametrisation. The figure

also shows that there is no substantial increase of

errors with the lead time. Nevertheless, both the bias and

the standard deviation are quite large, varying from 0.7

to 1.5 mm. Given the size of the catchment, 1 mm per

hour corresponds to approximately 300 m3/s, which

means that ± 2s may approximately lead to errors of the

order of magnitude of 600 m3/s in a catchment where

the one in 100 years flood is being estimated as

1,900 m3/s.

To improve the forecast a phase-space model of

rain was developed on the same lines described above

with nl = M = f = 12 (hours) and nc = 20 under the

assumption of a Normal distribution of forecasting errors.

The results of this model, as bias and standard deviation of

1 hour of areal precipitation forecast compared with

actual rain-gauge measurements, are given in Figure 6. It is

noticeable that, although of the same order of magnitude

of the LAM errors, the standard deviation and the bias of

the phase-space model errors increase with the lead time.

Following the Bayesian approach described in Berger

(1980) under the assumption of Gaussian errors, the

Table 1 | Chosen flood events at Casalecchio.

Event Date Year

1 18–25 September 1994

2 10–17 June 1994

3 2–11 December 1992

4 27–2 October/November 1992

5 29–9 September/October 1993

6 4–11 November 1994

7 30–3 December/January 1993–94

8 13–18 April 1994

9 18–22 October 1993

���	�������
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Figure 5 | Bias and standard deviation of differences between LAM forecasts up to

48 hours in advance, and raingauge-measured hourly areal rainfall.
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following correction scheme typical of the Kalman filter

can be found (Gelb 1974). If at a future time t + kt, a

measure zt + kt of the state vector xt + kt is available,

although affected by an error et + kt, with bias met + kt
and

variance s2
et + kt

, which can be expressed in scalar form as:

and an a priori estimate of xt + kt, indicated by x̂t + ktzt, is

also available at time t + kt (x̂t + ktzt represents each indi-

vidual a priori series conditionally forecasted by means of

the phase-space technique), one can obtain an unbiased

and minimum variance a posteriori estimate of the state

variable, namely x̂t + ktzt + kt, using the following scalar

relationship:

where nt + kt represents the innovation defined as:

and gt + kt is the gain given by the following expression:

Replacing in Equation (15) expressions given by

Equations (16) and (17) one can obtain the a posteriori

estimate x̂t + ktzt + kt as a function of the a priori forecast

x̂t + ktzt and of the meteorological forecast zt + kt.

The results of the experiment on the River Reno data

are quite encouraging. Figure 7 shows that the bias that

was present in the phase-space generated precipitation

traces has now been totally eliminated, whereas the stan-

dard deviation of errors is reduced at lags longer than 3

hours (see Figure 8). No improvement is obtained at lags

up to 3 hours owing to the relatively better quality of the a

priori phase-space forecasts on a short-term basis.

CONCLUSIONS

It is shown that phase-space modelling can be a useful

tool not only for providing actual forecasts, but also for

generating ensembles of conditional scenarios describing
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Figure 6 | Bias and standard deviation of the phase-space areal precipitation forecast as

compared with actual rain-gauge measurements.
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Figure 7 | Bias of forecasting errors for the synthetic series and the ones corrected

using the LAM.
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Figure 8 | Standard deviation of forecasting errors for the synthetic series and the ones

corrected using the LAM.
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the a priori uncertainty. This type of information is essen-

tial in any decision-making process for the estimation of

the expected value of some objective function.

The same description of the a priori probability distri-

bution can be combined with ‘pseudo measurements’ of

future events independently generated by means of avail-

able physically based models, to produce a posteriori

distributions of forecasting errors which will be unbiased

and of smaller variance.

From a philosophical standpoint the interpretation of

the physically based model as a noise-corrupted measure-

ment may seem arbitrary, but if one thinks carefully the

analogy is pertinent and useful in order to account for

additional uncertain information.

It is intended to proceed by improving the phase-

space model forecasts at the same time as meteorologists

improve the rainfall parametrisation of LAMs, so as to

increase the reliability of the a posteriori scenarios and

consequently improve the decision-making process.
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