
RESEARCH Open Access

Interoperability between OPC UA and
oneM2M
Salvatore Cavalieri* and Salvatore Mulè

* Correspondence: salvatore.
cavalieri@unict.it
Department of Electrical Electronic
and Computer Engineering,
University of Catania, 95125 Catania,
Italy

Abstract

A key requirement of realizing the connected world featured by IoT is to ensure
interoperability among different connected devices. Interoperability is also at the
basis of the realization of the novel vision of Industry 4.0; a lot effort is put to make
interoperable the interchange of information between industrial applications, also
including IoT ecosystems. For this reason, during these last years, several approaches
aimed to enhance interoperability between industrial applications and IoT appeared
in the literature. In this paper an interoperability proposal is presented. It is based on
the idea to realize interworking between the two standards considered among the
reference ones in the industrial and IoT domains. They are the OPC UA for the
industrial domain and oneM2M for the IoT. Interworking is realized in such a way to
allow industrial applications based on OPC UA to acquire information coming from
oneM2M-based IoT devices. The proposal allows an OPC UA Server to publish each
piece of information produced by oneM2M-based IoT devices, so that this
information may be consumed by industrial applications playing the OPC UA Client
role.

Keywords: Interoperability, Interworking, OPC UA, oneM2M, Industry 4.0, IoT

1 Introduction
During the last two decades, web technologies played a very important role for the def-

inition of novel software solutions in the web. Web technologies have shifted the web

from pure information supply to a social platform and ushered in Web 2.0 to enable

seamless information integration, crowd intelligence, and nearly effortless content cre-

ation without the need for specialized technical skills or devices. The current phase of

the web evolution features Machine-to-Machine (M2M) and Internet of Things (IoT)

technologies [1, 2].

M2M is a point-to-point connection between two network devices that allows them

to transmit information via public networking technologies such as Ethernet and cellu-

lar networks; sensor telemetry is one of the original uses of M2M communication. IoT

is an evolution of M2M; it takes the basic concepts of M2M and expands them out-

ward by creating large “cloud” networks of devices that communicate with one an-

other. Examples of IoT devices are all around us today: any network of devices that is

connected to the Internet and uses a cloud platform to communicate can be

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Internet Services
and Applications

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 
https://doi.org/10.1186/s13174-021-00144-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-021-00144-9&domain=pdf
http://orcid.org/0000-0001-9077-3688
mailto:salvatore.cavalieri@unict.it
mailto:salvatore.cavalieri@unict.it
http://creativecommons.org/licenses/by/4.0/


considered part of the IoT. The biggest difference between M2M and IoT is that an

M2M system uses point-to-point communication. An IoT system, meanwhile, typically

situates its devices within a global cloud network that allows larger-scale integration

and more sophisticated applications. Scalability is another key difference between M2M

and IoT. IoT is designed to be highly scalable since devices can often be added to a net-

work and integrated into existing systems with minimal hassle.

IoT has crept into our everyday life. One of the most evident examples refers to the

home automation scenario, featured by a lot of appliances such as WiFi-enabled

programmable thermostats or LED light bulbs embedded with a ZigBee radio chip;

such home appliances are directly, or via a gateway, connected to the Internet so that

end-users can access them remotely from anywhere at any time. The advances in IoT

are changing our life aiming to make it more “smart”; considering again the home auto-

mation scenario, home appliances and utilities connected each other can share the in-

formation about the changes in their status and surroundings, and thus provide home

occupants with smart services in a proactive and intelligent manner [3].

Also in the industrial scenario (e.g. manufacturing sector) IoT is considered a key

point to realize the “smart” factory where all things in the factory itself as well as

throughout the supply chain are fully connected and thus almost real-time data analyt-

ics and insights could be generated, helping manufacturers adapt their facilities and as-

sets accordingly, maintain workforce productivity efficiently, and manage their supply

chain proactively [4]. Since few years, industry has been involved in a revolution, the

fourth one, usually known as Industry 4.0. It features the application of modern Infor-

mation and Communication Technology concepts, mainly those relevant to the IoT, in

industrial contexts to create more flexible and innovative products and services leading

to new business and added value models [5, 6].

Interoperability among various devices including smart devices and resource con-

strained devices is imperative requirements for IoT realization. However, it seems a

challenging task to make different types of devices interoperable because they will have

a wide variety of heterogeneous hardware and software systems. For this reason, several

leading standard development organizations have been working on developing stan-

dards for solving the fragmentation of IoT landscape; among the novel standards for

IoT there is that called oneM2M [7]. Several pieces of oneM2M-based platform such as

Eclipse OM2M [8], nCube [9], Mobius [10–12] and Secure OM2M Service Platform

[13] were developed and realized, in most case as open source solutions. Many of the

available oneM2M standard-based IoT platforms have shown its practical feasibility in

developing home appliances [9], smart farm [14], smart office [15], medication [16],

and semantic interworking in smart cities [17, 18]. Literature presents several papers

presenting proposals for improving performances of oneM2M-based platforms [19, 20].

Interoperability is also at the basis of the realization of the novel vision of Industry

4.0; a lot effort is put to make interoperable the interchange of information between in-

dustrial applications [21]. As the definition and adoption of communication standards

are of paramount importance for the realization of interoperability, during the last few

years, different organizations have developed reference architectures to align standards

in the context of the fourth industrial revolution. One of the main examples is the “Ref-

erence Architecture Model for Industry 4.0 (RAMI 4.0)” [22]. Another one is the Indus-

trial Internet Reference Architecture (IIRA) by the Industrial Internet Consortium (IIC)

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 2 of 31



[23, 24]. Both architectures consider OPC UA (Open Platform Communications Uni-

fied Architecture) [25] as one of the main reference communication standards for the

industrial applications.

As said before, among the main goals of the Industry 4.0 there is the interoperability

between industrial applications and IoT ecosystems. This interoperability may be en-

hanced by interworking solutions between communication standards in industry and

IoT domains. As the current state-of-the-art just presented pointed out that OPC UA

and oneM2M are leading communication standards in these two domains, authors be-

lieve that interworking solution between OPC UA and oneM2M could be a valid solu-

tion to enhance integration of industry applications and IoT systems. In the industry

domain, applications based on OPC UA commonly play the client role accessing data

maintained by one or more OPC UA Servers. One of the possible ways to allow these

applications to acquire information coming from oneM2M-based IoT devices is that to

enable interworking from oneM2M towards OPC UA. What is required is that infor-

mation produced by oneM2M-based IoT devices could be published by an OPC UA

Server and so consumed by industrial applications playing the client role. According to

this scenario, industrial applications may acquire information coming both from trad-

itional industrial sensors/devices and IoT devices.

On account of what written, the paper proposes a novel solution to realize the inter-

working between OPC UA and oneM2M, in the direction from oneM2M to OPC UA.

The interworking solution is based on a mapping of each information produced in the

oneM2M ecosystem into the OPC UA domain.

The paper is organized as follows. Section 2 points out the related works about inter-

operability between industrial applications and IoT ecosystems. Section 3 gives an over-

view on OPC UA and oneM2M protocols. Section 4 introduces the interworking

solution proposed by the authors. Section 5 points out the main details of this proposal.

Section 6 presents a case study in order to better understand the proposed solution. A

final remark section gives the author’s conclusions and describes the software imple-

mentation of the proposal made by the authors.

2 Related work
As interoperability of industrial applications and IoT ecosystems is one of the main

goals of the Industry 4.0, several approaches about this issue appeared in the literature

in these last years. Due to important role played by OPC UA inside the current Indus-

try 4.0 reference models, many approaches deal with the interoperability of OPC UA

and IoT ecosystems. The aim of this section is that to give an overview of the state-of-

the-art about interoperability between industrial applications and IoT domain, focusing

on solutions based on OPC UA.

A common theme present in literature is vertical integration, where solutions for

achieving interoperability involves OPC UA and Device Profile for Web Services

(DPWS) [26–28]. Among them, the solution proposed for enabling interoperability

with OPC UA described in [28] uses a gateway approach bridging DPWS and OPC UA

networks.

Arguments for direct modification of OPC UA to better adapt it to the industrial IoT

have also been raised in [29, 30]. Specifically, the research activities reported by these

papers involve a series of adaptations to the OPC UA binary protocol, enabling stateless

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 3 of 31



service requests and reducing communication overhead thereby making it more REST-

ful, and more friendly to resource-constrained devices.

Similarly, CoAP has been proposed as a transport option for the OPC UA stack [31].

In [32] a proposal for an OPC UA translator between OPC UA and other communica-

tion systems used in IoT (i.e. HTTP, CoAP and MQTT) has been presented.

Technical report [33] introduces a very preliminary work about the interoperability

between OPC UA and oneM2M standard; the paper [34] presents additional results on

the same subject. It is important to point out that both [33, 34] only deals with the

interoperability from OPC UA towards oneM2M; exchange of information in the op-

posite direction is not considered at all. As pointed out in the introduction, the aim of

the paper is to define a solution in charge of enabling interworking from oneM2M to-

wards OPC UA, allowing that information produced by oneM2M-based IoT devices

could be published by an OPC UA Server and so consumed by industrial applications

playing the client role. This solution cannot be realized with the interoperability pro-

posal presented in [33, 34].

The authors have published very preliminary results about the proposal here pre-

sented [35, 36]; the results given in these papers were relevant to a very early stage of

the research; more important these results were not fully validated. This paper will

present the final results of the research carried out by the authors; these results are

now supported by a real software implementation of the proposal which will be pre-

sented in the paper. This implementation allowed a full validation of the outcomes pre-

sented in the paper.

To the best of author’s knowledge, no other papers are present in the current litera-

ture dealing with the interworking between OPC UA and oneM2M. In order to better

highlight this last concept, Table 1 summarizes the current state-of-the-art described

before, pointing out the main existing approaches aimed to make OPC UA interoper-

able with IoT domain.

3 Overview the OPC UA and oneM2M protocols
The aim of this section is that to describe the main features of the OPC UA and

oneM2M protocols. The description will be limited to the properties which are mainly

involved in the interoperability solution here presented: Information Model and data

access - oriented services. For each of these properties, the features of the two protocols

will be compared, into separate subsections.

Table 1 Interoperability solutions involving OPC UA and IoT domain

Protocol Description of the interoperability solution Reference

DPWS Several solutions for achieving interoperability between OPC UA and DPWS exist [26] [27]
[28]

REST Solutions aimed to modify OPC UA binary protocol, making it more RESTful, and more
friendly to resource-constrained devices.

[29, 30]

CoAP Solution to make interoperable OPC UA and CoAP exixts [31, 32]

HTTP A proposal for an OPC UA translator between OPC UA and HTTP exists [32]

MQTT A proposal for an OPC UA translator between OPC UA and MQTT exists [32]

oneM2M Interoperability approaches between OPC UA and oneM2M standard exist, but they
only deal with the interoperability from OPC UA towards oneM2M; exchange of
information in the opposite direction is not considered at all.

[33, 34]

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 4 of 31



3.1 Information model

The main purpose of an Information Model is to model managed objects at a concep-

tual level, independently of any specific implementations or protocols used to transport

the data [37]. Understanding OPC UA and oneM2M Information Models is very im-

portant as the interoperability solution here presents is based on the mapping of infor-

mation model objects from oneM2M domain towards OPC UA one.

3.1.1 OPC UA

OPC UA is an international standard (IEC 62541), mainly based on a client/server

communication model allowing distribution to OPC UA Clients of information main-

tained by an OPC UA Server [25]. The set of information is organized through OPC

UA Nodes grouped together to compose the so-called AddressSpace inside an OPC

UA Server. Each OPC UA Node belongs to a class named NodeClass [38].

Among the available NodeClasses, there is the Variable NodeClass allowing to main-

tain a value, by an attribute named Value. Variables may be Properties (containing

metadata) and DataVariables (containing real values of the system, e.g. measurements

coming from sensors). Another NodeClass is the Object modelling real-world entities

like hardware and software components of a system, or even a whole system. An OPC

UA Object is a container of other OPC UA Objects and Variables; for instance, an

OPC UA Variable Node may be a component of an Object in order to represent real

values or properties of the Object.

OPC UA defines particular NodeClasses defining types. Among them, there is the

DataType which specifies the type of the Value attribute of a Variable. DataType may

be for example Built-in or Enumeration. Built-in provides base types like integer (e.g.,

UInt32 and Int32). Enumeration represents a discrete set of named values.

Another type is the ObjectType NodeClass which holds type definition for OPC

UA Objects. OPC UA defines the BaseObjectType which all the ObjectTypes must

be extended from. Among standard ObjectTypes derived from BaseObjectType,

there is the FolderType whose instances are used to organize the AddressSpace

into a hierarchy of OPC UA Nodes. VariableType is another NodeClass used to

provide type definition for Variables. OPC UA defines the BaseVariableType which

all the VariableTypes must be extended from. Among the standard VariableTypes

derived from BaseVariableType, there are the BaseDataVariableType and the Prop-

ertyType. The former is used to define a DataVariable Node, whilst the latter de-

fines a Property Node.

Particular relationships may be defined between OPC UA Nodes; they are called

OPC UA References. A Reference connects a source Node to a target Node. The Refer-

enceType NodeClass is used to define the exact type of each Reference. Among the

available types, the following ones will be used in the paper. The HasComponent Refer-

ence allows to specify that an OPC UA Object contains another OPC UA Object or

OPC UA DataVariable. Organizes Reference allows to organize OPC UA Nodes inside

a folder made up by a FolderType Object. The HasProperty Reference is used to link a

source OPC UA Node to a target OPC UA Property; the meaning is that the source

Node features a property described by the target Node. HasSubtype expresses a subtype

relationship between types.

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 5 of 31



A very important role is played by the HasModellingRule Reference. For each OPC

UA type, the relevant instances may have some mandatory elements (e.g. a particular

Object as component), whilst other elements may be optional (e.g. a certain Property).

HasModellingRule Reference allows to give this information for each OPC UA type de-

fined inside the AddressSpace. Definition of an OPC UA type is realized specifying the

set of Variables and/or Objects (henceforward called InstanceDeclarations) which a

generic instance may potentially hold. For each InstanceDeclaration, a HasModellin-

gRule Reference points to a ModellingRule Object as target Node. The ModellingRule

Object specifies whether the relevant InstanceDeclaration must be present or not in

every instance of an OPC UA type Node. A Mandatory ModellingRule specifies that in-

stances of the OPC UA type must have that InstanceDeclaration. An Optional Model-

lingRule Optional, instead, specifies that instances of the OPC UA type may have that

InstanceDeclaration, but it is not mandatory. The MandatoryPlaceholder and Optional-

Placeholder ModellingRule Objects also exist; the difference with the previous Model-

lingRule Objects is that the counterparts of InstanceDeclaration in each instance may

be more than one.

OPC UA defines standard graphical representation for both Nodes and References;

some of them are summarized by Figs. 1 and 2.

3.1.2 oneM2M

The oneM2M communication system provides interoperability support for IoT tech-

nology [7, 39, 40]. According to the oneM2M reference architecture model, the IoT en-

vironment are divided into two domains: infrastructure and field. The first is the

domain in which servers and applications (e.g. control, monitoring) reside. Field do-

main contains the oneM2M-compliant IoT devices exchanging data with the servers

and applications located at the infrastructure domain; communication with the infra-

structure domain may be realized also through one or more gateways located in the

Field domain.

Nodes are logical entities identifiable in oneM2M System, which reside in each of the

two domains. Typically, a Node contains one or more of the following entities: Applica-

tion Entity (AE), Common Service Entity (CSE) and Network Services Entity (NSE)

Fig. 1 Standard graphical representation of Nodes in OPC UA: (a) ObjectType, Object, DataType and
Variable; (b) Objects and Variables featuring ModellingRule Objects

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 6 of 31



[39]. Application Entity represents application services located in a IoT device, gateway

or server. Common Service Entity represents an instantiation of a set of functions with

which the oneM2M platform provides common services for the IoT environments.

Network Services Entity provides communication services from the underlying network

to be utilized by the CSEs. Communication flow between these entities is supported by

the so-called reference points. Mca enables communication between AE and CSE. Mcc

enables communication between CSEs. Mcn has been defined for the communication

flow between a CSE and the NSE; it allows a CSE to use the supported services pro-

vided by the NSE.

In the following, an overview on the main types of nodes defined in oneM2M will be

given.

Application Dedicated Node (ADN) is a node that contains at least one AE and does

not contain a CSE. An ADN would typically be implemented on a resource constrained

device (e.g. IoT device). AE contained in an ADN is named ADN-AE.

Middle Node (MN) is a node that contains one CSE (named MN-CSE) and could

contain AEs (i.e. MN-AE). Typically, a MN would reside in a gateway.

Infrastructure Node (IN) is a node that contains one AE (i.e. IN-AE) and could con-

tain CSEs (i.e. IN-CSE). An IoT Server is an Infrastructure Node containing both IN-

AE and IN-CSE; an application (e.g. running in a smartphone) is typically an Infrastruc-

ture Node containing only an IN-AE.

Non-oneM2M Node (NoDN) is a node that does not contain oneM2M entities. Such

nodes represent devices attached to the oneM2M system for interworking purpose.

Figure 3 shows the domains defined in oneM2M and the Nodes described above, be-

longing to each oneM2M domain; the reference points Mca and Mcc between the sev-

eral entities are also clearly pointed out in the same figure.

The oneM2M architecture adopts the Resource-Oriented Architecture (ROA) model,

and thus the services and data that oneM2M system supports are managed and ex-

posed as a resource information model [39, 40]. According to the ROA concept, re-

sources can be uniquely addressed by the Uniform Resource Identifier (URI).

Many resource types are defined in the oneM2M communication system; each of

them is made up by set of mandatory and optional attributes [39]. Among the

mandatory attributes (called “universal attributes”) there is the resourceType attribute

that identifies the type of resource. Another attribute is resourceID that is the identifier

of resource; resourceName is the name of resource used to represent parent-child rela-

tionship. Attribute parentID identifies the parent resource; creationTime is the time-

stamp of resource creation. Attribute lastModifiedTime is the timestamp of last

modification of the resource.

Fig. 2 Standard graphical representation of References in OPC UA

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 7 of 31



The oneM2M system manages its resources through a hierarchical structure. Re-

sources are created as child of other resources. For this reason, each resource features a

hierarchical structure made up by attributes and child resources. Figure 4 shows an ex-

ample of the hierarchical structure of a generic resource; among the attributes shown

by the figure, there are those described before.

Furthermore, oneM2M resources are organized in a resource tree whose root is real-

ized by a particular resource of type <CSEBase>. Figure 5 shows an example of the

hierarchical structure of resources inside oneM2M system.

In the following, the resource types used in the paper will be described in more

details.

A < CSEBase> resource represents a CSE. A resource of <CSEBase> type is the root

of the resource tree which organizes the resources of a oneM2M system.

In order to expose the oneM2M resources, it is necessary that an AE or another CSE

must be registered in the CSE hosting the oneM2M resource tree. This is realized by

the creation of a < AE> or < remoteCSE> resource, respectively, inside the CSE resource

tree. According to [39] a Registrar CSE is the CSE where an AE or another CSE has

been registered.

A < remoteCSE> resource represents a CSE that is registered to another CSE. <remo-

teCSE> resources shall be located directly under the <CSEBase> resource of the CSE

where it is registered. An <AE> resource represents information about an Application

Entity registered to a CSE.

Fig. 3 Infrastructure and field domains

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 8 of 31



The <container> resource represents a container for data instances; it is used to share

information with other entities and potentially to track the data. The <contentIn-

stance> resource represents a data instance in the <container> resource.

The <group> resource represents a group of resources of the same or mixed types.

The <group> resource can be used to do bulk manipulations on the resources repre-

sented by the memberIDs attribute.

The <accessControlPolicy> resource (ACP) provides for authorization information. A

generic resource which requires the application of a particular access control policy,

may link to the particular ACP specifying this policy.

Fig. 5 Hierarchical structures of oneM2M resources: CSE resource tree

Fig. 4 Hierarchical structure of a generic resource

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 9 of 31



The concept of subscription to resource instances in order to receive notifications

about content changes is also specified in oneM2M; it allows efficient monitoring of re-

source instances and thus of the exposed resources. In particular, the resource defined

as <subscription> contains subscription information to a particular resource.

3.2 Data access – oriented services

This subsection aims to describe the services available in the two protocols for the data

access. Understanding of these services is important as the interoperability approach

here presented maps OPC UA services into oneM2M ones and vice versa.

3.2.1 OPC UA

OPC UA offers many services to allow an OPC UA Client to access the AddressSpace

of an OPC UA Server [41]. The simplest access which an OPC UA Client may realize

is that to browse the AddressSpace of an OPC UA Server by using the OPC UA Browse

Service.

The OPC UA Read service is used to read one or more attributes of Nodes. OPC UA

Client invoking the OPC UA Read Request may specify a maxAge parameter (expressed

in milliseconds). Briefly, the maxAge parameter is used to force the OPC UA Server to ac-

cess the requested value directly from the underlying data source if the “age” of the

current value maintained in the AddressSpace is greater than the maxAge. The age of the

value is based on the difference between the ServerTimestamp (i.e. the time at which the

local data has been stored in the local AddressSpace) and the time when the Server starts

processing the request [41]. More details about the procedures performed by OPC UA

Server to handle maxAge parameter will be given in Section 5.3.

The Write service allows the writing of one or more attributes of Nodes. The values are

generally written to the data source; the OPC UA Server will report if it succeeds in the

write operation. Depending on the particular implementation, the OPC UA Server may

write to an intermediate system and the data source will be updated by using other mech-

anisms external to the standard. In these cases, the OPC UA Server should report a suc-

cess code that indicates that the writing operation on the data source was not verified.

Subscriptions and MonitoredItems represent a more sophisticated way to exchange

data between OPC UA Client and Server. They allow an OPC UA Client to receive cyc-

lic updates of OPC UA Variable values and Node attributes. A Subscription is the con-

text needed to realize this cyclic exchange of information; MonitoredItems must be

created inside a Subscription by the OPC UA Client and must be associated to OPC

UA Nodes. The CreateSubscription and CreateMonitoredItem Services allow an OPC

UA Client to create a subscription inside an existing Session and a MonitoredItem in-

side an existing Subscription, respectively [41].

MonitoredItems have several settings among which there is the SamplingInterval

which defines the rate at which the OPC UA Server checks for changes in the associ-

ated Node, e.g. changes of the values for Variable Nodes and/or of the attributes for

Object Nodes. If a change is detected, each MonitoredItem produces a particular mes-

sage, called Notification, whose content depends on the changes detected; for example,

in the case of changes of OPC UA Variable value, the parameter contains the new value

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 10 of 31



updated. Notifications are put in a queue defined inside each MonitoredItem. Size and

queuing policy may be defined by the OPC UA Client for each MonitoredItem queue.

Each Subscription features a PublishingInterval, which defines the time interval at

which the OPC UA Server clears all the MonitoredItem queues contained in the Sub-

scription and conveys their contents (i.e. Notifications) into a NotificationMessage to

be sent to the OPC UA Client. Transmission of NotificationMessages by OPC UA Ser-

ver is triggered by a particular service called Publish exchanged between OPC UA Cli-

ent and Server.

OPC UA specifications define a particular access control mechanism to the Nodes,

based on the idea to separate authentication (determining who a client is) from

authorization (determining what the Client is allowed to do). The access control fea-

tures the concepts of role and permission. A role is a function allowed to a Client when

it accesses a Server. For each role, a permission must be defined in OPC UA. RolePer-

missions is an optional attribute of BaseObjectType; it defines for a specific Node, the

list of permission masks for each role. The permission mask specifies the allowed ac-

cesses to attributes of the Node (e.g., read, write, browse). RolePermissions is an array

of RolePermissionType elements each one made up by the couple {role, permission},

specifying the permission mask available to a specific role [38].

3.2.2 oneM2M

In the oneM2M protocol, interaction with the resources are supported by the basic four

CRUD (create, read, update, and delete) operations. According to the current version

of the oneM2M specifications, CRUD operations may be realized for example by HTTP

methods (e.g., GET, POST) [42], as it will be done in this proposal.

In order to understand how the access to resources by CRUD operations is realized in

oneM2M, the following example will be given; it is based on a case study presented in [11].

Let us assume to have an IoT Server, an IoT embedded device with a temperature

sensor and a smartphone application; IoT Server and smartphone application are real-

ized by infrastructure nodes, whilst IoT embedded device is assumed to be realized by

an application dedicated node. The AE residing in the IoT device (ADN-AE) must be

registered to the IoT Server in order to be able to publish data; registration means that

an <AE> type resource for the IoT device is created under the CSE resource tree of the

IoT Server. In order to publish the values produced by the temperature sensor, a < con-

tainer> resource is created under the <AE> type resource; furthermore, under this re-

source, one or more <contentInstance> resources are created, in which the sensing

values of the temperature sensor are written. Figure 6.a shows on the left side, what just

described.

The IN-AE residing in the smartphone application on the right side of Fig. 6.a is able

to get the sensing values via oneM2M standard, according to two mechanisms: re-

quest/response and subscription/notification. According to the first one (marked by the

circled number of ‘1’ in Fig. 6.a), the IN-AE sends a HTTP GET request to the IoT Ser-

ver with the URL (uniform resource locator) linked to the <contentInstance> resource

it wants to get. If the request is asked with the appropriate privileges (i.e. according the

access control policy contained in the ACP resource not shown in the figure), the IoT

Server sends back the HTTP response containing the temperature sensor’s value. The

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 11 of 31



second method (marked by the circled number of ‘2’) can be accomplished by the com-

mon service function of the oneM2M platform, called ‘subscription/notification’. The

IN-AE creates a < subscription> resource under the container which it is interested in.

Create <subscription> request service is used to create such resource [40]. On the basis

of this subscription, the IoT Server will notify its subscriber (i.e. the IN-AE in the

smartphone) of any events under the subscribed resource (e.g., new <contentInstance>

resources are created under the <container> in order to publish novel sensing values of

the temperature sensor). All these subscription/notification procedures will be per-

formed by the HTTP POST Requests, as shown by Fig. 6.a.

Figure 6. b illustrates an actuation scenarios for IoT devices. The same IoT Server

and smartphone application are present; an IoT embedded device with a with a light-

bulb must be able to receive commands to switch on/off the lightbulb. Figure 6.b shows

on the left side that the ADN-AE residing in the IoT device is registered to the IoT ser-

ver, and a < container> resource is created under the <AE> for the light control. After

that registration procedure, the IoT device will create a new <subscription> resource

(marked by the circled number of ‘1’) in order to get alerts as soon as new <contentIn-

stance> resources will be created under the <container> (i.e., to be notified of control

messages triggered by other applications). On the right side of Fig. 6.b, the smartphone

IN-AE can send a control command to the lightbulb incorporated into the IoT device

Fig. 6 Example of oneM2M data-access services: (a) read data from sensor; (b) write data to actuator

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 12 of 31



by creating a new <contentInstance> under the container for light control with the

HTTP POST Request.

The oneM2M standard offers a resource discovery procedure allowing discovering of

resources residing on a CSE resource tree. The use of the Filter Criteria parameter al-

lows limiting the scope of the results. Resource discovery shall be accomplished by an

Originator which shall also include the root of where the discovery begins (e.g. a re-

source of type <CSEBase>). An Originator could be an AE or another CSE. The unfil-

tered result of the resource discovery procedure includes all the child resources under

the root of where the discovery begins, which the Originator has a Discover access right

on [40].

In order to enhance interworking, oneM2M uses specialized interworking application

entities called Interworking Proxy application Entity (IPE) [43]. IPEs are mainly charac-

terized by two features: providing non-oneM2M reference points and remapping the

related data model into the oneM2M-defined data model. An IPE is an AE that sup-

ports both oneM2M Mca reference point as well as the non-oneM2M interface, as

shown by Fig. 7 [43].

4 Interoperability proposal
The interoperability proposal between OPC UA and oneM2M is based on the ad-hoc

definition of an oneM2M IPE, which will be called OPCUA-IPE in the following. Fig-

ure 8 shows the OPCUA-IPE proposed. Two main entities are present: an OPC UA

Server and the Interworking Manager.

Authors’ aim is the integration of oneM2M–based IoT devices with OPC UA–com-

pliant industrial applications; this integration requires that information produced by

oneM2M–based IoT devices must be published by an OPC UA Server allowing the

Fig. 7 Interworking Proxy application Entity (IPE) and relevant Reference points

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 13 of 31



OPC UA-based client applications the access to this information. For this reason,

the design of the OPCUA-IPE is based on the assumption to use an OPC UA Ser-

ver to expose the resources belonging to the oneM2M system towards the OPC

UA domain. The OPC UA Server contains the AddressSpace maintaining OPC UA

Nodes mapping the oneM2M resources to be exposed towards the OPC UA do-

main. A mapping strategy between OPC UA and oneM2M Information Models has

been defined by the authors to represent each oneM2M resource by a suitable set

of standard or ad-hoc defined OPC UA Nodes inside the AddressSpace. The map-

ping procedure allows to set the attributes of each OPC UA Node according to

the current value of the relevant oneM2M resource, represented by the Node. Each

time a change occurs in an exposed oneM2M resource (e.g. updating of values of

attributes), the change is reflected into the relevant set of OPC UA Nodes repre-

senting the oneM2M resource. In the opposite direction, each change inside the

AddressSpace must be reflected in the correspondent oneM2M resource; for ex-

ample if an OPC UA Client updates the attribute values of one or more OPC UA

Nodes representing oneM2M resources, the relevant changes must be updated in

these resources. The mapping strategy between OPC UA and oneM2M Information

Models is fundamental in this proposal and it will clearly described in the follow-

ing subsection.

The Interworking Manager is the core of the OPCUA-IPE. It communicates with the

OPC UA Server and it is made up by an AE able to communicate with the CSE expos-

ing the oneM2M resources mapped into the OPC UA domain. Section 5 will clearly

point out the main activities performed by the Interworking Manager, among which

there is the mapping of the OPC UA and oneM2M data access - based services de-

scribed in Section 3.2.

Fig. 8 OPCUA-IPE architecture

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 14 of 31



It has been assumed that the Interworking Manager may receive inputs from a gen-

eric external user, as shown by Fig. 8; these inputs are limited to information about the

choice of the oneM2M resources to be exposed and to be mapped into the OPC UA

Server, as it will be pointed out by Section 5.

4.1 Mapping OPC UA and oneM2M information models

The main assumption taken for the definition of the OPCUA-IPE, is that the OPC UA

AddressSpace of the Server must be populated in such a way that the oneM2M ex-

posed resources are properly represented by the OPC UA Nodes. This requires a map-

ping process able to realize a one-to-one (or one-to-many if needed) correspondence

between each oneM2M resource exposed and OPC UA elements. The authors realized

this mapping process, which required the definition of novel elements in OPC UA (e.g.

ObjectTypes, DataTypes), as the native ones were not able to represent the oneM2M

resources.

Taking into account Fig. 4, it is important to recall that each oneM2M resource features

both attributes and child-resources. As a general rule, it has been assumed to represent

oneM2M attributes by OPC UA Variables of PropertyType or BaseDataVariableType.

Properties are used to map the intrinsic characteristic attributes of resources that gener-

ally do not change value, or rarely do. DataVariables are considered to map attributes that

change value frequently. The oneM2M child-resources have been represented as instances

of ad-hoc OPC UA ObjectTypes which have been defined in the research carried out by

the authors and will be described in the following.

An OPC UA ObjectType was defined and called ResourceObjectType in order to rep-

resent the basic structure of any oneM2M resource. Figure 9 shows the ResourceOb-

jectType ObjectType, using OPC UA standard graphical representation. Properties of

the ResourceObjectType have been defined to represent the attributes of the oneM2M

resources. Figure 9 shows the properties representing the “universal attributes” de-

scribed in Section 3.1.2; as shown by the figure, Mandatory ModellingRule Objects have

been used for these properties as these attributes are mandatory.

Fig. 9 ResourceObjectType ObjectType mapping the basic structure of an oneM2M resource

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 15 of 31



Other OPC UA ObjectTypes have been defined extending the ResourceObjectType

ObjectType with the aim to realize the mapping of each oneM2M resource type. When

extending the ResourceObjectType ObjectType, all the relevant properties are inherited

and other Properties and/or Variables are added according to the particular attributes

featured by the oneM2M resource to be represented; additional properties or variables

are always added using the mechanism based on the OPC UA ModellingRule Object.

Other ModellingRule Objects may be added in order to map the child-resources of the

particular oneM2M resource type.

Figure 10 shows only the OPC UA ObjectTypes mapping oneM2M resources, which

will be considered in the case study presented in this paper.

The cseBaseObjectType is an ObjectType representing the oneM2M <CSEBase> re-

source type. It extends ResourceObjectType adding other properties among which

cseID and cseType (both mandatory). The cseID models the CSE-ID attribute contain-

ing the id of the oneM2M CSE. The cseType is another property mapping the

oneM2M cseType attribute representing the type of CSE (e.g., IN-CSE or MN-CSE)

[40]. The cseBaseObjectType may feature one or more Objects of aeObjectType

Fig. 10 OPC UA ObjectTypes modelling several oneM2M resource types

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 16 of 31



(described in the following) each of which represents an <AE> resource; for this reason,

the <ae> Object featuring an OptionaPlaceHolder Modelling Rule is present as compo-

nent. The cseBaseObjectType may also feature one or more Objects of remoteCSEOb-

jectType (described in the following) each representing an oneM2M <remoteCSE>

resource. A FolderType Object (named remote) has been defined to organize the remo-

teCSEObjetType Objects. If <remoteCSE> resources are registered in the Registrar CSE

resource tree, the FolderType remote Object is present and, in this case, the presence

of remoteCSEObjetType Objects modelling <remoteCSE> resources is mandatory; this

explains the use of the MandatoryPlaceHolder ModellingRule associated to the <remo-

teCSE> Object, as shown by Fig. 10.

The remoteCSEObjectType is an ObjectType representing oneM2M <remoteCSE>

resource type. Like cseBaseObjectType, it contains cseID and cseType properties. <

remoteCSE> resource type also features the oneM2M CSEBase attribute, which repre-

sents the address of a < CSEBase> resource, relevant to the <remoteCSE> resource [40].

It has been represented in OPC UA as an instance of the cseBaseObjectType type,

shown in Fig. 10 by the InstanceDeclaration cseBase Object. This choice allows to have

all the child-resources of the <CSEBase>, to which the remoteCSE refers, allocated

within the OPC UA Server.

The contentInstanceObjectType represents oneM2M <contentInstance> resource

type. It holds a Variable as component, named content, allowing to represent what is

contained in the contentInstance. Furthermore, it features a mandatory property named

contentSize representing the size in bytes of the content Variable.

The containerObjectType represents <container> resource type. It includes two com-

ponents: the mandatory variable currentNrOfInstance and OptionalPlaceholder conten-

tInstance belonging to the contentInstanceObejctType described before.

The aeObjectType is an ObjectType representing oneM2M <AE> resource type. It

extends ResourceObjectType adding ae-ID and app-ID as Mandatory Properties; fur-

thermore, it optionally holds as component one or more container Objects belonging

to the containerObjectType described before.

The groupObjectType represents one M2M <group> resource type. It features several

properties. The memberType property has a Value belonging to the ad-hoc defined

enumeration ResourceDataType allowing to specify what kind of resources are member

of the group. The currentNrOfMembers property represents the current number of

members, whose value cannot exceed the value of maxNrOfMembers (also shown by

Fig. 10). Finally, there is the memberIDs property representing a collection of IDs of re-

sources grouped.

The last question to point out is about how oneM2M authorization policy may be

mapped into OPC UA. Section 3.1.2 pointed out that authorization policy is repre-

sented in oneM2M through the <accessControlPolicy> resource. The main assumption

made in this proposal is that oneM2M authorization policy is realized through the

OPC UA RolePermissions attribute which is present in each of the above defined

ObjectTypes shown by Fig. 10. In particular, for each of the oneM2M resource linked

to <accessControlPolicy> resource, the attribute RolePermissions of the OPC UA Node

representing the oneM2M mapped resource, is set. The setting of this attribute must

allow to specify the permissions to be applied for each role defined for the OPC UA cli-

ents and for each OPC UA Node as a pair {role, permission}. It is worth noting that

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 17 of 31



roles and permissions may be different in the oneM2M and OPC UA domains; the

choice of roles and permissions in the OPC UA domain should be made in such a way

to reflect the original ones, as faithfully as possible.

XML representation of the OPC UA ObjectTypes proposed for the oneM2M-OPC

UA mapping has been realized by the authors on GitHub at the address [44]. The file

named “onem2m-opcua.xml” is available and can be downloaded from this web site.

This file has been prepared using the free tools UAModeler [45], which allow to build a

customized OPC UA Information Model and to export it into XML format. The advan-

tages to have an Information Model implemented into XML is that it can be easily

imported into a generic OPC UA Server though the common OPC UA Software Devel-

opment Kits (SDK) and libraries available in literature.

5 A detailed description of the OPCUA-IPE
The aim of this section is to give more details about the internal activities of the

OPCUA-IPE. This description will allow to acquire a clear knowledge about the func-

tionalities of each single component of the OPCUA-IPE.

5.1 Choice of the oneM2M resources to be exposed at start-up

Before the OPCUA-IPE may start its activity, suitable procedures must be performed at

start-up with the aim to expose oneM2M resources towards OPC UA domain.

First of all, the AE inside the Interworking Manager must be registered in the CSE re-

source tree, otherwise any accesses to the relevant resources cannot be done. As de-

fined in [39], the registration phase involves the creation of an <AE> resource in the

CSE resource tree.

Once the registration procedure has been completed, the Interworking Manager has

to create a < subscription> resource for each of the CSE resource to be exposed by the

OPCUA-IPE. The subscription is needed in order the Interworking Manager could be

notified about any changes which may occur to the relevant oneM2M resource (e.g. re-

moval of the resource or update of some attributes of the resource); this kind of notifi-

cation is very important as each change in oneM2M resources must be reflected into

the AddressSpace of the OPC UA Server, as it will be explained in the following

subsections.

In order the Interworking Manager could proceed to realize these subscriptions, it

must be notified about which CSE resources must be exposed through the OPC UA

Server. As pointed out in Section 4, it has been assumed that an external user should

have the possibility to indicate the list of resources to be mapped inside the OPCUA-

IPE. How an external user may give this information to the Interworking Manager may

occur in several ways. The oneM2M standard does not provide any mechanisms for

the definition of resources to be exposed by an IPE, but technical specifications [43, 46]

suggest some methods to this aim; among them there are those called Pre-provisioning

and Discovery. In the case of Pre-provisioning method, the list of the exposed resources

is defined by the user through a preconfigured file. If Discovery method is used, the re-

sources may be interactively chosen by the user, e.g. using a Graphical User Interface

(GUI). The authors believe that adoption of these methods for the proposed OPCUA-

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 18 of 31



IPE is feasible. In the following, details of the procedures needed to realize them inside

the OPCUA-IPE will be given.

If a Pre-provisioning method is used, the Interworking Manager receives by the user

the list of resources to be exposed though a preconfigure file. In this case, a discovery

process must be conducted by the Interworking Manager with the aim to confirm the

presence of the requested resources in the Registrar CSE resource tree. If the resources

exist, the Interworking Manager will proceed (through the local AE) to create a < sub-

scription> resource for each of the resource contained in the list received, as said be-

fore. Figure 11 shows an example based on the Pre-provisioning method. In this case,

the Interworking Manager is notified about the interest of the user to expose the two

resources B and C (through a preconfigured file shown by the same figure). After the

registration of the AE and after the discovery procedure, having had the confirmation

about the existence of these resources in the Registrar CSE resource tree, the <sub-

scription> resources for resources B and C are created. On the right side of Fig. 11, the

new Registrar CSE resource tree is shown, after the creation of the <AE> and the <sub-

scription> resources. This method has been chosen in the software implementation re-

alized by the authors.

In the case of Discovery, the Interworking Manager will perform the discovery

process with the aim to provide to the user the list of resources found; on the basis of

this list, the user will have the opportunity to choose whether or not to expose each

single resource. Once the Interworking Manager has received the list of resources to be

exposed chosen by the user, it will proceed to create a < subscription> resource for each

of the resource. Figure 12 shows an example of the Discovery method. As shown, the

Interworking Manager gives to the user the list of resources found in the Registrar CSE

through the discovery process. On the basis of this list, the user notifies the resources

to be exposed at start-up (again B and C, like in the previous scenario). Finally, the In-

terworking Manager creates a < subscription> for each of these resources. On the right

side of Fig. 12, the new Registrar CSE resource tree is shown, after the creation of the <

AE> and the <subscription> resources.

Once the start-up phase here described has been concluded, the Interworking Man-

ager will start the mapping of the resources specified by the user (i.e. {B,C} in the exam-

ples of Figs. 11 and 12) into OPC UA Server, as it will be explained in the following

subsection.

Fig. 11 Example of Pre-provisioning method operated by the OPCUA-IPE

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 19 of 31



5.2 OPC UA server creation and population

After the choice of the oneM2M resources to be exposed has been completed, the

Interworking Manager will create an instance of the OPC UA Server inside the

OPCUA-IPE.

Section 4 pointed out that the authors defined a mapping process able to realize a

correspondence between each oneM2M resource and a suitable set of OPC UA Nodes.

The “onem2m-opcua.xml” file containing the description of the mapping rules, is

imported by the OPC UA Server in order to create inside the relevant AddressSpace

the set of OPC UA types mapping the oneM2M resource types. This import operation

is generally done by the same set of libraries available to build an OPC UA Server. For

example, the FreeOpcUa libraries [47] used by the authors to implement the OPC UA

Server contains the server.import_xml() method able to perform this task. From this

moment on, the OPC UA Server will have knowledge of each OPC UA type defined for

the mapping from oneM2M to OPC UA.

The next action performed by the Interworking Manager is the population of the

OPC UA AddressSpace. For each oneM2M resource exposed (chosen at the start-up,

as said before), the Interworking Manger is in charge to create an instance of the OPC

UA type modelling the resource type. Once this instance has been created for a particu-

lar oneM2M resource, the attributes of the Nodes present in the instance must be filled

with the same values coming from the oneM2M resource to be exposed.

Let us assume for example that the Interworking Manager has to map a < container>

resource. Figure 13.a shows the exposed CSE resource to be mapped, including the

values of the relevant attributes and the set of two <contentInstance> child-resources.

Figure 13.b shows the instance of the OPC UA ObjectType containerObjectType (seen

in Fig. 10), created inside the AddressSpace of the OPC UA Server. As it can be seen,

the number of contentInstanceObjectType Objects created is two in order to map the

two <contentInstance> child-resources. In the figure, the same values present in the at-

tribute of the oneM2M resource are assigned to the relevant attributes of the OPC UA

Nodes created inside the OPC UA Server.

Fig. 12 Example of Discovery method operated by the OPCUA-IPE

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 20 of 31



5.3 Interworking procedures

The aim of this subsection is that to detail the procedures adopted inside the OPCUA-

IPE in order to realize the interworking, once the start-up phase has been concluded,

the OPC UA Server has been instanced and the relevant AddressSpace has been

populated.

The interworking procedures here defined have the aim to realize the mapping be-

tween OPC UA and oneM2M data access – based services described in Section 3.2. For

each OPC UA service call performed by the client to access the information maintained

by the AddressSpace of the OPC UA Server inside the OPCUA-IPE, the mapping with

HTTP methods realizing the oneM2M CRUD operations with the CSE hosting one

M2M resources must be realized, and vice versa.

Let us consider an OPC UA Client invoking the Read service on an OPC UA Node

mapping an oneM2M resource. As said in Section 3.2.1, OPC UA Read Request fea-

tures a maxAge parameter (expressed in milliseconds) specified by the OPC UA Client

[41]. OPC UA specifications require that if the Server does not have a cached value

which satisfies the requirements about the maximum age, it shall attempt to read a

new value from the data source. Again, in the case the maxAge is set to 0, the Server

shall attempt to read a new value from the data source. If maxAge is set to the max

Int32 value or greater, the Server shall attempt to get a cached value. Finally, if the Ser-

ver cannot meet the requested maxAge, it returns its “best effort” value rather than

rejecting the request; this may occur when the time it takes the Server to process and

return the new data value after it has been accessed from the data source is greater

than the specified maximum age. It is clear that the data source is the Registrar CSE in

this scenario. Figure 14 shows the complete interworking procedure used in the case

the Server has to access the data source, i.e. the Registrar CSE; the figure points out the

relevant information flow inside the OPCUA-IPE and between OPCUA-IPE and

Fig. 13 Example of mapping a < container> resource, shown by (a), into the set of OPC UA Nodes shown
by (b)

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 21 of 31



Registrar CSE. For each Read Request received, the OPC UA Server will send an in-

ternal request to the Interworking Manager (i.e. getDataReq() in the figure); this re-

quest is aimed to access the oneM2M resource relevant to the OPC UA Node specified

by the client in the Read Request. The Interworking Manager will prepare a request to

its local AE, specifying the URI of the oneM2M resource to be accessed (i.e. transla-

teReq() in the figure). The AE will issue a HTTP GET Request to access to the speci-

fied resource, as requested by [42]. Figure 14 shows the HTTP GET Request and the

information flow in the opposite direction, when the HTTP Response is received. The

data content of this service is forwarded to the OPC UA Server by the Interworking

Manager (through the getDataRes(), as shown in the figure). The OPC UA Server will

update the cached value of the relevant OPC UA Node involved in the previous Read

Request and will send the requested attribute values to the OPC UA Client.

The information flow depicted in Fig. 14 for the Read Service may be used also for

the Browse Service; the interworking procedure is very similar in this case and it will

not be described for this reason.

Figure 15 shows the interworking procedure applied for each Write Request sent by

an OPC UA Client to update a value of an OCP UA Node representing an oneM2M re-

source. The OPC UA Server will issue an internal request (i.e. writeDataReq()) to the

Interworking Manager, which will request the AE the transmission of a HTTP POST

Request, as requested by [42]. Also in this case, the Interworking Manager specifies the

URI of the oneM2M resource to be accessed (i.e. translateReq() in the figure). On the

receipt of the relevant HTTP Response, the Interworking Manager will confirm the

writing operation to the OPC UA Server, by the writeDataRes(). The OPC UA Client

will receive a Write Response sent by the OPC UA Server confirming its pending Write

Request.

Interworking procedures must include also the scenario featured by the exchange of

information based on OPC UA Subscription and MonitoredItems. Creation of Sub-

scriptions and MonitoredItems by the OPC UA Client occurs according the OPC UA

specifications [41] and it does not have an impact on the interworking process (i.e. it

does not involve the Registrar CSE); for this reason, it will not consider in the follow-

ing. Let us consider a Subscription already created inside the OPC UA Server and let

us assume that it contains several MonitoredItems relevant to OPC UA Nodes mapping

exposed oneM2M resources. According to the OPC UA specifications [41], each

Fig. 14 Interworking procedure inside the OPCUA-IPE when a Read service is invoked by an OPC UA Client

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 22 of 31



MonitoredItem has to sample an attribute of an OPC UA Node each time the Samplin-

gInterval elapses. Figure 16 shows the procedure to be adopted. Each time the Samplin-

gInterval elapses, a getDataReq() is sent by the OPC UA Server to the Interworking

Manager to request the access to the original oneM2M resource related to the OPC

UA Node linked to the MonitoredItem. As done for the Read service, a HTTP GET Re-

quest is used to access to the oneM2M resource. Once a value is received by a HTTP

Response, it is sent to the MonitoredItem to be enqueued in the relevant queue, ac-

cording to the OPC UA specifications [41]. As said in Section 3.2.1, OPC UA Client

will receive the values enqueued for each MonitoredItem and each Subscription by

OPC UA Notification messages, as shown by Fig. 16.

Fig. 15 Interworking procedure inside the OPCUA-IPE when a Write service is invoked by an OPC UA Client

Fig. 16 Interworking procedure inside the OPCUA-IPE considering the exchange of information based on
OPC UA Subscription and Monitored Items

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 23 of 31



5.4 Updating exposed oneM2M resources

At run-time changes in the Registrar CSE resource tree may happen; for example, ex-

posed resource are removed, or attributes of exposed resources are updated. It may also

happen that other oneM2M resources must be exposed in the AddressSpace of OPC

UA Server, e.g. if new resources are available in the Registrar CSE resource tree. It is

required that the Interworking Manager must be in charge to take into proper account

these changes. In the following, an analysis of the main changes and the relevant ac-

tions carried out by the Interworking Manager will be clearly pointed out.

Let us consider the exposed oneM2M resources. It is important to recall that at start-

up phase, a < subscription> resource has been created for each of the exposed resource

(as shown by Fig. 11 and Fig. 12, for example). This means that the AE inside the Inter-

working Manager receives a notification message each time a change in one of the

subscribed-to oneM2M resources occurs. Notifications sent to the AE are generated

depending on the eventNotificationCriteria set chosen for each <subscription> resource

[39]. In this paper it has been assumed that the notification criteria include all the pos-

sible updates to a specific resource, foreseen by the oneM2M standard; in particular

they are relevant to: update to attributes of the subscribed-to resource, deletion of the

subscribed-to resource, creation of a child-resource of the subscribed-to resource, dele-

tion of a child-resource of the subscribed-to resource.

Interworking Manager inside the OPCUA-IPE triggers notifications received by the

Registrar CSE and makes the relevant update in the AddressSpace of the OPC UA Ser-

ver. Figure 17 points out the information flow occurring in this case; the notify() mes-

sage is sent by the local AE to the Interworking Manager for each notification message

received from Registrar CSE. The update() message is sent to the OPC UA Server as a

consequence in order to realize the relevant update.

Update of the AddressSpace depends on the cause of the notification, off curse. If an

update to the attributes of exposed oneM2M resources occurred, the update to the

relevant attributes of the mapping OPC UA Nodes are realized. If a deletion of the

subscribed-to resource occurred, the relevant OPC UA Nodes are removed from the

AddressSpace. In the case of creation of a child-resource of the subscribed-to resource,

the OPC UA Nodes representing the child-resource are added into the AddressSpace.

Fig. 17 Interworking procedure inside the OPCUA-IPE when a notification message is received from the
Registrar CSE

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 24 of 31



Finally, in the case of deletion of a child-resource of the subscribed-to resource, the

relevant OPC UA Nodes are removed.

Let us consider another scenario featured by the need to add one or more oneM2M

resources at run-time. This may occur when new oneM2M resources are added inside

the Registrar CSE resource tree and the user wants to expose them. The scenario may

also occur when the user requires to expose oneM2M resources already existing (e.g. at

start-up phase) and not previously exposed. In order to handle this scenario, it has been

assumed to adopt another method for the definition of resources to be exposed by an

IPE suggested by the technical specifications [43, 46]; it is called On-demand Discovery.

On-demand Discovery allows the dynamically update of the list of resources to be ex-

posed, according to the user’s choice (like the Discovery method). It has been assumed

that at run-time, the Interworking Manager repeats the discovery procedure at certain

intervals. In this way, it can achieve an update list of the available oneM2M resources,

including new oneM2M resources added to the Registrar CSE resource tree; it will

communicate this list to the user, in order this last could notify the list of resources to

be exposed by the OPCUA-IPE. Adding new exposed oneM2M resources implies the

same procedure described in subsection 5.1 (i.e. creation of the <subscription> resource

for the added oneM2M resource) and those described in subsection 5.2 (i.e. creation of

the OPC UA Nodes inside the OPC UA Server representing the oneM2M resource to

be exposed at run-time).

6 Case study
The aim of this section is that to give an example of application of the interworking

proposal just presented. The same case study presented in [48] will be taken into con-

sideration. Although the example does not refer to an industrial scenario, it is easy to

be understood and it allows a better understanding of the proposal here presented.

The scenario deals with a home lighting system that can be remotely controlled by a

user’s smartphone, using the oneM2M architecture. A graphical overview of the case

study is shown by Fig. 18. The lighting system is deployed in a home and is attached to

a Home Gateway. The gateway communicates with a cloud service platform in the in-

frastructure domain, allowing the lights to be remotely controlled by the smartphone

shown by the figure. The cloud service platform supports a set of services to allow the

smartphone the control of the lights in the home; to reach this aim, the smartphone

hosts an application used for the actual control.

In this case study, the smartphone and each of the devices inside the lighting system

hosts an AE, as shown in the figure. ADN-AE1 and ADN-AE2 are applications embed-

ded in Light1 and Light2 devices at the field domain, respectively; they have the cap-

abilities to actuate the control commands sent to the lighting system. IN-AE inside the

smartphone is an embedded application with capabilities to interact directly with the

oneM2M cloud service platform IN-CSE. Two CSEs are present in the system. An IN-

CSE is hosted in the cloud by the oneM2M Service Provider and a MN-CSE is hosted

on the Home Gateway. IN-CSE located in the Cloud Service Platform interacts with

MN-CSE allowing the remote control of Light1 and Light2 devices by the smartphone,

through the IN-CSE. A Mca reference point is used between each Light AE and MN-

CSE Home Gateway and between Smartphone AE and the Cloud Service Platform IN-

CSE; Mcc is the reference point used between the Home Gateway MN-CSE and

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 25 of 31



oneM2M service platform IN-CSE. Finally, MN-AE is a gateway application embedded

into the home gateway that interacts with the MN-CSE through Mca reference point.

Figure 19 shows the resource tree assumed for the Home Gateway MN-CSE, chosen

on the basis of the case study presented in [48].

It starts with a < CSEBase> resource named home_gateway and is made up by the “uni-

versal attributes” and by the child-resources described in the following. There is an <

accessControlPolicy> resource named gateway_acp; the two <AE> resources named light_

ae1 and light_ae2 refer to the two lighting systems shown by Fig. 18. It has been assumed

that the first lighting system (i.e. Light1) features only one data instance, whilst Light2

Fig. 18 Home automation scenario considered in the case study

Fig. 19 Home Gateway MN-CSE resource tree

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 26 of 31



features two data instances. For this reason, light_ae1 contains a < container> sub-

resource named light, featuring only a < contentInstance> resource, named CI1. The other

<AE> resource named light_ae2, contains another <container> sub-resource named light,

featuring two <contentInstance> resources, named CI1 and CI2. Finally, there is an <AE>

resource named gateway_ae which contains a < group> resource named containers_group

whose members are the light containers of each ADN-AEs.

As described in [48], the oneM2M resource tree of IN-CSE starts with a < CSEBase>

resource named Server, and two child-resources, a < remoteCSE> named home_gate-

way and an <AE> named smartphone_ae. The home_gateway resource contains the ad-

dress of the <CSEBase> resource represented by this <remoteCSE>, i.e. the address of

the home_gateway <CSEBase> resource contained in the Home Gateway MN-CSE, and

previously described.

Figure 18 points out the presence of the OPCUA-IPE proposed in this paper, to

realize interworking from oneM2M to OPC UA. Taking into account the case study

analyzed here, OPCUA-IPE may be connected to IN-CSE of the infrastructure domain

and/or to the MN-CSE of the Home Gateway in the field domain. Mca reference point

is used in both cases, as shown by Fig. 18. In this case study, it has been assumed to

connect the OPCUA-IPE to the MN-CSE. Due to this assumption, the OPC UA Server

inside the OPCUA-IPE will include only the OPC UA Nodes representing the oneM2M

resources shown by Fig. 19. Figure 20 shows the mapping of the Home Gateway MN-

CSE resource tree to the AddressSpace of the OPC UA Server inside the OPCUA-IPE.

The figure shows the OPC UA Nodes used in the mapping, giving few details in terms

of their attributes only due to the lack of space. The mapping has been realized accord-

ing the process described in Section 4.1.

HomeGateway Object is an instance of cseBaseObjectType, mapping the home_gate-

way <CSEBase> resource. This Object features two components; they are the two in-

stances of aeObjectType named light_ae1 and light_ae2, mapping the relevant <AE>

resources. The Objects named light map the relevant <container> resources; the Ob-

jects CI1 and CI2 map the <contentInstance> resources with the same name. As said

in Section 4.1, the <gateway_acp > resource is not mapped into OPC UA Server, as this

mapping is realized by the definition of suitable roles and permissions inside the server

in order to model the attribute privileges of the <gateway_acp > resource.

7 Final remarks
The paper has presented an interworking proposal between OPC UA and oneM2M,

which enables the access of information maintained by oneM2M-based systems/plat-

forms to applications based on OPC UA. This has the advantage to enhance interoper-

ability inside Industry 4.0 where a very strong requirement is the integration of

industrial applications with the IoT domains. The authors believe that interworking be-

tween OPC UA and oneM2M protocols is important as both of them are considered

strategic communication frameworks in Industry 4.0 reference architectures. The paper

is original as no other contributions are present in the current literature with the same

subject.

The interworking solution presented in this paper is based on an oneM2M IPE called

OPCUA-IPE; the internal architecture has been ad-hoc defined according the aim of

the paper. The OPCUA-IPE has been implemented by authors and the source code is

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 27 of 31



freely available on GitHub [49]. Implementation was based on Phyton language, chosen

mainly to allow an easier integration with libraries and SDK used to realize some ele-

ments of the OPCUA-IPE architecture. Implementation of the AE inside the Interwork-

ing Manager has been based on OpenMTC SDK [50]. OpenMTC is a python-based

reference implementation of the oneM2M standard. A new class has been created ex-

tending from the base class XAE [50], which is in charge to provide resource discovery,

subscription and resource management. Extension of this class realized by the authors

mainly allow the AE to perform several activities of interworking procedure described

in Section 5; the main activities implemented are: registration of AE to the CSE,

Fig. 20 OPC UA Nodes mapping the Home Gateway MN-CSE resource tree

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 28 of 31



discovery of the entire resource tree of the Registrar CSE, creation of <subscription> re-

sources inside the Registrar CSE resource tree, management of each notification re-

ceived from the registered resources of the Registrar CSE (see notify() in Fig. 17),

management of traslateReq() and traslateRes() internal services exchanged between In-

terworking Manager and AE and their mapping to the HTTP POST and GET ex-

changed with the CSE (see Figs. 14, 15 and 16). Interworking Manager is the core of

the architecture. It has been developed in Phyton as a new class entirely defined by the

authors. This class is in charge to create an instance of OPC UA Server, to populate

the AddressSpace with the Nodes mapping oneM2M resources, to realize the transla-

teReq() and translateRes() internal services, and to realize the updates the AddressSpace

for each notification received from the AE. Implementation of OPC UA Server is based

on FreeOpcUa [47], a python based open-source OPC UA communication stack. Fur-

thermore, UaExpert OPC UA Client [51] was used during the test carried out by the

authors. Some classes of the FreeOpcUa libraries have been extended by the authors. In

particular the internal services getDataReq(), getDataRes(), writeDataReq(), writeDa-

taRes(), getData(), enqueue(), update() (see Figs. 14, 15, 16 and 17), were defined

through the new classes extending the basic ones. These services reflect the interwork-

ing procedures described in Section 5.3.

Abbreviations
ADN: Application Dedicated Node; AE: Application Entity; CRUD: Create, Retrieve, Update, and Delete; CSE: Common
Service Entity; DPWS: Device Profile for Web Services; GUI: Graphical User Interface; IIC: Industrial Internet Consortium;
IIRA: Industrial Internet Reference Architecture; IN: Infrastructure Node; IoT: Internet of Things; IPE: Interworking Proxy
application Entity; M2M: machine-to-machine; MN: Middle Node; NoDN: Non-oneM2M Node; NSE: Network Services
Entity; OPC UA: Open Platform Communications Unified Architecture; RAMI 4.0: Reference Architecture Model for
Industry 4.0; ROA: Resource-Oriented Architecture; SDK: Software Development Kits (SDK); URI: Uniform Resource
Identifier

Acknowledgments
Not applicable.

Authors’ contributions
The authors equally contributed to the elaboration of this paper. All the authors read and approved the final manuscript.

Authors’ information
Salvatore Cavalieri was born in Catania (Italy) in 1965. He received his “laurea” degree in Electronic Engineering from
the University of Catania in 1989. In 1993 and 1995, he received a Ph.D. in Electronic and Computer Engineering, and
a post-PhD in Electrical Engineering from the same University. Currently he is Full Professor of Computer Engineering
at the University of Catania, Department of Electrical Electronic and Computer Engineering. His main research areas are
in distributed systems, real-time scheduling, industrial informatics, IoT, IIoT, and process control-oriented communica-
tion protocols. Salvatore Mulè was born in Leonforte (Italy) in 1991. He studied at the University of Catania, where he
obtained his Master’s Degree in Computer Science in 2019. He is currently a Ph.D. student in Systems, Energy, Com-
puter and Telecommunications Engineering at University of Catania. His current research includes Industry 4.0, IoT, IIoT.
He is co-author of several papers about definition of Interoperability solutions for Industry 4.0 and IIoT, based on OPC
UA and oneM2M standards.

Funding
This work was supported in part by the “Piano di incentivi per la ricerca di Ateneo 2020/2022 (PIA.CE.RI.)”, University of
Catania.

Availability of data and materials
The results of the paper involved the definition of XML representation of the OPC UA Nodes proposed in the paper
for the mapping between oneM2M and OPC UA. This definition is maintained at https://github.com/OPCUAUniCT/
oneM2M-to-OPCUA-Information-Models-mapping .
Furthermore, the IPE architecture presented in the paper and called OPCUA-IPE has been fully implemented and the
source code is maintained at https://github.com/OPCUAUniCT/oneM2M-OPCUA-IPE .
Both repositories are downloadable under the Apache 2.0 license.

Declarations

Competing interests
The authors declare that they have no competing interests.

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 29 of 31

https://github.com/OPCUAUniCT/oneM2M-to-OPCUA-Information-Models-mapping
https://github.com/OPCUAUniCT/oneM2M-to-OPCUA-Information-Models-mapping
https://github.com/OPCUAUniCT/oneM2M-OPCUA-IPE


Received: 31 May 2020 Accepted: 14 November 2021

References
1. Alam M, Nielsen RH, Prasad NR. The Evolution of M2M into IoT. In: Proceedings of First International Black Sea

Conference on Communications and Networking (BlackSeaCom); 2013. p. 112–5.
2. Guarda T, Leon M, Augusto MF, Haz L, de la Cruz M, Orozco W, et al. Internet of Things Challenges. In: Proceedings of

12th Iberian Conference on Information Systems and Technologies (CISTI). Lisbon: IEEE Computer Society; 2017.
3. Porter ME, Heppelmann JE. How smart, connected products are transforming competition. Harv Bus Rev. 2014;92:64–88.
4. Wang S, Wan J, Li D, Zhang C. Implementing Smart Factory of Industrie 4.0: An Outlook. Int J Distrib Sens Netw. 2016;

12:1–10.
5. Liao Y, Deschamps F, Loures EFR, Ramos LFP. Past, present and future of industry 4.0-a systematic literature review and

research agenda proposal. Int J Prod Res. 2017;55(12):3609–29. https://doi.org/10.1080/00207543.2017.1308576.
6. Xu LD, Xu EL, Li L. Industry 4.0: State of the art and future trends. Int J Prod Res. 2018;56:2941–62.
7. Swetina J, Lu G, Jacobs P, Ennesser F, Song J. Toward a standardized common M2M service layer platform: introduction

to oneM2M. IEEE Wirel Commun. 2014;21(3):20–6. https://doi.org/10.1109/MWC.2014.6845045.
8. Alaya MB, Banouar Y, Monteil T, Chassot C, Drira K. OM2M: extensible ETSI-compliant M2M service platform with self-

configuration capability. Procedia Comput Sci. 2014;32:1079–86. https://doi.org/10.1016/j.procs.2014.05.536.
9. Yun J, Ahn IY, Sung NM, Kim J. A device software platform for consumer electronics based on the internet of things.

IEEE Trans Consum Electron. 2015;51(4):564–71. https://doi.org/10.1109/TCE.2015.7389813.
10. Kim J, Choi SC, Ahn IY, Sung NM, Yun J. From WSN towards WoT: open API scheme based on oneM2M platforms.

Sensors. 2016;16(10):1645. https://doi.org/10.3390/s16101645.
11. Yun J, Ahn IY, Song J, Kim J. Implementation of sensing and actuation capabilities for IoT devices using oneM2M

platforms. Sensors. 2019;19(20):4567. https://doi.org/10.3390/s19204567.
12. Yun J, Ahn IY, Choi SC, Kim J. TTEO (things talk to each other): programming smart spaces based on IoT systems.

Sensors. 2016;16(4):467. https://doi.org/10.3390/s16040467.
13. Sicari S, Rizzardi A, Coen-Porisini A, Grieco LA, Monteil T. Secure OM2M service platform. In: Proceedings of the IEEE

International Conference on Autonomic Computing (ICAC). Grenoble: IEEE Computer Society; 2015. p. 313–8.
14. Ryu M, Yun J, Miao T, Ahn IY, Choi SC, Kim J. Design and Implementation of a Connected Farm for Smart Farming

System. In: Proceedings of the IEEE Sensors. Busan: IEEE Press; 2015. p. 1724–8.
15. Ryu M, Kim J, Yun J. Integrated semantics service platform for the internet of things: A case study of a smart office.

Sensors. 2015;15(1):2137–60. https://doi.org/10.3390/s150102137.
16. Fattah SMM, Sung NM, Ahn IY, Ryu M, Yun J. Building IoT Services for Aging in place using standard-based IoT

platforms and heterogeneous IoT products. Sensors. 2017;17(10):2311. https://doi.org/10.3390/s17102311.
17. Kovacs E, Bauer M, Kim J, Yun J, Gall FL, Zhao M. Standards-based worldwide semantic interoperability for IoT. IEEE

Commun Mag. 2016;54(12):40–6. https://doi.org/10.1109/MCOM.2016.1600460CM.
18. An J, Gall FL, Kim J, Yun J, Hwang J, Bauer M, et al. Toward global IoT-enabled smart cities interworking using adaptive

semantic adapter. IEEE Internet Things J. 2019;6(3):5753–65. https://doi.org/10.1109/JIOT.2019.2905275.
19. Zhao R, Wang L, Zhang X, Zhang Y, Wang L, Peng H. A OneM2M-compliant stacked middleware promoting IoT

Research and Development. IEEE Access. 2018;6:63546–59. https://doi.org/10.1109/ACCESS.2018.2876197.
20. Wiramaswara Widya P, Yustiawan Y, Kwon J. A oneM2M-based query engine for internet of things (IoT) data streams.

Sensors. 2018;18(10):3253. https://doi.org/10.3390/s18103253.
21. Weyer S, Schmitt M, Ohmer M, Gorecky D. Towards industry 4.0-standardization as the crucial challenge for highly

modular, multi-vendor production systems. IFAC-PapersOnLine. 2015;48(3):579–84. https://doi.org/10.1016/j.ifacol.2015.
06.143.

22. German Institute for Standardisation. Reference Architecture Model Industrie 4.0 (RAMI4.0), DIN SPEC 91345, 2016.
Deutsches Institut für Normung [DIN].

23. Industrial Internet Consortium. The Industrial Internet of Things Volume G1: Reference Architecture (Version 1.80).
https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf. Accessed 12 Sep 2020. Industrial Internet Consortium
(IIC) Technology Working Group and its Architecture Task Group.

24. Industrial Internet Consortium. The Industrial Internet of Things Volume G5: Connectivity Framework (Version 1.01).
https://www.iiconsortium.org/pdf/IIC_PUB_G5_V1.01_PB_20180228.pdf. Accessed 12 Sep 2020. Industrial Internet
Consortium (IIC) Technology Working Group and its Architecture Task Group.

25. Mahnke W, Leitner SH, Damm M. OPC unified architecture. Berlin Heidelberg: Springer-Verlag; 2009. https://doi.org/10.1
007/978-3-540-68899-0.

26. Candido G, Jammes F, de Oliveira JB, Colombo AW. Soap at device level in the industrial domain: Assessment of OPC
UA and DPWS specifications. In: Proceedings of 8th IEEE International Conference on Industrial Informatics; 2010. p.
598–603.

27. Sauter T, Lobashov M. How to access factory floor information using internet technologies and gateways. IEEE Trans Ind
Inform. 2011;7(4):699–712. https://doi.org/10.1109/TII.2011.2166788.

28. Izaguirre M, Martinez Lastra JL, Lobov A. OPC-UA and DPWS interoperability for factory floor monitoring using complex
event processing. In: Proceedings of 9th IEEE International Conference on Industrial Informatics. Lisbon: IEEE Industrial
Electronics Society; 2011. p. 205–11.

29. Grüner S, Pfrommer J, Palm F. A restful extension of OPC UA. In: Proceedings of IEEE World Conference on Factory
Communication Systems (WFCS 2015); 2015. p. 1–4.

30. Grüner S, Pfrommer J, Palm F. Restful industrial communication with OPC UA. IEEE Trans Ind Inform. 2016;12(5):1832–41.
https://doi.org/10.1109/TII.2016.2530404.

31. Wang P, Pu C, Wang H. OPC UA message transmission method over CoAP 01. In: . https://tools.ietf.org/html/draft-wang-
core-opcua-transmission-01. Accessed 12 Sep 2020. Internet Engineering Task Force (IETF).

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 30 of 31

https://doi.org/10.1080/00207543.2017.1308576
https://doi.org/10.1109/MWC.2014.6845045
https://doi.org/10.1016/j.procs.2014.05.536
https://doi.org/10.1109/TCE.2015.7389813
https://doi.org/10.3390/s16101645
https://doi.org/10.3390/s19204567
https://doi.org/10.3390/s16040467
https://doi.org/10.3390/s150102137
https://doi.org/10.3390/s17102311
https://doi.org/10.1109/MCOM.2016.1600460CM
https://doi.org/10.1109/JIOT.2019.2905275
https://doi.org/10.1109/ACCESS.2018.2876197
https://doi.org/10.3390/s18103253
https://doi.org/10.1016/j.ifacol.2015.06.143
https://doi.org/10.1016/j.ifacol.2015.06.143
https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf
https://www.iiconsortium.org/pdf/IIC_PUB_G5_V1.01_PB_20180228.pdf
https://doi.org/10.1007/978-3-540-68899-0
https://doi.org/10.1007/978-3-540-68899-0
https://doi.org/10.1109/TII.2011.2166788
https://doi.org/10.1109/TII.2016.2530404
https://tools.ietf.org/html/draft-wang-core-opcua-transmission-01
https://tools.ietf.org/html/draft-wang-core-opcua-transmission-01


32. Derhamy H, Rönnholm J, Delsing J. Protocol interoperability of OPC UA in service oriented architectures. In: Proceedings
of 15th IEEE International Conference on Industrial Informatics (INDIN). Emden: IEEE Industrial Electronics Society; 2017.
p. 44–50.

33. oneM2M. TR-0018-V-4.0.0: Industrial Domain Enablement. http://member.onem2m.org/Application/documentapp/
downloadLatestRevision/default.aspx?docID=29334 Accessed 12 Sep 2020. Technical Report published by onM2M
organisation.

34. Lai P, Lin FJ. Industrial Internet of Things Interoperability Between OPC UA and OneM2M. IoT as a Service. In: Li B,
Zheng J, Fang Y, Yang M, Yan Z, editors. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, vol. 316. Cham: Springer; 2020. p. 439–55.

35. Cavalieri S, Mulè S, Salafia MG. Enabling OPC UA and oneM2M Interworking. In: Proceedings of IEEE International
Conference on Industrial Technologies (ICIT 2020), vol. 2020. Buenos Aires: IEEE Industrial Electronics Society.

36. Cavalieri S, Mulè S. Towards Interoperability of oneM2M and OPC UA. In: Proceedings of International Conference on
Enterprise Information System (ICEIS 2020). Prague (Czech Republic): SCITEPRESS; 2020.

37. Pras A, Schoenwaelder J. On the difference between InformationModels and data models. In: Internet Engineering Task
Force, RFC, vol. 3444; 2003. http://www.rfc-editor.org/rfc/rfc3444.txt. Accessed 12 Sep 2020.

38. OPCFoundation. Part 3: Address Space Model. https://opcfoundation.org/developer-tools/specifications-unified-a
rchitecture/part-3-address-space-model. Accessed 12 Sep 2020.

39. oneM2M. TS-0001-V4.5.0: Functional Architecture. http://member.onem2m.org/Application/documentapp/downloadLa
testRevision/default.aspx?docID=31839 Accessed 12 Sep 2020.

40. oneM2M. TS-0004-V4.0.0: Service Layer Core Protocol. http://member.onem2m.org/Application/documentapp/downloa
dLatestRevision/default.aspx?docID=31772 Accessed 12 Sep 2020.

41. OPCFoundation. Part 4: Services. https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-4-
services/ Accessed 12 Sep 2020.

42. oneM2M. TS-0009-V3.5.0: HTTP Protocol Binding. http://member.onem2m.org/Application/documentapp/downloadLa
testRevision/default.aspx?docID=31202 Accessed 12 Sep 2020.

43. oneM2M. TS-0033-V3.0.0: Interworking Framework. http://member.onem2m.org/Application/documentapp/downloadLa
testRevision/default.aspx?docID=29581 Accessed 12 Sep 2020.

44. oneM2M-to-OPCUA-Information-Models-mapping. https://github.com/OPCUAUniCT/oneM2M-to-OPCUA-Information-
Models-mapping. Accessed 12 Sep 2020. GitHub.

45. UaModeler. https://www.unified-automation.com/products/development-tools/uamodeler.html. Accessed 12 Sept 2020.
46. oneM2M. TS-0024 V3.2.2: OCF Interworking. http://member.onem2m.org/Application/documentapp/downloadLa

testRevision/default.aspx?docID=29565 Accessed 12 Sep 2020.
47. FreeOpcUa. https://github.com/FreeOpcUa/python-opcua. Accessed 12 Sep 2020. GitHub.
48. oneM2M. TR-0025 V2.0.3: Application Developer Guide. http://member.onem2m.org/Application/documentapp/downloa

dLatestRevision/default.aspx?docID=31000 Accessed 12 Sep 2020.
49. oneM2M-OPCUA-IPE. https://github.com/OPCUAUniCT/oneM2M-OPCUA-IPE. Accessed 12 Sep 2020. GitHub.
50. OpenMTC. https://www.openmtc.org/index.html. Accessed 12 Sep 2020.
51. UaExpert-A Full-Featured OPC UA Client. https://www.unified-automation.com/products/development-tools/uaexpert.

html. Accessed 12 Sep 2020.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cavalieri and Mulè Journal of Internet Services and Applications           (2021) 12:13 Page 31 of 31

http://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=29334
http://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=29334
http://www.rfc-editor.org/rfc/rfc3444.txt
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-3-address-space-model
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-3-address-space-model
http://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=31839
http://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=31839
http://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=31772
http://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=31772
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-4-services/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-4-services/
http://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=31202
http://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=31202
http://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=29581
http://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=29581
https://github.com/OPCUAUniCT/oneM2M-to-OPCUA-Information-Models-mapping
https://github.com/OPCUAUniCT/oneM2M-to-OPCUA-Information-Models-mapping
https://www.unified-automation.com/products/development-tools/uamodeler.html
http://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=29565
http://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=29565
https://github.com/FreeOpcUa/python-opcua
http://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=31000
http://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=31000
https://github.com/OPCUAUniCT/oneM2M-OPCUA-IPE
https://www.openmtc.org/index.html
https://www.unified-automation.com/products/development-tools/uaexpert.html
https://www.unified-automation.com/products/development-tools/uaexpert.html

	Abstract
	Introduction
	Related work
	Overview the OPC UA and oneM2M protocols
	Information model
	OPC UA
	oneM2M

	Data access – oriented services
	OPC UA
	oneM2M


	Interoperability proposal
	Mapping OPC UA and oneM2M information models

	A detailed description of the OPCUA-IPE
	Choice of the oneM2M resources to be exposed at start-up
	OPC UA server creation and population
	Interworking procedures
	Updating exposed oneM2M resources

	Case study
	Final remarks
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Authors’ information
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	References
	Publisher’s Note

