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Introduction
Anthropogenic environmental pollution is a known and indis-
putable issue. Every day, the human body is exposed to harmful 
substances in various ways, including by ingestion of food and 
drink and by absorbtion with breathing. While it is possible to 
limit the ingestion of harmful chemicals, it is impossible to 
choose the air we breathe. Chemicals dangerous to health (or 
that become so if absorbed over certain amounts) include sus-
pended particulate matters, nitrogen oxides, CO , and SO2 . 
Exposure to these pollutants adversely affects human health, as 
confirmed by numerous scientific studies conducted in recent 
years around the world: Poland,1,2 Deutschland,3 Italy,4 USA,5-

7 Canada,8 Australia,9 Chile,10 among many others. While the 
quality of air is usually regularly monitored, actions leading to 
the reduction of air pollution are most definitely a growing 
need. Generally, anthropogenic sources of air pollution are 
known, and, due to the development of civilization, it is impos-
sible to completely eliminate them. Therefore, scientific studies 
are conducted to determine the impact of factors that modify 
their concentrations via transformation, retention, or evacua-
tion, and, to this purpose, mathematical models are an essential 
tool. Recognizing the factors that have the greatest impact on 
the concentration of pollutants in the air at a certain moment 
gives the opportunity to build plans for their manipulation, 
when possible, or, at least, for the improvement of design of 
cities, streets, crossroads, and houses, to ensure the fastest pos-
sible evacuation of contaminants, shorten the time of exposure 
to its harmful effects, and reduce the intensity of their action. 
In general, such models are known as land use regression 

models—LUR (see previous studies,11,12 among many others). 
However, in addition to the identification of the factors them-
selves, the timing of their effect also plays a significant role. For 
example, a momentary gust of wind results in a much smaller 
evacuation of pollutants than a wind with the same speed per-
sisting for several hours. Therefore, it is important to identify 
not only the factors in play, but also the moment in time in 
which their influence on the concentrations of pollution is the 
greatest, to obtain a temporal land use regression model (TLUR).

Predicting the value of a time series, such as the concentration 
of a certain pollutant in time, is a very well-known problem. The 
usual statistical approach to its solution requires the use of moving 
average models, or, more generally, of Autoregressive Integrated 
Moving Average (ARIMA) models, that define the problem as an 
autoregressive one (see Box et al13 for a comprehensive introduc-
tion). The underlying idea is that the past values of the predicted 
variable, for example, the pollution concentration, can be used to 
predict future values. The implicit assumption is that the behavior 
of the predicted variable remains somewhat constant, and such 
models are designed to identify, and describe, such behavior. A dif-
ferent approach, more typical of machine learning, consists of 
enhancing a static model learner (eg, linear regression, tree regres-
sion, neural network) with lagged variables, that is, variables with 
the past values of the predictors. A classical regression model is 
designed to extract a (implicit or explicit) function of the (current) 
predictors that explains the (current) value of the interesting varia-
ble; a lagged regression model acts in the same way, but using, as 
predictors, both the current and the past values of the explanatory 
variables. The so-called ARIMAX models mix these 2 ideas, and 
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are designed to extract functions of both the current and past values 
of both predicting and predicted variables. The most relevant 
drawback of ARIMA-type frameworks is that the resulting mod-
els are, in a way, implicit. As a matter of fact, in most natural phe-
nomena, the variable to be predicted has enough slow-changing 
behavior for the past values to be very good predictors, so good that 
the real predictors cease to have relevant roles. As a consequence, 
with ARIMA-type methods, one obtains very good predicting 
models that offer no explanation of the underlying process, which 
cannot be used for the purposes of serving as basis for (T)LURs. 
Pure lagged models, such as those offered by typical learning pack-
ages (see Hall,14 for example), bypass this problem when the past 
values of the predicted variable are not used, but raise other issues. 
In particular, a typical lagged model (both explicit or implicit) uses 
tens of lagged variables per each explanatory parameter; this prolif-
eration of columns makes it very difficult, or impossible, to inter-
pret the underlying process even when explicit functions are used. 
As a consequence, the most successful lagged models are based on 
neural networks, which are already implicit. The form of the 
regressed function is, per se, an additional problem of classical 
approaches. ARIMA-type models and linear regression are 
designed to extract a linear function, which is, typically, a good first 
approximation of the underlying behavior. As we have recalled, 
lagged models can be also tree-like, that is, layered functions, or 
even highly nonlinear, such as in neural networks. But these 
approaches do not allow to explicitly model the nonlinearity level, 
so to say, in search for some simple, albeit nonlinear, behavior.15

In this article, we present a methodology to select, at the 
same time: (1) predicting variables, (2) the amount of their lag, 
and, if necessary, (3) their nonlinear contribution. By using a 
multiobjective optimization algorithm, we produce a set of 
potential solutions. In some sense, each solution can be thought 
of as a temporal convolution vector that highlights the contribu-
tion of each predictor by taking into account the temporal 
component and their nonlinear contribution. Any such vectors 
can be applied to the original data, to test the effect of the 
transformation with different regression algorithms. A tempo-
ral convolution vector contains an optimal lag and an optimal 
nonlinear transformation for each variable, and it not only 
allows the induction of a better explanation model, but it is also 
interpretable per se, as it shows exactly the delay after which 
each predictor is most influential. Optimizing lags solves, in a 
way, both problems of ARIMA-type models and lagged mod-
els: the temporal convolution vector allows one to better under-
stand the necessary delay for an explanatory variable to take 
effect, and, if it is the case, its nonlinear contribution.

To test our methodology, we considered a data set contain-
ing NO2  and NOx  concentrations measured hourly from 
2015 to 2017 by a monitoring station located in Wrocław, 
Poland, along with a set of meteorological and vehicle traffic 
data. As we shall see, applying a temporal convolution vector 
results in a sensible improvement in the performances of the 
learned model, showing that, in fact, delays and nonlinear con-
tributions can be taken into account without losing the 

interpretability of the model. We tested out methodology with 
3 types of learners: linear regression, random forest, and multi-
layer perceptron, and in all 3 cases, we found an improvement 
in the performances of the learned model.

Background
Mathematical models for air quality prediction and 
explanation

The relationships between concentrations of air pollutants in 
the urban agglomeration and meteorological factors, traffic 
flow, and other elements of the environment have been 
described using many different modeling techniques. However, 
taking into account the interpretative usefulness of the results 
obtained, they can be categorized into (1) interpretable models, 
including explicit function (linear, polynomial, exponential, 
and other nonlinear functions),16-19 clustered models,20 and 
probabilistic models,21-23 and (2) noninterpretable models, 
including those based on neutral networks,24 forests of decision 
trees or regression trees,25-27 and ensemble models.28,29

The relationships between concentrations of air pollutants, 
traffic flow, and meteorological conditions based on the same 
hourly data used in this article were already analyzed. An inter-
pretable simple probabilistic model was built for NO2  concen-
trations based on traffic flow and wind speed in 2015 to 2017.30 
Data from 2015 to 2016 (not including solar radiation) were 
used to create models based on a random forest for NO2 , NOx , 
and PM2.5 .21 A total of 9 models were built, each for a differ-
ent subset of data (warm and cold season, working/nonworking 
days, and all data for each pollutant). The best result obtained 
was R2 = 0.57  and 0.52  for NO2  and NOx , respectively. In 
Kamińska,25 the author presents a modified model for NO2  
concentrations also based on the concept of random forest 
using data from 2015 to 2017, obtaining a prediction of NO2  
daily concentration with a determination coefficient R2 = 0.82 , 
and by means of which it was possible to determine the impor-
tance of each feature on separated low and high pollution con-
centration. However, this result was obtained by a set of models, 
not a single 1; the results for the single model on all data were 
R2 = 0.60 . In all cases, past values of the predictors were not 
taken into consideration.

Time series and lagged models

A time series is a series of data points labeled with a temporal 
stamp. Time series arise in multiple contexts; for example, in 
our case, data from environmental monitoring stations can be 
seen as time series, in which atmospheric values (eg, pressure, 
concentration of chemicals) change over time. If each data 
point contains a single time-dependent value, then the time 
series is univariate; otherwise, it is called multivariate. In our 
case, we refer to a multivariate time series in which precisely 1 
variable is dependent; for other applications, it makes sense to 
consider multivariate time series with multiple dependent vari-
ables. There are 2 main problems associated with time series: 
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time series explanation and time series forecasting; these problems 
are usually associated with different contexts and approached 
with different tools. In particular, time series forecasting 
emerges in the realm of statistical economics, and, more 
recently, has found applications to other contexts. Time series 
explanation, on the other hand, is related to machine learning 
processes, and it is not linked to a particular field of application. 
The different approaches to time series analysis have, clearly, 
nonzero overlapping.

The typical statistical-based time series forecasting approach 
is based on autoregressive models. The simplest univariate fore-
casting approach is commonly known as simple moving average 
(SMA) model: an SMA is calculated over the time series by 
considering its last n  values, used to perform a smoothing pro-
cess of the series, and then used to forecast for the next value. 
Although such an approach has some clear limitations, it is still 
useful to establish a baseline, against which to compare more 
complex solutions.13 Based on the observation that the most 
recent values may be more indicative of a future trend than 
older ones, simple exponential smoothing models consider a 
weighted average over the last n  observations, assigning expo-
nentially decreasing weights as they get older.13 Other than this 
first, simple type of smoothing, it is also worth mentioning 
Holt Exponential Smoothing models31 and Holt-Winters 
Exponential Smoothing32 models. Technically, exponential 
smoothing belongs to the broader ARIMA family.33 Their 
multivariate counterpart, the ARIMAX models, allows one to 
study the interaction between independent time series and 
dependent ones, in a similar way as lagged machine learning 
models do.

In the machine learning context, there are 2 influential 
approaches to time series analysis: recurrent neural networks34-36 
and lagged models. In the former case, neural networks are 
adapted to the specific form of a time series to be trained for 
forecasting. In the latter case, on the other hand, data are sys-
tematically transformed by adding a delay, so that a classical, 
propositional learning algorithm can be then applied; among 
the available packages to this purpose, we mention Weka time-
seriesForecasting.14 Lagged models are flexible by nature, as they 
are not linked to a specific learning schema, and their focus is 
on time series explanation. In some cases, lagged variables have 
been used for neural network training, increasing their perfor-
mances. While explicit models can be used for forecasting, it is 
not their focus, considering that their forecasting horizons are 
limited to the maximum lag in the model; time series forecast-
ing models, on the other hand, allow long-term predictions, at 
the expenses of the interpretability of the models. Different, yet 
related, approaches include,37 in which a modified decision tree 
learner has been used to model air pollution using lagged ver-
sions of the predicting variable in the form of univariate time 
series. Lagged models, and more in general, models that include 
consideration on the past values of the predictors, have been 
mainly used in dealing with issues related to the analysis of fac-
tors affecting health and human life. In studies on the impact 

of air pollution on mortality, lagged variables are used to con-
sider the duration of the exposure. Effect of exposure to high 
concentrations of particulate matter has been studied in previ-
ous studies,8,10,38 among others. The effect of exposure to 
ozone, including lagged variables, was analyzed, inter alia, in 
previous studies.39,40 As for concentration of pollution models, 
lagged variables are considered in forecasting models such as 
Catalano et al,41 but such models are definitely different from 
those developed in this work in many perspectives. Similarly, 
multiobjective optimization processes are used to solve various 
types of optimization problems also in the environmental con-
text, for example, in allocation of sediment resources,42 long-
term ground water monitoring systems,43 calibration of 
rainfall-runoff model,44 optimal location and size of the given 
number of check dams,45 or studying the problem of mitigating 
climate effects on water resources.46

Feature selection

Feature selection (FS) is defined as the process of eliminating 
features from the data base that are irrelevant to the task to be 
performed.47 Feature selection facilitates data understanding, 
reduces the storage requirements, and lowers the processing 
time, so that model learning becomes an easier process. Feature 
selection methods that do not incorporate dependencies 
between attributes are called univariate methods, and they con-
sist in applying some criterion to each pair feature-response, 
and measuring the individual power of a given feature with 
respect to the response independently from the other features, 
so that each feature can be ranked accordingly. In multivariate 
FS, on the other hand, the assessment is performed for subsets 
of features rather than single features. In our case, multivariate 
FS may be paired with optimal lag searching, so that not only 
the delayed effect of each variable but also its actual need in the 
explanation model is taken into account. Relevant to this study 
are FS techniques based on multiobjective problems, reviewed 
in the next paragraph.

Multiobjective optimization

A multiobjective optimization problem (see Collette and Siarry48) 
can be formally defined as the optimization problem of simul-
taneously minimizing (or maximizing) a set of k  arbitrary 
functions:

min/max ( )
min/max ( )

min/max ,

f x
f x

f xk

1

2

( )














 (1)

where x  is a vector of decision variables. A multiobjective 
optimization problem can be continuous, in which we look for 
real values, or combinatorial, we look for objects from a count-
ably (in)finite set, typically integers, permutations, or graphs. 
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Maximization and minimization problems can be reduced to 
each other, so that it is sufficient to consider 1 type only. A 
solution x  dominates a solution y  if and only if x  is better 
than y  in at least 1 objective, and it is not worse than y  in the 
remaining objectives. We say that x  is nondominated if and 
only if there is not other solution that dominates it. The set of 
nondominated solutions from   is called Pareto front. In gen-
eral, finding the Pareto optimal front of a multiobjective prob-
lem is a computationally hard task. Optimization problems are 
therefore usually approximated. Among the popular approxi-
mation techniques, multiobjective evolutionary algorithms are a 
typical choice.49-52

Feature selection can be seen as a multiobjective optimiza-
tion problem, in which the solution encodes the selected fea-
tures, and the objective(s) are designed to maximize the 
performance of some classification/regression algorithm in 
several possible ways; this may entail, for example, instantiating 
equation (1) as:

max
min

Performance x
Cardinality x

( )
( ),






 (2)

where x  represents the chosen features and we maximize the 
performance of a predetermined classification/regression algo-
rithm (on those features), while minimizing their number. The 
use of evolutionary algorithms for the selection of features in 
the design of automatic pattern classifiers was introduced in 
Siedlecki and Sklansky.53 A review of evolutionary techniques 
for FS can be found in Jiménez et al,50 and a very recent survey 
of multiobjective algorithms for data mining in general can be 
found in Mukhopadhyay et  al.52 The first evolutionary 
approach involving multiobjective optimization for FS was 
proposed in Ishibuchi and Nakashima,54 and a formulation of 
FS as a multiobjective optimization problem has been pre-
sented in Emmanouilidis et al.51 The wrapper approach pro-
posed in Liu and Iba55 takes into account the misclassification 
rate of the classifier, the difference in error rate among classes, 
and the size of the subset using a multiobjective evolutionary 
algorithm where a niche-based fitness punishing technique is 
proposed to preserve the diversity of the population, while the 
one proposed in Pappa et al56 minimizes both the error rate and 
the size of a decision tree. Another wrapper method is pro-
posed in Shi et al,57 while in García-Nieto et al,58 2 wrapper 
methods with 3 and 2 objectives, respectively, applied to cancer 
diagnosis are compared. Finally, very recent examples of multi-
objective FS systems can be found in Jiménez et al.59,60 To the 
best of our knowledge, the only attempt to use multiobjective 
optimization process in modeling air quality has been used for 
monitoring system planning in Sarigiannis and Saisana.61

Data
There is only 1 communication station for measuring the air 
quality in the city of Wrocław, and it is located within a wide 
street with 2 lanes in each direction (GPS coordinates: 

51.086390 North, 17.012076 East, see Figure 1). The center of 
1 of the largest intersections in the city with 14 traffic lanes is 
located approximately 30 m from the measuring station, and is 
covered by traffic monitoring. The measurement station is 
located on the outskirts of the city, at 9.6  km from the airport 
(the distance between the weather monitoring station and the 
air quality station is 1 of the reasons, although not the only 1, for 
which time lags play a role in our model). Pollution data are col-
lected by the Provincial Environment Protection Inspectorate 
and encompass the hourly NO2  and NOx  concentration values 
during the full 3 years, from 2015 to 2017. The traffic data are 
provided by the Traffic Public Transport Management 
Department of the Roads and City Maintenance Board in 
Wrocław, and include hourly count of all types of vehicles pass-
ing the intersection. Public meteorological data are provided by 
the Institute of Meteorology and Water Management, and they 
include air temperature, solar duration, wind speed, relative 
humidity, and air pressure. The full data set contains 26 304 
observations. In the preprocessing phase, each missing value 
(there were 617 samples, that is, 2.3%, with at least 1 missing 
value) has been interpolated with the 2 closest known values, 
immediately before and immediately after the missing one. 
Some basic statistic indicators on the remaining 25 687 instances 
are presented in Table 1, along with the symbol used in the tests 
for each variable.

Method
Lagged regression

Linear regression is the most immediate approach to explicit 
modeling of a multivariate time series. In our case, for example, 
one can denote by:

A

a a a b t
a a a b t

a a a b t

n

n

m m mn m m

=

11 12 1 1 1

21 22 2 2 2

1 2





     























,  (3)

the set of preprocessed data, in which A An1, ,  are the inde-
pendent columns (air temperature, solar duration, wind speed, 
relative humidity, air pressure, and temperature), B  is the 
dependent one (NO2  or NOx , depending on the problem we 

Figure 1. Aerial view of the monitoring station.
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want to solve), ordered by the time of observation, and use a 
linear regression algorithm to extract a function of the type:

B t c c A t
i

n

i i( ) = ( ) .0
=1

+ ⋅ +∑   (4)

Solving this problem entails finding n +1  optimal parame-
ters (or coeff icients) c c cn0 1, , ,  to fit the above equation, which 
does not take into account past values of any independent 
parameter, and the temporal component is used implicitly. 
Lagged (linear) regression consists of solving a more general 
equation, formulated as:

B t c c A t l
i

n

l

pi

i l i( ) = ( ) .0
=1 =0

,+ ⋅ − +∑∑   (5)

In other words, we use the value of each independent variable 
Ai  not only at time t  but also at time t t t pi− − −1, 2, , , to 

explain B  at time t ; each A t li ( )−  is associated with a coef-
ficient ci l, , which must be estimated, along with each maximum 
lag pi . There are available techniques, based on standard regres-
sion algorithms, that allow one to solve the inverse problem 
associated with equation (5); unfortunately, the resulting equa-
tion may result very difficult to interpret. Equation (5) is very 
similar to ARIMAX model, but without the autoregressive part.

Lagged regression can be performed with other, more com-
plicate, model extraction methods that may not allow explicit 
representation, such as random forest or neural networks of any 
type. The underlying idea is the same: enhance the independ-
ent data by adding lagged versions of each variable A i−  up to 
a predetermined maximum pi .

Optimizing a lagged model

Both standard and lagged linear regression are classical, simple 
approaches to the problem of explaining the value of B t( )  (in 
our case, pollution concentrations), using current and past val-
ues of A An1, , : having learned the best coefficients, the 

Table 1. Descriptive statistics.

VARIAbLE UnIT MEAn STAnDARD 
DEVIATIOn

MIn MEDIAn MAx

Air temperature (a) °C 10.9 8.4 −15.7 10.1 37.7

Solar duration (d) h 0.23 0.38 0 0 1

Wind speed (w) ms-1 3.13 1.95 0 3.00 19

Relative humidity (r) % 74.9 17.3 20 79.0 100

Air pressure (p) hPa 1003 8.5 906 1003 1028

Traffic (t) no. of cars 2771 1795.0 30 3178 6713

NO2 µgm-3 50.4 23.2 1.7 49.4 231.6

nOx µgm-3 142.2 103.7 3.9 123.7 1728.0

performances of the model are computed using standard 
measures. As per classical, standard data analysis procedures, 
the set A  may be used in k -fold cross-validation mode to 
extract a linear model and test it at the same time, or separated 
into training and test subsets. In any case, solving equation (5) 
entails fixing the value pi  for each independent variable; each 
past value of each independent variable may contribute in the 
same way to the model.

We work under the additional assumption that, for each i , 
there is precisely 1 lag li , such that A t li i( )−  influences the 
output more than any other lag; this may be reasonable in some 
applications, and less so in others: as we shall see, it fits per-
fectly our case. Under such an assumption, the model that we 
are assuming becomes:

B t c c A t l
i

n

i i i( ) = .0
=1

+ ⋅ −( ) +∑   (6)

Our methodology can be described as follows: (1) we split 
the original data set A  into 2 sets that we call Atr  and Amo , 
respecting the temporal ordering, (2) we optimize the values of 
c c cn0 1, ,,  , and l ln1, ,  on Atr , obtaining a linear model that 
fits Atr  well, and (3) we use the obtained lags to transform Amo , 
so that a new model can be learned. Splitting into Atr  and 
Amo  is necessary to ensure that finding the optimal lags is 

computationally affordable: we search for the optimal lags in a 
small data set ( )Atr , and then we apply them to a bigger one 
( )Amo , so that a model can be learned on the latter. The model 
that is learned on the transformed data can be of any type: 
linear (or, in general, functional), tree-based, or a neural net-
work. The transformation gives us already some information 
on the problem itself, as it has optimized the delay after which 
a certain independent variable has effect; such a learned model, 
obtained on A2 , can be tested using classical testing modes, 
such as training + test (which would entail further separating 
A2  into 2 sets), or, as we shall do, k -fold cross-validation. 

Observe that Atr  cannot be considered a training set per se, 
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but, instead, a pretraining set, used with the sole purpose of 
performing the optimization.

Having separated the optimization part from the training 
part, we can now arbitrarily complicate the model. For exam-
ple, in some contexts, such as pollution concentration mode-
ling, a super-linear explanation model may fit better than a 
linear one, yet preserving the possibility of an intuitive inter-
pretation. From the mathematical point of view, the inverse 
problem that corresponds to searching for a super-linear model 
is a simple generalization of equation (6):

B t c c A t l
i

n

i i i
ei( ) = .0

=1

+ ⋅ −( ) +∑   (7)

Thus, in the optimization part of our methodology, we can 
optimize coefficients cis , lags lis , and exponents eis , for each 
predictor, and, then, apply this more elaborate transformation 
to the data. Once again, as a result of the optimization phase, 
we obtain new information; for example, we may learn that 
wind influences the amount of nitrogen oxide in the air at a 
certain moment with 2 hours of delay, and in a way propor-
tional to the square of its strength. Even if we choose, in the 
second phase, to use a noninterpretable learning model (eg, 
random forest), we have more information on the underlying 
process than we would have had using the same learning model 
without transformation. Our purpose is to prove that such an 
optimization does increase the performances on the learned 
model in the second phase, independently from the specific 
learning model. A representation of this methodology can be 
found in Figure 2.

Solving the optimization problem

Deciding the best lag and the best exponent for each variable 
is an optimization problem. Formally, given a multivariate 
time series A t A t B tn1( ), , ( ), ( )  with m  distinct observa-
tions (such as our data on atmospheric pollution), let us 
define P  as the maximum lag of the problem (ie, we do not 
search solutions with lags greater than P —observe that in 
equation (5), we have that p Pi =  for each i)  and E  as the 
maximum exponent of the problem (ie, we do not search solu-
tions with exponents greater than E —observe that in equa-
tion (7), we have that e Ei ″  for each i) . Let us fix a vector 
x x xn= ( , , )1   of decision variables with domain 
[ 1, , ]− ⊂ P  , and let M  be the maximum of x  (called 
maximum actual lag of x ) . The vector x  entails a transfor-
mation of equation (3) into a new data set with m M−  
observations, in which the feature (time series) Ai  is lagged 
(ie, delayed) of the amount xi :

A x

a b t
a b t

a b

M x M M

M x M M

m M x m

( ) =

( 1)1

( 1) 1)1 1 1

(( ) 1)1
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The transformation equation (8) works for every xi ≠ −1 . 
The case of xi = 1−  is interpreted as excluding the column Ai  
from the problem (entailing an implicit FS method). Similarly, 
let y y yn= ( , , )1  , a second vector of decision variables with 
domain [1, , ] E . For each variable Ai , we interpret yi  as the 
exponent to which Ai  is raised in equation (7). So, in conjunc-
tion, the pair x y,  entails a transformation of equation (3) into 
a new data set with m M−  observations, in which the feature 
(time series) Ai  is lagged (ie, delayed) of the amount xi , and 
raised to the power of yi :

A x y
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A simple numeric example of such a transformation can be 
seen in Figure 3. In this example, we start off with 5 observa-
tions and 5 independent variables (the sixth column indicates 
the time of observation); the left-hand side (that contains the 
lags) of the decision variables vector contains 0 for the first and 
the fourth variable, 1 for the second variable, 3 for the fifth 
variable, and −1 for the third variable (which entails that this 
variable is not selected); the right-hand side (that contains the 

Figure 2. A simple schematic of the proposed methodology.
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exponents) contains 1 (linear behavior) for every variable except 
the third one (which, by the way, is eliminated) and the fifth 
one, in which the exponent is 2 (quadratic behavior). The origi-
nal data set, therefore, must contain 3 less observations because 
in this example, we are assuming that to explain the current 
value of B , we need to look at the value of A5  3 units of time 
before. The values of the selected variables, at the selected 
times, are then elevated to the chosen exponent, instantiating 
equation (9).

Solving the optimization problem entails evaluating a vec-
tor ( , )x y  on Atr . As per our methodology, during the optimi-
zation phase, we use an efficient learner, such as linear 
regression, and any standard measure of the performances of 
the extracted model, such as the Pearson correlation test 
between the function values and the actual values of B ; we 
denote such a generic function with CORR x y( , ) , that is, the 
correlation coefficient extracted by a linear regression algo-
rithm ran on Atr  after the transformation entailed by x y, —
correlation coefficient should be maximized. In a multiobjective 
context, however, we can also optimize the characteristics of 
both x  and y . On one hand, we want to minimize the num-
ber of selected variables, using:

CARD x
x

i

n
i

( ) =
0 1
1

=1
∑

≠ −





if

otherwise,
 (10)

and, on the other hand, we want to minimize the complexity of 
the extracted model, using:

MAXEXP y y i ni( ) = { 1 }.max | ≤ ≤  (11)

Thus, solving our optimization problem means instantiat-
ing equation (1) with:

max
min
min

CORR x y
CARD x y
MAXEXP x y

( , )
( , ),

( , ).










 (12)

Clearly, other objective functions can be designed that may 
or may not improve the quality of the solutions.

Implementation

Multiobjective evolutionary algorithms are known to be particu-
larly suitable to perform multiobjective optimization, as they 
search for multiple optimal solutions in parallel. In this experi-
ment, we have chosen the well-known Nondominated Sorted 
Genetic Algorithm II,49 which is available as open source from 
the suite jMetal.62 Nondominated Sorted Genetic Algorithm 
II is an elitist Pareto-based multiobjective evolutionary algo-
rithm that employs a strategy with a binary tournament selec-
tion and a rank-crowding better function, where the rank of an 
individual in a population is the nondomination level of the 
individual in the whole population. As black box linear regres-
sion algorithm, during the optimization phase, we used the 
class LinearRegression from the open-source learning suite 
Weka,63 run in 10-fold cross-validation mode, with standard 
parameters and no embedded FS. We have represented each 
individual solution (gene) as an array:

x x x y y yn n1 2 1 2, , , , , , ,  ,

with values in [ 1, , ]−  L  for the x  side and in [1, , ] E  for 
the y  side.

The initial population has been generated randomly, in each 
execution, and the fitness functions reflect the objective func-
tions of equation (12) in the obvious way; in particular, Weka 
implementation of any regression extraction algorithm returns, 
among other measures, the Pearson correlation coefficient of 
the extracted model. Mutation and crossover operations have 
been adapted to the form of the gene. To mutate an individual 
I , we proceed as follows: (1) we randomly choose between the 
x -part and y -part; (2) we randomly choose the index to 
mutate; and (3) we randomly choose to mutate the correspond-
ing value with an increment (plus 1), decrement (minus 1), or 
random substitution. Increments, decrements, and random 
substitutions are implemented in the interval [ 1, , ]−  L  in the 
x -part, and in the interval [0, , ] E  in the y -part. Similarly, 
crossover between 2 individuals I J,  is implemented as fol-
lows: (1) we randomly choose between the x -part and y -part; 
(2) we randomly choose 2 indexes in I  and 2 indexes in J ; 
and (3) we perform the crossover on the selected indexes.

Experiment
According to the methodology described in Figure 2, we pre-
pared the data sets Atr  (7706 observations, 30% of the initial 
data) and Amo  (17 981 observations, 70% of the initial data) for 

Figure 3. Example of transformation. The original data set (top) is 

transformed by the pair x y,  (middle) into a lagged data set (bottom), 

with 1 less feature. There are 3 less instances due to the maximum 

chosen lag.
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2 problems, NO2  and NOx , which we kept separated, for 2 
different sets of experiments. We then run the optimization 
procedure with random initial population for 10 independent 
experiments, with seeds from 1 to 10. In the final population of 
each execution, we applied a simple decision-making strategy to 
choose 1 individual of the Pareto front, that is, the one with the 
best correlation coefficient, which is a natural choice. On each 
execution, we set the maximum lag at 6 hours ( )P = 6 , and the 
maximum exponent at ( )E = 3 . As it turns out, all selected 
solutions contain all initial variables, suggesting that all predic-
tors do have an nontrivial role in the problem. The training 
results are shown in Table 2 for NO2 , and in Table 3 for NOx . 
Both tables are structured in the same way. For each execution, 
we show the best correlation coefficient that we have obtained 
during training. Also, we show the lags, the exponents, and the 

Table 2. Training results for NO2 .

ExEC. LAGS ExP. CORR. A d W R p t

1 0,1,2,5,5,1 3,1,1,1,1,1 0.7272 0.0005 −12.2594 −5.5650 −0.3238 −0.0541 0.0086

2 5,0,2,5,1,1 2,1,1,1,2,1 0.7248 0.0155 −7.3854 −5.5652 −0.2308 −0.0000 0.0084

3 6,1,2,6,4,1 1,1,1,1,1,1 0.7246 0.2271 −7.4261 −5.5031 −0.3132 −0.0911 0.0089

4 5,6,2,5,0,1 3,3,1,3,3,1 0.7231 0.0006 6.5237 −5.5565 0.0000 0.0000 0.0077

5 0,0,2,6,0,1 3,1,1,1,1,1 0.7282 0.0005 −9.1026 −5.5726 −0.3215 −0.0957 0.0086

6 0,1,2,6,0,1 2,1,1,1,1,1 0.7286 0.0121 −10.5775 −5.5122 −0.3383 −0.0989 0.0089

7 1,1,2,6,1,1 3,1,1,1,1,1 0.7325 0.0005 −11.0236 −5.4998 −0.3202 −0.0833 0.0089

8 4,4,2,6,5,1 3,2,1,1,1,1 0.7253 0.0005 −0.4911 −5.5622 −0.2800 −0.0828 0.0081

9 6,1,2,6,0,1 3,2,1,1,1,1 0.7333 0.0006 −7.4740 −5.4309 −0.2524 −0.0847 0.0089

10 3,0,2,6,3,1 3,1,1,2,1,1 0.7295 0.0006 −7.9523 −5.5867 −0.0019 −0.0669 0.0086

We use exec. to indicate the execution number and exp. to denote the exponents. The variables are denoted as in Table 1.

Table 3. Training results for NOx .

ExEC. LAGS ExP. CORR. A d W R p t

1 2,5,2,0,6,1 1,2,1,1,1,1 0.6143 −2.3309 34.5527 −20.4060 1.3695 0.2496 0.0366

2 1,6,2,1,4,1 1,1,1,1,1,1 0.6194 −2.3091 40.2649 −19.9924 1.4599 0.1808 0.0371

3 1,6,2,1,6,1 1,1,1,2,3,1 0.6179 −2.4287 37.4455 −19.9698 0.0102 0.0000 0.0369

4 2,6,2,1,5,1 2,2,1,1,1,1 0.6135 −0.0529 46.6974 −19.4180 1.7456 0.3237 0.0369

5 0,5,2,1,3,1 1,1,1,1,1,1 0.6153 −2.1120 33.8346 −20.2968 1.4973 0.1574 0.0369

6 2,6,2,0,3,1 1,1,1,1,1,1 0.6156 −2.4368 34.3729 −20.4512 1.3020 0.1257 0.0368

7 1,6,2,0,0,0 1,1,1,1,1,1 0.6136 −2.4984 52.8382 −20.3610 1.3958 0.1049 0.0364

8 1,5,2,1,5,1 1,1,1,2,1,1 0.6151 −2.4271 32.8368 −20.3458 0.0100 0.1432 0.0365

9 0,6,2,1,6,1 1,1,1,1,1,1 0.6177 −2.0545 37.1161 −19.8380 1.5326 0.3469 0.0372

10 2,5,2,1,0,1 1,1,1,1,1,1 0.6156 −2.2025 39.7787 −20.1578 1.5233 0.1220 0.0364

We use exec. to indicate the execution number and exp. to denote the exponents. The variables are denoted as in Table 1.

coefficient for each variable, in the original order: temperature, 
solar radiation, wind, humidity, pressure, and traffic.

As for the test phase, we have operated as follows: first, we 
have used the original test data set ( )Amo , with no transforma-
tions, to run 3 different regression algorithms, and, second, we 
have used the same algorithms over the data transformed with 
each of the 10 selected solutions, to measure the difference in 
performance, in 10-fold cross-validation mode. The algorithms 
that we have used are: (1) the classic linear regression (class 
LinearRegression in Weka—same parameters as in the optimiza-
tion phase); (2) the random forest algorithm (class RandomForest 
in Weka—parameters: 100 trees, 100% size per bag, minimum 1 
instance per leaf, 10 3−  maximum variance per leaf, unlimited 
depth per tree, no backfitting); (3) a multilayer perceptron (class 
MultilayerPerceptron in Weka—parameters: 0.3 learning rate, 0.2 
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momentum rate for backpropagation, 500 epochs, no validation 
set). Each execution of each learner has been run in 10-fold 
cross-validation mode, and, again, the column corr. denotes the 
result of the Pearson test of correlation, in average more than the 

10 executions. We have also displayed the results of the standard 
residuals test: the mean absolute error, root mean squared error, 
the root absolute error, and the root squared error. The results of 
the test phase are shown in Tables 4 and 5.

Table 4. Test results for NO2 .

ALGORIThM ExEC. CORR. MEAn A.E. ROOT M.S.E. ROOT A.E. ROOT S.E.

Linear regression orig 0.6395 12.9254 17.0113 74.4102 76.8771

1 0.7277 11.6018 15.1785 66.7858 68.5889

2 0.7230 11.6794 15.2869 67.2320 69.0789

3 0.7343 11.4391 15.0208 65.8503 67.8766

4 0.7143 11.8412 15.4869 68.1693 69.9880

5 0.7288 11.5700 15.1522 66.6039 68.4707

6 0.7330 11.4887 15.0535 66.1362 68.0245

7 0.7314 11.5169 15.0909 66.2948 68.1899

8 0.7210 11.7094 15.3326 67.4067 69.2859

9 0.7291 11.5687 15.1442 66.5966 68.4342

10 0.7249 11.6236 15.2423 66.9125 68.8779

Random forest orig 0.7538 10.8476 14.5395 62.4486 65.7067

1 0.8017 9.9405 13.2286 57.2222 59.7779

2 0.8045 9.9706 13.1447 57.3953 59.3985

3 0.8053 9.9360 13.1207 57.1974 59.2904

4 0.7939 10.1857 13.4576 58.6348 60.8129

5 0.8082 9.8223 13.0336 56.5431 58.8969

6 0.8009 10.0009 13.2611 57.5731 59.9246

7 0.8025 9.9220 13.2069 57.1181 59.6831

8 0.7976 10.1043 13.3791 58.1656 60.4569

9 0.8042 9.9336 13.1500 57.1809 59.4230

10 0.8082 9.8646 13.0500 56.7855 58.9700

Multilayer perceptron orig 0.6115 13.6077 18.1439 78.3378 81.9954

1 0.6381 13.4738 17.4629 77.5618 78.9117

2 0.6428 13.3944 17.3457 77.1046 78.3820

3 0.6678 12.9831 16.8019 74.7383 75.9253

4 0.6365 13.5315 17.4957 77.8953 79.0603

5 0.6677 13.0059 16.7383 74.8696 75.6378

6 0.6630 13.1540 16.9416 75.7225 76.5567

7 0.6610 13.1991 17.0009 75.9824 76.8260

8 0.6310 13.7787 17.7409 79.3165 80.1723

9 0.6581 13.2655 17.0754 76.3666 77.1592

10 0.6666 12.9946 16.7427 74.8048 75.6580

We use exec. to indicate the execution number, and corr. (mean a.e., root m.s.e., root a.e., and root s.e.) to denote the correlation index (the mean absolute error, the root 
mean squared error, the root absolute error, and the root standard error, respectively).
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Discussion
In view of the results that have been obtained, 2 important ele-
ments emerge: first, how lags and nonlinear contributions are 
explained in the physical process, and, second, how the trans-
formations improve the synthesis of regression models. As 

much as the first point is concerned, it is important to under-
stand that different executions may give rise to different results 
and yet similar performances. On one side, some lags are con-
sistent in all executions, which indicates that the temporal 
component of their contribution is stable and clear. On the 

Table 5. Test results for NOx .

ALGORIThM ExEC. CORR. MEAn A.E. ROOT M.S.E. ROOT A.E. ROOT S.E.

Linear regression orig 0.6381 51.3114 76.1511 70.6137 76.9965

1 0.6743 49.4777 73.0408 68.0773 73.8382

2 0.6803 49.1245 72.4960 67.5914 73.2874

3 0.6782 49.3159 72.6908 67.8548 73.4843

4 0.6748 49.3625 72.9961 67.9188 73.7929

5 0.6732 49.4706 73.1357 68.0714 73.9390

6 0.6769 49.3169 72.8089 67.8561 73.6037

7 0.6842 48.8029 72.1356 67.1488 72.9230

8 0.6747 49.4927 73.0056 68.1018 73.8075

9 0.6761 49.3532 72.8781 67.9061 73.6736

10 0.6766 49.2547 72.8330 67.7743 73.6330

Random forest orig 0.7343 43.3031 67.1449 59.5929 67.8904

1 0.7660 41.3382 63.6004 56.8780 64.2947

2 0.7721 41.0314 62.8687 56.4560 63.5550

3 0.7715 41.0264 62.9431 56.4490 63.6302

4 0.7629 41.7022 63.9675 57.3789 64.6658

5 0.7643 41.4665 63.7992 57.0577 64.5000

6 0.7665 41.3807 63.6612 56.9365 64.3561

7 0.7741 40.4066 62.6275 55.5962 63.3112

8 0.7685 41.1358 63.2970 56.6027 63.9922

9 0.7717 41.0702 62.9229 56.5093 63.6097

10 0.7644 41.3297 63.7875 56.8694 64.4882

Multilayer perceptron orig 0.6162 54.8119 78.5257 75.4311 79.3974

1 0.6396 53.2879 77.5143 73.3199 78.3605

2 0.6312 54.8395 78.4361 75.4548 79.2923

3 0.6187 55.2503 79.0517 76.0200 79.9146

4 0.6309 54.6739 78.1931 75.2270 79.0467

5 0.6494 50.9036 76.1172 70.0431 76.9532

6 0.6364 53.7965 77.8218 74.0197 78.6713

7 0.6554 51.5772 75.4753 70.9660 76.2990

8 0.6577 50.3422 75.3777 69.2706 76.2057

9 0.6307 54.6624 78.3721 75.2111 79.2276

10 0.6523 50.7901 75.8542 69.8870 76.6874

We use exec. to indicate the execution number, and corr. (mean a.e., root m.s.e., root a.e., and root s.e.) to denote the correlation index (the mean absolute error, the root 
mean squared error, the root absolute error, and the root standard error, respectively).
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other side, some lags and some individual coefficients do show 
certain variability: we believe that in such cases, more experi-
ments are necessary to fully understand the underlying mecha-
nisms. All notwithstanding, it is clear how convolution vectors 
have a clear positive effect on the cross-validated performances 
across the entire spectrum of algorithms for regression that we 
have tried. The following considerations can be done.

•• Traffic influences the amount of pollutant concentra-
tions in a positive way, and with 1 hour of delay; this 
delay can be explained by the fact that the effect of 
exhaust gases needs some time to accumulate (observe, 
also, that we are limited by the granularity of observa-
tions: if sensors had collected data with granularity, say, 
1 minute, we may have seen shorter delays for this 
variable).

•• Higher air temperatures are associated with a decrease in 
NO2  and NOx  concentrations, which is caused by 3 
processes: (1) at higher air intake temperatures, less NO2  
is produced in the process of fuel combustion in the 
engine; (2) higher air temperatures usually imply more 
favorable atmospheric conditions, which encourage resi-
dents to use alternative means of transportation which 
reduces traffic volume64; and (3) NO2  is dynamically 
transformed into NO  (and back) at a higher rate with 
higher temperatures.

•• Wind always affects concentration in a negative way, 
with a constant (across different executions) delay of 
2 hours. This is probably due to the distance between the 
intersection and the meteorological station; the average 
wind speed of 3 m s−1 and the roughness of terrain explain 
the amount of the delay.

•• Higher humidity may cause a decrease in NO2  concen-
tration in exhaust gases65,66 ; we have found that such an 
effect takes place with 5 to 6 hours of delay.

•• High solar duration and high temperature favor the 
transformation of nitrogen oxides into secondary pollut-
ants, which include ozone, and this implies a decrease in 
NOx  concentration; even more important is sunlight, 
which acts as a catalyst, which explains the negative coef-
ficient and the delay for sunlight duration.

Of how the transformation influences the synthesis of good 
regression models, we can observe what follows. First, not all 
models show the same improvement, but all models show some 
improvement. In the case of NO2 , the models extracted with 
linear regression showed a maximum improvement of 0.948 in 
correlation, those with random forest of 0.544, and those with 
multilayer perceptron of 0.563, and in the case of NOx , the 
improvements have been of 0.461, 0.398, and 0.415, respec-
tively. Also, observe that there was an improvement in every 
independent execution, indicating that the results are stable. 
The fact that linear regression presented the most evident 

improvement is expected, given that used the same algorithm 
for optimization. Second, the improvement in predicting the 
NO2  concentration is greater than the one in predicting NOx , 
probably due to the fact that the latter is a more complex prob-
lem. Third, linear regression and random forest show greater 
improvements than multilayer perceptron; the latter, however, 
shows low results even with nontransformed data, possibly 
suggesting that the underlying problem is not highly nonlinear 
enough to require, and justify, a neural network–based approach.

Comparing our results from the statistical point of view 
with those that can be obtained by other, well-known, methods 
is quite difficult. Take NO2  prediction models, for example. 
Running simple, atemporal, linear regression on the same data 
yields a correlation coefficient that, in average, is 0.678 in test 
(single execution). The extracted model is:

NO a d w h
p t

2 0.2345 12.8184 5.4104 0.2244
0.1771 0.0083 245

= − − − −
= − + + ..3536.

 (13)

While the coefficients are not too dissimilar from those 
obtained with the transformations, the reduced correlation shows 
that delays must be taken into account. Running full lagged mod-
els, on the other hand, leads, in some cases, to higher correlations. 
Unfortunately, the resulting models are impossible to be inter-
preted from the environmental point of view. Just for example, 
the simplest full lagged model that we tried, with 6 hours of maxi-
mum delay for each variable (ie, with 36 independent variables), 
already leads to positive and negative coefficients of the same 
independent variables at different delays: the variable tempera-
ture, for instance, presents positive coefficients for lag 0, 4, and 6, 
and negative ones in all the other lags. A possible explanation of 
this phenomenon is that by artificially increasing the number of 
independent variables (such as it is done when several lagged 
variables are added for each parameter), one allows regression 
algorithms to find artificially good solutions by using many 
hyperplanes; in other words, the solution tends to overfit even in 
presence of several thousands of data instances. Overfitting mod-
els are less reliable explanatory models because they tend not to 
be associated with physical explanations.

Conclusions
In this article, we have approached the problem of devising an 
explanation model for NO2  and NOx  concentrations observed 
via a monitoring station in the city of Wrocław (Poland). First, 
we revised the current literature on prediction, forecasting, and 
explanation models for temporal series. Then, we formulated 
the problem of finding an explanation model for air pollution 
as a lagged regression problem, and designed an optimization 
problem whose solutions are precisely the optimal lags for 
regression. Finally, we proposed realistic and physically explica-
ble lagged regression models for both NO2  and NOx  concen-
trations based on available data from 2015 to 2017, induced 
with our method. We obtained significative improvements in 
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the coefficient of determination over nonlagged regression 
models, while retaining (in fact, easing) the interpretability of 
the resulting equations. Our technology is immediately appli-
cable to the same problems with different data, as well as to 
similar problems in which the temporal component plays an 
essential role. Time series explaining is less common in the 
technical literature than time series forecasting. Yet, forecasting 
is not focused on interpretability, often resulting in (sometimes, 
statistically reliable) black box models which, however, offer no 
explanation of the underlying phenomena. For future work, we 
plan to improve our design by allowing our optimization 
schema to consider reasonable temporal combinations of 
lagged variables, yet retaining the superior interpretability 
degree of lagged models over statistical forecasting.
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