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Abstract
Ovarian cancer is the most common cause of death among gynecological malignancies. We discuss different types of clinical and
nonclinical features that are used to study and analyze the differences between benign and malignant ovarian tumors. Computer-
aided diagnostic (CAD) systems of high accuracy are being developed as an initial test for ovarian tumor classification instead of
biopsy, which is the current gold standard diagnostic test. We also discuss different aspects of developing a reliable CAD system
for the automated classification of ovarian cancer into benign and malignant types. A brief description of the commonly used
classifiers in ultrasound-based CAD systems is also given.
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Introduction

Ovarian cancer is the fifth most common cause of cancer death

among women (more than 13 000 deaths annually in the United

States).1 One out of 71 women has the risk of developing

ovarian cancer as per the surveillance, epidemiology, and end

results (SEER) cancer statistics.2 Tumor (neoplasm) is an

abnormal growth of body tissue and can be categorized into

benign or malignant. If the tumor metastasizes, adjacent organs

are affected, leading to more complications. Figure 1 sketches

the typical location and appearance of ovarian cancer com-

pared to a contralateral healthy ovary.

About 90% of the ovarian cancers arise from the surface

(epithelium) of the ovary, while some originate from fallopian

tube.3 Previous studies found that the principal causes of ovar-

ian cancer are the mutations in genes like breast cancer type 1
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susceptibility protein and breast cancer type 2 susceptibility

protein,4 endometriosis,5 and treatments related to infertility.6

One or more of the specific symptoms like abdominal pain or

discomfort or swelling, back pain, bloating, urinary urgency, con-

stipation, feeling full quickly, and tiredness can be associated with

ovarian cancer if it occurs more often with severity. More specific

symptoms are pelvic pain, abnormal vaginal bleeding, or invo-

luntary weight loss.7-9 The medical treatment, prognosis, and

survival rate of the patient depend upon the existing cancer stage

of the patient. Ovarian cancer has 4 stages with extent of spread

and complications (International Federation Of Gynecology And

Obstetrics staging) increasing from stage I to IV. In stage I, cancer

cells are found in one or both ovaries or on the surface of the

ovaries or in fluid collected from the abdomen. In stage II, cancer

cells may also have spread from one or both ovaries to other

tissues. The early stages (I and II) of ovarian cancer are difficult

to diagnose since the symptoms are vague and nonspecific.10 If

untreated, it advances and spreads further resulting in stages III

and IV. In stage III, cancer involves one or both ovaries with

microscopically confirmed peritoneal metastasis (less than 2

cm) outside the pelvis or regional metastasis of the lymph nodes.

Stage IV is the most critical state in ovarian cancer, where cancer

cells spread to tissues outside the peritoneum. Other organs may

also be affected. In this cancerous stage, patients have poor prog-

nosis independent of the medical treatment.

The symptoms associated with earlier stages of ovarian can-

cer are very different and, often, aspecific. The clinical exam-

ination usually starts with an objective examination of the

patient’s status to detect macroscopical pathological conditions

of the pelvis regions (ie, ascites, adnexal masses, and acute

abdomen). However, instrumental examination is needed in the

presence of suspicious signs. The most common tests to detect

ovarian cancer are blood test (to check the level of cancer

antigen [CA] 125) and transvaginal ultrasound (US) methods.

A brief explanation of the instrumental examinations to detect

ovarian cancer is given subsequently.

Cancer Antigen 125 Assay

This test is performed to determine the level of CA-125. Cancer

antigen 125 is usually released into the blood by cells, and

high CA-125 indicates sign of cancer or other conditions.11 This

test is used to monitor a woman’s response to ovarian cancer

treatment and for detecting its return after treatment. However,

high CA-125 levels cannot be considered as a sure marker due to

the following reasons: this serum CA-125 is found to be elevated

only in 50% of stage I cancers.12 Another constraint with CA-125

is that uterine and pancreatic malignancies and benign conditions

like fibroids, endometriosis, pelvic inflammatory disease, and

benign ovarian cysts can also raise the level of serum CA-125.13

Ultrasound

It uses high-frequency sound waves to create high-quality

images that will help the doctors to detect the size, shape, and

configuration of the ovaries and also to detect malignancies.11

To have a better view, the probe may be inserted into the vagina

(transvaginal US). As an example, Figure 2 shows the typical US

images corresponding to benign and malignant ovarian tumors.

Imaging methods like computed tomography scans, mag-

netic resonance imaging scans, and US studies are used to

confirm the presence of the pelvic mass, but they cannot con-

firm its malignancy aspect. The limitation of imaging methods

is that the changes between images corresponding to benign

and malignant ovarian tumors are so subtle that even experts

are likely to give a wrong interpretation. At present, there is no

nonsurgical method, which can accurately detect ovarian can-

cer in its early stage. The following aspects about ovarian

cancer provide motivation for research. For more than 60%
of the women, detection of ovarian cancer takes place when

the cancer is in stages III or IV. In this advanced stage, the

cancer normally would have spread outside the ovaries and

generally nothing can be done to save the patient. The average

5-year survival rate for ovarian cancer belonging to all stages is

47%.14 According to the SEER program fact sheets, the 5-year

survival rate is 92.7% if the cancer is confined to the primary

site, that is, if cancer is detected when it is in Stage I.

This technical review aims at discussing the US-based tech-

niques that have been proposed for characterizing the ovarian

tissue by processing of B-Mode images. The focus on US mod-

ality is justified by 2 factors: first, the US examination is usu-

ally performed in the diagnostic process, and, second, US is a

safe, cheap, and affordable imaging modality. In fact, for ben-

efitting the common people, research is aimed at developing an

affordable, harmless, and easily deployable modality that pro-

duces very accurate results. Automated CAD system using US

images of ovarian tumor15-21 have all these desirable features

and hence is the focus of this review.

Methods and Materials Used

Serum CA-125 level check is the initial test that is offered to

people with suspected ovarian cancer. If CA-125 level is high

Figure 1. Location of ovarian cancer and comparison to a contro-
lateral healthy ovary. (Reproduced with permission from Global Bio-
medical Technologies, Inc., Roseville, CA, USA)

252 Technology in Cancer Research & Treatment 14(3)

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on November 4, 2015tct.sagepub.comDownloaded from 

http://tct.sagepub.com/


(typically greater than 65), US examination is recommended.22

The clinical variables assessed in the diagnosis of ovarian can-

cer are as follows: age (typically older than 55), menopausal

status, undergone hormone treatment, and family history of

cancer (mainly first degree relatives). The goal of developing

new techniques to build a CAD system is to achieve very high

accuracy in detecting early ovarian cancer. The false-positive

rate should also be kept very low so as to avoid unnecessary

biopsies in people with benign tumor. The attributes of CAD

system such as speed, noninvasiveness, affordability, easy

deployability, and usability and reliability are especially

advantageous if ovarian cancer detection has to be performed

on a mass of people. The different steps of CAD techniques

are image acquisition, preprocessing, feature extraction, fea-

ture selection, classifier development, and classifier

validation.18

Figure 3 depicts the general block diagram of the proposed

CAD technique for ovarian cancer detection. The acquired US

image database is split into training and test sets. The classifiers

are developed using images from the training set and evaluated

using the test set. The blocks in the left side of the figure show

the steps involved in the off-line training procedure, and the

blocks in the right side show the steps involved in the online

real-time system. In the off-line training system, features are

extracted from the images in the training database, and highly

discriminative features are then selected. These features along

with the ground truth of whether the training images are benign

or malignant are used to train the classifiers. Subsequently, the

selected features from the test set image database are input into

the trained classifiers to determine the class of the test image

(benign/malignant). The predicted class and the actual class of

the test image are compared to evaluate the performance accu-

racy, sensitivity, and specificity of the classifier.

Image Acquisition Method and Preprocessing

Pelvic US scan is obtained by moving the probe over the lower

abdomen. Better images of the ovary can be obtained using

transvaginal US, where a probe is inserted through the vagina

to conduct the scan. Two-dimensional (2D) scanning is most

commonly used, as the vascularity of the tumor can be captured

by 2D power Doppler with proper settings so as to achieve high

sensitivity to detect even low-velocity flow.18 Three-

dimensional (3D) techniques can capture the 3Dimages of the

ovary, presenting the characteristics of the tumor volume such

as thick papillary projections and solid areas in an effective

manner. Thus, 3D US, power, and color Doppler can be selec-

tively used in cancer-probable regions where sensitive scan is

required. High-quality scanning (a predefined scanning proto-

col) is generally performed based on 3D transvaginal ultraso-

nography using Voluson-I (GE Healthcare, Wilmington, USA)

or Aloka SSD 680 scanner (Aloka Ltd, Tokyo, Japan). The

transvaginal probe works at a typical frequency range of 5 to

12 MHz. The scanned 3D data are stored in a hard disk (com-

mon is Sonoview, GE Medical Systems). Depending on the

size of the volume box, the volume acquisition time ranges

from 2 to 6 seconds.18 Gray scale as well as color Doppler

images can be used to study the morphological features.

Figure 2. Ultrasound images of the ovary: (B1-B3) benign tumor, (M1-M3) malignant tumor.
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Our group has developed a few CAD systems for ovarian

cancer detection.18-21 In these studies, we evaluated 20 non-

consecutive women with previous diagnosis of ovarian mass

(10 malignant, 10 benign; 9 postmenopausal, 11 premeno-

pausal; age: 29-74 years). First B-mode ultrasonography was

used to characterize the morphology of the adnexal masses.

Subsequently, 2D power Doppler was used to assess tumor

vascularization. Power Doppler settings were set to achieve

maximum sensitivity for detecting low-velocity flow without

noise (frequency, 5 MHz; power Doppler gain, 0.8; dynamic

range, 20 to 40 dB; edge, 1; persistence, 2; color map, 5; gate,

2; filter, L1; PRF, 0.6 kHz). Then, 3D transvaginal ultraso-

nography was carried out using Voluson-I, and 3D volumes

of the suspicious areas were acquired. We then chose the

middle 100 images from each volume from each patient and

created a database that had 1000 benign images and 1000

malignant images. The region of interest (ROI) was then

delineated by a gynecologist and radiologist. This ROI from

each image was used for the subsequent feature extraction

process.

Features Describing Protein Characterization

Mass spectrometry (MS) can be used for protein character-

ization. Mass spectrometry is an analytical technique that is

used to measure the mass to charge ratio of the charged

particles.23 The disadvantage of MS data is its high dimen-

sionality feature set. The high dimensionality necessitates

complex classifier design, which makes the CAD system

costly as well as computationally intensive causing the sys-

tem to be slow.

Morphological and Vascular Features

Features like shape, size, solidity, vascularity, and number of

cavities present in tumor (unilocular, multilocular, etc) are use-

ful to differentiate benign from cancerous ovarian tumors.18-21

These features can be understood by observing US images.

Vascularity can be clearly measured by parameters such as

pulsatility index, resistance index, time-averaged maximum

velocity, presence of diastolic notch, and vessel location. The

color content is one of the strong indicators of the vascularity of

the tumor. The color Doppler flow is significantly higher for

malignant tumors.

Malignancy in ovarian tumor can be associated with mor-

phological features like irregularity, multilocularity, solid

component with diameter greater than 100 mm, presence of

ascites and papillary structures, and increased blood flow.

Features of tumor indicating benignity are smoothness, uni-

locularity, solid component with maximum diameter less

than 7 mm, and absence of blood flow. Morphologic charac-

teristics such as ovarian wall thickness, inner wall structure,

Figure 3. Architecture of proposed computer-aided diagnostic (CAD) system.
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and presence of septa and papillaries can help in distinguish-

ing benign and malignant ovarian tumors. Clinicians and

medical experts use suitable weighted combination of clin-

ical as well as morphologic parameters to detect ovarian

malignancy.24

Textural (Ultrasonographic) Features

The cytoarchitecture variations and morphological features are

reflected as nonlinear changes in texture of US images. These

nonlinear changes are captured as suitable texture features that

can quantify the changes in the intensity, regularity, coarse-

ness, contrast, homogeneity, and so on of the pixels of the

image. Examples of texture descriptors are Local Binary

Pattern (LBP), Laws Texture Energy (LTE), entropies, and

Hu invariant moments. These features are briefly explained

subsequently:

Local binary pattern. Ojala et al25,26 developed the technique of

LBP using which the statistical and structural characteristics of

the texture of an image can be obtained. A variety of applica-

tions use LBP techniques for texture segmentation27 and face

recognition.28

Laws texture energy. Laws texture energy is a measure of texture

energy based on representation of image features without refer-

ring to the frequency domain. The energy within the pass

region of filters is estimated by applying texture energy trans-

forms (masks). Laws empirically determined suitable size of

masks required to discriminate between different kinds of

texture.29,30

Entropy. It is a measure of uncertainties in the image. Let f (x, y)

be the image with Pi (i ¼ 0, 1, 2, 3 . . . R � 1) various gray

levels. The normalized histogram for an image of size (A � B)

is given by:

Ci ¼
Pi

A� B
: ð1Þ

Shannon entropy:

Se ¼ �
XR�1
i¼0

Ci log2ðCiÞ: ð2Þ

Renyi entropy31:

Re ¼
1

1� f
log2

XR�1
i¼0

Cf
i ; where f 6¼ 1;f > 0: ð3Þ

Kapur entropy19,31:

Ke ¼
1

d� f
log2

PR�1
i¼0

Cf
i

PR�1
i¼0

Cd
i

where f 6¼ d; f > 0; d > 0: ð4Þ

Yager measure19,31:

Ye ¼ 1�

PR�1
i¼0

2Ci � 1j j

A� Bj j : ð5Þ

Hu Invariant Moments

These moments are widely used to analyze the patterns. The 2D

moment of an image Aði; jÞ is given by:

mrs ¼
X
i

X
j

irjsAði; jÞ: ð6Þ

For r, s ¼ 0, 1, 2 . . . , the central moment is defined as:

mrs ¼
X
i

X
j

i��ið Þr j��jð ÞsA i; jð Þ; ð7Þ

where �i ¼ m10

m00
and �j ¼ m01

m00
are the centroids of the binary image

with m00 being the area. The normalized central moment of

order (r þ s) is defined as:

norrs ¼
mrs
ml00

: ð8Þ

For r, s ¼ 0, 1, 2, 3 . . . , where l ¼ rþs
2 þ 1 and g ¼ pþq

2 þ 1.

From this, normalized central moment32 defined 7 values

through order 3 that are invariant to object scale, position, and

orientation. These 7 moments19 are defined as:

M1 ¼ nor20 þ nor02: ð9Þ

M2 ¼ nor20 � norð Þ2þ 4nor211: ð10Þ

M3 ¼ nor30 � 3nor12ð Þ2þ 3nor21 � nor03ð Þ2: ð11Þ

M4 ¼ nor30 þ nor12ð Þ4þ nor21 þ nor03ð Þ2: ð12Þ

M5 ¼ nor30 � 3nor12ð Þ norm30 þ nor12ð Þ

nor30 þ nor12ð Þ2� 3 nor21 � nor03ð Þ2
h i

þ 3nor21 � nor03ð Þ nor21 þ nor03ð Þ

3 nor30 þ nor12ð Þ2� nor21 þ nor03ð Þ2
� �h i

:

ð13Þ

M6 ¼ nor20 � nor02ð Þ nor30 þ nor12ð Þ2� nor21 þ nor03ð Þ2
h i

þ 4nor11 nor30 þ nor12ð Þ nor21 þ nor03ð Þ:
ð14Þ

M7 ¼ 3nor21 � nor03ð Þ nor30 þ nor12ð Þ

nor30 þ nor12ð Þ2� 3 nor21 þ nor03ð Þ2
h i

þ 3nor12 � nor30ð Þ nor21 þ nor03ð Þ

3 nor30 þ nor12ð Þ2
h i

� nor21 þ nor03ð Þ2
h i

:

ð15Þ
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Discrete wavelet transform. Discrete wavelet transform (DWT)

basically acts as low-pass and high-pass filter. When DWT is

applied to an image, 4 different coefficients are obtained.

Approximate coefficients of level 1 (A1) are obtained by

applying a low-pass filter to both the horizontal row and the

vertical columns of pixels. Detailed horizontal coefficients of

level 1 (Dh1) are obtained by applying low-pass filter to the

horizontal rows of pixels and high-pass filter to the vertical

columns of pixels. Detailed vertical coefficients of level 1

(Dv1) are obtained by applying high-pass filter to the hori-

zontal rows of pixels and low-pass filter to the vertical col-

umns of pixels.33 Finally, detailed diagonal coefficients of

level 1 (Dd1) are obtained by applying high-pass filter to both

horizontal rows and vertical columns of pixels. Similarly,

Dh2, Dv2, Dd2, and A2 are the resultant matrices obtained

at second level of 2D DWT. The wavelet basis biorthogonal

wavelet 3.7 can be selected to decompose the medical

images.34 The energy values in the various subbands can be

used as features for classification of benign and malignant

images as given in Equation 16:

Energysub�band ¼
1

M � N

X
x¼fMg

X
y¼fNg

ðDsub�band
x;y Þ2: ð16Þ

Features of Higher Order Spectra

Higher order spectra (HOS) is a nonlinear technique and has

high signal to noise ratio (SNR) due to elimination of Gaussian

noise which is good for estimation of parameter.35 It indicates

the phase coupling between the frequency components.36 It

also has the ability to differentiate various non-Gaussian sig-

nals accurately. First- and second-order statistics will not be

able to unearth the hidden subtle variations in the signal.

Bispectrum which is the third-order cumulant can be used to

extract the nonlinear information present in the signal and is

given by:

Bðf1; f2Þ ¼ E X f1ð ÞX f2ð ÞX � f1 þ f2ð Þ½ �; ð17Þ

where X(f) is a discrete Fourier transform (DFT) of x(nT). E[.]

is the expected value operator.

Normalizing bispectrum37 using power spectra will yield

bicoherence and is given by:

Bnorm f1; f2ð Þ ¼ E X f1ð ÞX f2ð ÞX � f1 þ f2ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P f1ð ÞPðf2ÞPðf1 þ f2Þ

p : ð18Þ

where P(f) is the power spectra.

Fourier coefficients X (f1), X(f2), and X (f1 þ f2) are evalu-

ated in the nonredundant region O (Figure 4).

The bispectrum phase entropy38 is calculated as:

ePRes ¼
X

n
pðcnÞlogpðcnÞ; ð19Þ

where

p cnð Þ ¼
1

L

X
Ol j B f1; f2ð Þð Þ 2 cnð Þ: ð20Þ

cn ¼ fjj � pþ 2pn=N � j < �pþ 2pðnþ 1Þ=Ng;
n ¼ 0; 1; . . . ;N � 1;

ð21Þ

where L is the number of points within the region O, f is the

phase angle of the bispectrum, and l(.) is an indicator function

that gives a value of 1 when the phase angle is within the range

depicted by cn in Equation 21.

Normalized bispectral entropy (Ent1):

Ent1 ¼ �
X
n

pn log pn; where pn ¼
B f1; f2ð Þj jP
O B f1; f2ð Þj j : ð22Þ

Normalized bispectral squared entropy (Ent2):

Ent2 ¼ �
X
n

qn log qn; where qn ¼
B f1; f2ð Þj j2P
O B f1; f2ð Þj j2

: ð23Þ

Normalized bispectral cubed entropy (Ent3):

Ent3 ¼ �
X
n

rn log rn ; wherern ¼
B f1; f2ð Þj j3P
O B f1; f2ð Þj j3

: ð24Þ

Bispectrum phase entropy (EntPh):

EntPh ¼
X

n
pCn log pCn; ð25Þ

where pCn ¼ 1
L

P
O 1Fbf1; f2 2 Cn; where Cn ¼ F=-pþ

2pn=N � F < �pþ 2pðnþ 1Þ=N ; n ¼ 0; 1; . . .N � 1; where

F is the bispectrum phase angle and L is number of points

within the samples in Figure 4.

Mean bispectrum magnitude (mAmp):

mAmp ¼ 1

L

X
O B f1; f2j j; ð26Þ

where B (f1, f2) is the bispectrum of the signal.

L: Number of points within the samples in Figure 4.

Weighted center of bispectrum (wc1 � wc):

Figure 4. Nonredundant region (principal domain).
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wcx ¼
P

OiBði; jÞP
OBði; jÞ

; wcy ¼
P

OiBði; jÞP
OBði; jÞ

hence;

wc1 ¼
P

OiBði; jÞP
OBði; jÞ

; wc2 ¼
P

OiBði; jÞP
OBði; jÞ

and

wc3 ¼
P

OiBði; jÞP
OBði; jÞ

; wc4 ¼
P

OiBði; jÞP
OBði; jÞ

; respectively:

ð27Þ

Moments of bispectrum (H1 � H3)

The summation of the logarithmic amplitudes of H1

bispectrum is equated as:

H1 ¼
X

O log B f1; f2ð Þj jð Þ: ð28Þ

The summation of the logarithmic amplitudes of the diagonal

elements in the H2 bispectrum is equated as:

H2 ¼
X

O log B fk ; fkð Þj jð Þ: ð29Þ

The first-order spectral moment of amplitudes of diagonal

elements of the bispectrum H3 is equated as:

H3 ¼
X

O log B fk ; fkð Þj jð Þ: ð30Þ

All the above-mentioned features are again defined over the

principal domain O in Figure 4. If the feature analysis of US

images by CAD methods of high reliability indicates malig-

nancy of ovarian tumor, then the physicists can resort to the

final confirmation test of biopsy. A sample of tissue of fluid

from the cancer-suspected area is removed and studied under

microscope to observe its cytoarchitecture. The cytoarchitec-

ture of malignant and benign tumors is significantly different.

Biopsy and histopathologic analysis can not only confirm the

results of US image analysis but can also determine the grade

of the cancer cells and ovarian cancer stage if cancer is

detected. Grade tells about the abnormality level of the cancer

cells while stage tells about the extent of spread of the cancer to

the other parts.

Feature Selection

Student t test can be used to find the significance of the

extracted features by calculating the P value. The P value

indicates whether the means of 2 groups or classes (in this case,

the benign and malignant classes) are statistically different.

The lower the P value is, the more statistically significant the

feature is. This tool is especially useful to cut down the high-

dimensional feature set into significant low-dimensional fea-

ture set. Depending on the number of features that are needed,

the required cutoff lower bound P value can be adjusted.

Data Resampling (k-Fold Stratified Cross-Validation)

This technique is used to evaluate the classifier using the

selected features. Here, the data set (comprised of selected

features) is randomly split into k parts with each part containing

the same ratio of samples from both classes. In the first itera-

tion, (k� 1) parts of data are used to train the classifier, and the

remaining one part is used for testing. The iteration is repeated

(k � 1) times using a different test set (with the remaining sets

as training sets) each time. This procedure is used to develop a

robust classifier system even with a small data set.

Benign Versus Malignant Classification

The statistically significant features extracted from the ovarian

tumor US images are given as input to the classifiers. For

developing the 2-class automated detection system, initially

the classifiers are trained to distinguish between the features

corresponding to benign and malignant ovarian tumors. In

the off-line training phase (Figure 3), the classifier is fed with

the values of the selected features of each class as input and the

corresponding class label (the ground truth of whether the fed

US image belongs to benign or malignant category) as output.

This training process is for the classifier to understand the

relationship between the input data and the output class label

and also to obtain the classifier parameters. In the online sys-

tem, the significant features extracted from the input image that

is to be classified are fed to the trained classifier. The classifier

then performs classification of ovarian tumors into benign and

malignant in real time. Classifiers like decision tree (DT),

fuzzy Sugeno, k-nearest neighbor (KNN), probabilistic neural

network (PNN), and support vector machine (SVM) are com-

monly used in the automated detection of ovarian cancerous

tumors. They are briefly explained subsequently.

Decision tree. It detects various classes from a given data by

simulating a tree and a series of rules, which can be used to

identify the test data to represent the model.39 The decision

nodes of the DT move downward from the root node. At each

decision node, attribute is tested with each outcome yielding in

a branch. They (branches) may terminate at another decision

node or end at a leaf node.

Fuzzy Sugeno. It divides a pattern space into several subspaces.

If–then-type rule depicts the relationships between the target

patterns and their corresponding classes for each subspace. It

classifies the unknown patterns using fuzzy inference and

rejects pattern of unknown class, which are not considered by

training. Nonlinear classification boundary can be easily imple-

mented using this classifier.39

k-Nearest neighbor. It is one of the simple classifiers, which

determines the k-nearest neighbors using the minimum dis-

tance from the query instance to the learning samples. New

test class can be predicted using these k-nearest neighbors.39

Probabilistic neural network. It uses 4 layers to implement kernel

discriminant analysis.40 Inputs (features) are fed from the input

layer into a hidden layer for computation of the Euclidean

distance of the unknown data from the center point of the

hidden neuron. In the hidden layer, Radial Basis Function

(RBF) kernel functions using sigma values are computed on

the Euclidean distance to get the weighted vote, which is fed to

the pattern layer. In the pattern layer, a pattern neuron for each
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class is stored, and each weighted vote is added to the corre-

sponding neuron from the hidden layer. The largest votes are

used to detect the unknown class by comparing the weighted

votes for each class stored in the pattern layer in the final

layer.41

Support Vector Machine. It has good generalization properties,

can be easily trained, and performs well on nonlinear data.42,43

It performs well with many features and also with less number

of training samples. It looks for the hyperplane as a decision

surface which separates the 2 classes with maximum margin.

Hence, the separating hyperplane will be oriented perpendicu-

lar to the shortest line separating the convex hulls of the train-

ing features for each class, and it will be located midway along

this line. In order to classify the nonlinear data, kernels can be

used to map the input data to a high-dimensional space.44-46

Linear kernel, polynomial kernel of order 1, 2, and 3, and the

RBF kernel are commonly used.

Clinical Validation of Classification. Classifier performance mea-

sures such as sensitivity, specificity, accuracy, and positive

predictive value (PPV) can be calculated for different classi-

fiers to understand their classification efficiency. The classi-

fiers that have higher value for these parameters have higher

capability and reliability in detecting the nature of the ovarian

tumor. The CAD systems using such classifiers can serve as

reliable adjunct techniques to physicians.

Discussion

Summary of studies that presented various CAD techniques for

ovarian tumor classification is listed in Table 1. Standardized

blood test data were used for classification of benign cysts and

malignant conditions.47 Multilayer perceptron network was

used for classification, and it was found that the technique

could distinguish between early- and late-stage cancers with

an accuracy of up to 92.9%. In another study, hybrid random

subspace fusion scheme that constructs a set of different fuzzy

classifiers utilizing different subsets of both the feature space

and the sample domain, combining the results of these classi-

fiers using appropriate decision functions, was used.48 Experi-

mental results using 2 protein mass spectra data sets of ovarian

cancer demonstrated an accuracy of 100% (data set 1) and

86.36% (data set 2) using this approach.

DNA microarray and proteomics data were analyzed using

complementary learning fuzzy neural network (CLFNN).49

The combination of CLFNN-microarray, CLFNN blood test,

and CLFNN proteomics demonstrated 84.72% of classification

accuracy. A novel approach to feature extraction from MS data

of ovarian cancer was proposed.50 The proteomic MS data after

Table 1. Summary of Studies That Presented Various CAD Techniques for Classification of Ovarian Tumor.

Authors Features Classifier Performance

Renz et al47 Standardized blood test data Multilayer perceptron Accuracy 92.9%
Assareh and

Moradi48
Protein mass spectra Fuzzy rule-based classifier Data set 1: Accuracy: 100% Data

set 2: Accuracy: 86.36%
Tan et al49 Deoxyribonucleic acid microarray and proteomics data Complementary fuzzy neural

network
Accuracy: 84.72%

Meng et al50 Energy curves of binary images modeled based on the
proteomic mass spectrum data

Similarity analysis Sensitivity: 98%, Specificity: 95%

Tang et al51 Four statistical moments (mean, variance, skewness, and
kurtosis) obtained from mass spectroscopy

Kernel partial least square
classifier

Accuracy: 99.35% Sensitivity: 99.5%
Specificity: 99.16%

Petricoin
et al52

Proteomic spectra Genetic algorithm with self-
organizing cluster analysis

Sensitivity: 100% Specificity: 95%

Tailor et al53 Age, menopausal status, and parameters from
transvaginal B-mode ultrasonography images

Back propagation neural
network

Sensitivity: 100% Specificity: 98.1%

Brüning
et al54

Histopathologic and sonographic data Knowledge-based system called
ADNEXPERT

Accuracy: 71%

Biagiotti
et al55

Age and parameters from transvaginal B-mode ultraso-
nography images

Three layer back propagation
network

Sensitivity: 96%

Zimmer
et al56

Gray-level intensity variations in B-mode ultrasound
images

Custom developed algorithm Accuracy: 70%

Lucidarme
et al57

Quantification of tissue disorganization in backscattered
ultrasound waves

Ovarian HistoScanning (OHS)
system

Sensitivity: 98% Specificity: 88%
Accuracy: 91.73%

Acharya
et al18

Local Binary Pattern þ Laws Texture Energy (from
ultrasound images)

Support vector machine Sensitivity: 100% Specificity: 99.8%
Accuracy: 99.9%

Acharya
et al19

Hu invariant momentsþ Gabor wavelet featuresþ
entropies (from ultrasound images)

Probabilistic neural network Sensitivity: 99.9% Specificity: 99.6%
Accuracy: 99.8%

Acharya
et al.20

Texture þ HOS-based features from ultrasound images Decision tree Sensitivity: 94.3% Specificity: 99.7%
Accuracy: 97%

Acharya
et al21

Texture features from ultrasound images k-Nearest neighbor/probabilistic
neural network

Sensitivity: 100% Specificity: 100%
Accuracy: 100%

Abbreviation: CAD, computer-aided diagnostic.

258 Technology in Cancer Research & Treatment 14(3)

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on November 4, 2015tct.sagepub.comDownloaded from 

http://tct.sagepub.com/


preprocessing were wrapped into information images that were

accordingly mapped to binary images using adaptive threshold.

The energy curves of binary images were the result of dimen-

sionality reduction that makeup the alternative biomarker pat-

terns that were used to classify cancer samples. A sensitivity of

98%, a specificity of 95%, and a PPV of 95.15% were reported.

A novel approach for dimensionality reduction was pro-

posed and tested using high-resolution surface-enhanced laser

desorption/ionization time-of-flight data published for ovarian

cancer.51 Four statistical moments (mean, variance, skewness,

and kurtosis) were used to reduce feature dimensions. In order

to improve efficiency and classification performance, the data

were further used in kernel partial least square models. The

proposed method achieved average sensitivity of 99.50%, spe-

cificity of 99.16%, and accuracy of 99.35%. In another study, a

bioinformatics tool was developed and used to identify proteo-

mic patterns in serum that distinguish neoplastic from nonneo-

plastic disease within the ovary.52 Proteomic spectra were

generated by mass spectroscopy (surface-enhanced laser deso-

rption and ionization). The method yielded a sensitivity of

100% (95% confidence interval 93-100), specificity of 95%
(87-99), and PPV of 94% (84-99) in distinguishing neoplastic

from nonneoplastic disease within the ovary.

A neural network algorithm to compute the probability of

malignancy score for preoperative discrimination between

malignant and benign adnexal tumors was proposed.53 Input

to the artificial neural network include age, menopausal status,

maximum tumor diameter, tumor volume, locularity, the pres-

ence of papillary projections, the presence of random echogeni-

city, the presence of detectable blood flow velocity waveforms,

the peak systolic velocity, time-averaged maximum velocity,

the pulsatility index, and resistance index. The sensitivity and

specificity at the optimum diagnostic decision value for the

artificial neural network output were 100% and 98.1%, respec-

tively. A case-based approach called ADNEXPERT used his-

topathologic and sonographic data from 2290 to diagnose

adnexal tumors.54 Fifteen questions are posed after the US

examination. ADNEXPERT assesses the adnexal tumor

pathology and makes a histological classification. It was able

to accurately assess the pathology with an accuracy of 71%
correctly.

The performance of artificial neural networks and the mul-

tiple logistic regression (MLR) models for predicting ovarian

malignancy was compared in patients with adnexal masses

using transvaginal B-mode and color Doppler flow ultrasono-

graphy.55 During testing, 3-layer, back-propagation networks,

based on the same input variables selected by using MLR

(women’s ages, papillary projections, random echogenicity,

peak systolic velocity, and resistance index), had a significantly

higher sensitivity than did MLR (96% vs 84%; McNemar test,

P ¼ .04).

An automatic technique for quantitative analysis and malig-

nancy detection of ovarian masses using B-scan US images

based on morphologic analysis of the ovarian mass was pre-

sented.56 The method involves 2 steps: (1) classification of the

mass (into one of the 3 major tumor types: cyst, semisolid, and

solid) and (2) detailed analysis of the mass. Then, the malig-

nancy evaluation was performed based on the collected data

and the criteria provided by commonly used scoring systems.

This method was able to detect the cancer stages automatically

with an accuracy of 70%. An innovative CAD technology that

quantifies characteristic features of backscattered US and the-

oretically allows transvaginal sonography (TVS) to discrimi-

nate benign from malignant adnexal masses was proposed.57

This method correctly identified 138 of 141 malignant lesions

and 206 of 234 nonmalignant tissues (98% sensitivity and 88%
specificity) with an accuracy of 91.73%.

Our group proposed a CAD technique18 to classify benign

and malignant ovarian tumors using LBPs and LTE features in

an SVM classifier. We obtained an average accuracy of 99.9%,

sensitivity of 100%, and specificity of 99.8%. In another study,19

we extracted Hu invariant moments, Gabor wavelet features, and

entropies from the US images and used them for classification.

Using the PNN classifier, we were able to achieve an average

accuracy of 99.8%, sensitivity of 99.9%, and specificity of

99.6%. In another similar study,20 we used HOS and texture

features in a decision tree classifier and recorded an average

accuracy of 97%, sensitivity of 94.3%, and specificity of

99.7%. In our most recent study,21 using 11 significant features

based on first-order statistics, Gray Level Co-occurrence Matrix,

and run length matrix in KNN/PNN classifiers, we were able to

achieve 100% classification accuracy, sensitivity, specificity,

and PPV in detecting ovarian tumor.

It can be seen from Table 1 that the CAD tool, which used

texture features in the KNN/PNN classifiers was the most effi-

cient in predicting ovarian tumor (with 100% accuracy). Thus,

we feel that a decision support system built with clinically

significant features and robust classifiers can outperform other

invasive methods. In addition to this, an integrated index using

the extracted features can be formulated and used to distinguish

the 2 classes using just 1 number.18

One of the drawbacks of the technique listed in Table 1 is

that to extract the information contained in the texture para-

meters, a mathematical processing is needed. This is a compli-

cation of the diagnostic procedure, because texture features

require algorithms for their interpretation. Also, if classifica-

tion is needed (for instance for the differential diagnosis of

benign and malignant lesions), usually a reference data set must

be available. Nevertheless, it can be seen that a great effort has

been made by researchers to make the CAD systems as user

friendly and automated as possible.

Conclusion

Ultrasound imaging is a noninvasive technique to visualize the

benign and malignant nodules. However, the outcome of this

test is subjective due to interobserver variability. In this article,

we reviewed computer-aided diagnosis systems that were

developed to predict ovarian cancer using features extracted

from US images. We briefly explained various features that

can be extracted to train the classifiers for the automated diag-

nosis of cancer and also described several published CAD
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techniques for ovarian cancer detection. The preliminary

results show that such CAD systems can be used as a reliable

adjunct technique for ovarian cancer diagnosis. However, the

classification accuracy of the CAD system should be improved

and/or evaluated with huge database, better features, and clas-

sifiers before these systems can be routinely used in clinical

settings.
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