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ABSTRACT

The forecast of rainfall-driven floods is one of the main themes of analysis in hydrometeorology and

a critical issue for civil protection systems. This work describes a complete hydrometeorological forecast

system for small- and medium-sized basins and has been designed for operational applications. In this case,

because of the size of the target catchments and to properly account for uncertainty sources in the prediction

chain, the authors apply a probabilistic framework. This approach allows for delivering a prediction of

streamflow that is valuable for decision makers and that uses as input quantitative precipitation forecasts

(QPF) issued by a regional center that is in charge of hydrometeorological predictions in the Liguria region of

Italy. This kind of forecast is derived from different meteorological models and from the experience of

meteorologists. Single-catchment and multicatchment approaches have been operationally implemented and

studied. The hydrometeorological forecasting chain has been applied to a series of case studies with en-

couraging results. The implemented system makes effective use of the quantitative information content of

rainfall forecasts issued by expert meteorologists for flood-alert purposes.

1. Introduction

Over the last few decades, much effort has been made

in the field of flood prediction. The ground effects (e.g.,

floods, landslides) deriving from intense rainfall events can

be devastating and very expensive in terms of the loss of

human lives and damage to economic activities and assets.

In some regions the use of traditional alert systems

based on rainfall observations, flood formation, and

propagation modeling cannot be applied because of the

very short watershed response times, which are often

much shorter than what is necessary for starting up the

‘‘machine of civil protection’’ and its procedures. To

overcome this problem, it is a common practice to resort

to the use of numerical precipitation predictions issued

by meteorological models as input for hydrological re-

sponse models (e.g., Lin et al. 2002; Bacchi et al. 2002;

Bartholomes and Todini 2005). Various works demonstrate

that it is not possible to tackle the hydrological forecasting

problem in a deterministic way (e.g., Krzysztofowicz 2001),

and consequently they propose probabilistic approaches

to properly account for the uncertainties in the hydro-

meteorological forecasting chain (Siccardi et al. 2005;

Schaake et al. 2007; Verbunt et al. 2007; Cloke and

Pappenberger 2009).

The two main sources of uncertainty associated with

the meteorological input that have to be accounted for are

1) the uncertainties related to meteorological predictions

and 2) the uncertainties due to the scale of inconsistencies

between meteorological forecast input and hydrological

response that arise when dealing with small- and medium-

sized basins. In this last case, the different spatiotemporal

scales between meteorological model outputs and hy-

drological model inputs can cause poor-quality stream-

flow predictions, even in cases where we have a perfect

rainfall forecast for the spatiotemporal scales solved by

a meteorological model (Ferraris et al. 2002). In this

work, we do not consider the sources of uncertainty

related to hydrologic modeling because they are at least

one order of magnitude smaller than those associated
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with the meteorological forecast. We refer to Mascaro

et al. (2010) and Zappa et al. (2011) for a complete

description of this issue.

The literature that describes implementations of hy-

drometeorological prediction chains (e.g., Cloke and

Pappenberger 2009) indicates that the most common

option in accounting for the meteorological uncertainty

is the use of precipitation predictions issued by ensemble

prediction systems (EPSs). This framework cannot be the

best option when dealing with predictions on very small

catchments for two reasons. The first is that the output of

an EPS needs a startup period of about 24 h to correctly

reproduce the quantitative precipitation forecasts (QPF)

uncertainty (Fundel et al. 2010; Marsigli et al. 2005); for

this reason, we should use EPSs that are initialized at

least one day before the forecasting time and that do not

account for the latest atmospheric observations. The sec-

ond is that, in order to cope with operational procedures

and decision-making responsibility, hydrologists are al-

lowed, in certain cases, to use ‘‘certified’’ predictions from

(human) expert forecasters. These forecasters, on the

basis of their knowledge, can analyze different meteo-

rological models and estimate their reliability in different

synoptic conditions and different local meteorological

situations. This results in issuing a QPF that synthesizes

a large quantity of information from synoptic to a very

local scale.

In this work, we present the adaptation of a theoretical

hydrometeorological forecasting system in an operational

context designed for supporting decision makers in a civil

protection system. The main goal is to quantitatively use

the expert forecaster QPF as an input in the forecasting

chain.

Two approaches are followed: the single-site approach

for making predictions on medium-sized [O(A) ; 103 km2]

basins and the multicatchment approach for small basin

[O(A) ; 101–102 km2] forecasts. This procedure has been

implemented in the Italian region of Liguria and is rou-

tinely used for civil protection purposes.

This paper is organized as follows: in sections 2 and 3,

the general framework of the forecast chain and the ter-

ritorial context are described. In section 4, the forecasting

chain is contextualized within the framework adopted

for the Liguria region. The application, the verification

methodology, and the analysis of results are discussed in

section 5, and discussions and conclusions are presented

in section 6.

2. Probabilistic flood forecasting chain: General
framework

The general framework of the probabilistic flood

forecasting chain presented here is described in Siccardi

et al. (2005). Because we are dealing with basins that have

areas smaller than 104 km2, three elements for our fore-

casting chain are needed. This can be understood through

Fig. 1 (derived from Siccardi et al. 2005), which shows the

different methodological approaches to use when pro-

ducing hydrometeorological ensembles.

The first ingredient in the chain is the meteorological

input, usually a QPF issued by either a meteorological

model or by EPS prediction. The use of different me-

teorological scenarios issued by EPSs may help in ac-

counting for the uncertainty in a QPF but usually only

after a spinup time of about 24 h.

The second ingredient is a rainfall downscaling pro-

cedure that allows for generating high-resolution (1 km–

10 min) ensemble rainfall forecasts starting from the QPF

issued by the first element in the chain (meteorological

prediction). The downscaling algorithm usually preserves

the statistical properties of the large-scale field, such as

the average precipitation amount and the position of

large-scale precipitation structures, and creates small-scale

precipitation fields with statistical properties similar to

those observed from meteorological observations at mid-

latitudes (Ferraris et al. 2003). The third ingredient is

a rainfall–runoff model needed to simulate the streamflow

caused by the predicted precipitation event.

Depending on the catchment dimension and the tem-

poral scale of its response, there are two possible ap-

proaches for the probabilistic forecast: single site and

multicatchment. Siccardi et al. (2005) show that different

types of hydrological forecast chains should be used (see

Fig. 1), depending on the two ratios lmet/lhydro and tc/ts.

The term lmet is the typical reliable meteorological scale

(Siccardi et al. 2005), which can range from 10 to 100 km,

and lhydro is the hydrological scale considered as the

square root of the catchment area. The term tc is the time

scale of basin response, and ts is the social response time to

a civil protection warning that can be between 12 and 24 h.

For these reasons, when dealing with basins with an area

of 103–104 km2 (lmet/lhydro ; 100 O 101), it is necessary to

downscale the rainfall forecast issued by meteorological

models or by EPSs and use it as input in the rainfall–runoff

model for generating a series of discharge scenarios with

related peak flow probability distributions. With this ap-

proach, a probabilistic discharge forecast can be obtained

for each single catchment. This type of procedure is what

is called a single-site approach.

When the target is the forecast in very small basins (A ;

101–102 km2 that correspond to lmet/lhydro ; 101–102 km2),

the single-site approach no longer represents the best

option. The rainfall fields still need to be downscaled from

the meteorological scale and used as input in a rainfall–

runoff model. However, in this case it is impossible to

evaluate which basins, belonging to a large region of lmet
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scale, will be affected by a flooding event. The forecasting

procedure does not allow for any discrimination between

one spatial localization and another, and therefore esti-

mating the probability on a regional scale provides both

useful and fundamental information for civil protection

purposes. As a consequence, we cannot manage every

single basin as an independent entity, so we must consider

all the basins together inside the domain of lmet size. For

this reason, we consider that the streamflow caused by

a rainfall scenario on a particular catchment is represen-

tative of what could occur in one generic catchment inside

the domain of size lmet. The results can be treated simi-

larly to what is proposed by Boni (2000) in the regional

analysis of peak discharge frequency for the Liguria re-

gion. The differences, which are due to morphological

features of catchments of scale lhydro, are overcome by

introducing the flood index Qindex (Gabriele and Arnell

1991); the flows with return period T, indicated as Q(T);

and the growth factors kT 5 Q(T)/Qindex. These elements

can be derived from the statistical analysis of peak flows.

To formalize the multicatchment approach, we esti-

mate the probability that, in at least one basin inside the

domain of size lmet, the flow with a certain T is exceeded

and so a certain kT is exceeded too. Following this

approach, the fact that a rainfall scenario causes the

exceedance of a certain kT in a particular basin is repre-

sentative also of the other neighbor basins with similar

hydrological response.

3. Territorial context

The Italian region of Liguria is a narrow strip of land

about 250 km long and 20–30 km wide with a surface

area of about 5421 km2. It has very few flat areas and is

covered mainly by forest. Most of the catchments have

their outlet in the Mediterranean Sea and, because of

the mountainous characteristics of the region, the main

urban areas and towns have been established along the

coast, often at the mouth of a river. This has elevated the

risk of floods threatening lives and property. Another

important fact that must be considered is that many

basins have an area of less than 102 km2. Only a few

catchments have a drainage area over 200 km2 with a

response time to a rainfall event of just a few hours.

FIG. 1. Different methodological approaches to use when producing hydrometeorological

ensembles at the varying of the scales of the processes involved. The variable ts is the time scale

of the social response of a population informed of a possible oncoming flood, tc is the time scale

of response of the analyzed basin, lmet is the space scale at which rainfall processes are satis-

factorily represented by meteorological models, and lhydro is the space scale that describes the

analyzed hydrological basins. The area under the hyperbole-like curve identifies a domain that

nowadays can be considered undefined, because of technical and scientific limitations in re-

liably forecasting precipitation on small scales in terms of both value and localization. The

dashed area corresponds to the case of basins with area of order of magnitude from 10 to

104 km2.
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The Liguria region has a real-time meteorological net-

work that provides a detailed set of meteorological vari-

ables. There are about 120 stations (each one provided

with a rain gauge) with different sampling times ranging

from 5 to 30 min.

The Hydro-Meteorological Monitoring Centre of

Liguria Region (CMIRL) is the institution in charge of

making hydrometeorological forecasts and it is responsible

for the activities of nowcasting and the monitoring of

rainfall events for civil protection purposes in the Liguria

region. Liguria is divided in five alert subregions (Fig. 2)

that correspond to five parts of the territory, and they are

considered homogeneous from a meteorological point of

view. They are divided into two groups: one group has

three subregions with basins that have their outlets in the

Tirrenic Sea (part of the Mediterranean Sea) and are

called Tirreniche, and the other group has two subregions

called Padane because their basins are in the mountain-

ous part of the greater catchments that form the Padana

Valley and the Po River.

4. The probabilistic flood forecasting chain in the
Liguria region

a. Meteorological input: The subjective forecast

The implementation of a hydrometeorological fore-

casting system on small- and medium-sized basins

commonly uses the deterministic or probabilistic pre-

cipitation forecasts issued by meteorological models

(e.g., Taramasso et al. 2005; Rebora et al. 2006a; Cloke

and Pappenberger 2009). During recent years, a new

need has arisen among operational flood forecasters

and that is the quantitative usage of expert forecast.

This is because the forecasters, in order to reduce me-

teorological uncertainty, use various meteorological

models for obtaining the final forecast. Regional fore-

casters also base their predictions on their knowledge

of the territory, of its climatic peculiarities, and on the

particular meteorological situation. All this leads to QPFs,

made by regional forecasters, to be expressed in terms of

accumulated rainfall on predefined areas and durations.

These quantities usually depend on the context and the

features of the region for which the forecasts are made. We

refer to such a prediction as the ‘‘subjective forecast.’’

The CMIRL personnel use various meteorological mod-

els to make the subjective forecasts: the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF)

global circulation model, the limited area models Limited

Area Model Italy (LAMI; Steppeler et al. 2003) and

Bologna Limited Area Model (BOLAM; Buzzi et al.

1994), and a high-resolution limited area model called

Modello Locale in H coordinates (MOLOCH; e.g.,

Diomede et al. 2008).

Statistical analysis of the extreme rainfall events in

Liguria (Deidda et al. 1999; Boni et al. 2007) demon-

strates that typical precipitation events associated with

Mediterranean storms have durations of about 12–24 h.

As already described, the regional catchments have a

maximum dimension of about 103 km2 that correspond to

a concentration time (Maidment 1992) of about 10–12 h.

FIG. 2. Territorial context. The five alert subregions in the Italian region of Liguria are shown in

different gray tones, together with the watershed of the main basins.
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Based on these considerations, a meteorological pre-

cipitation subjective forecast is issued and provides three

quantities (see the example in Table 1):

1) The maximum average precipitation in a time window

of 12 h for each homogeneous subregion (named Pf12):

To define this quantity a certain number of meteo-

rological models are analyzed during the 12-h time

window where the maximum precipitation amount

is expected.

2) Once the Pf12 is defined, the meteorologist estimates

the rainfall amount (Pb) that is expected between the

reference starting time of the forecast (t0) and the start

of the 12-h window (t12) associated with the maximum

volume (tb 5 t12 2 t0). This is done for each sub-

region. The reference start time is the time at which

the meteorologist starts his forecast and this is usually

0000 UTC on the day he makes the prediction.

3) The third parameter of the event is the maximum

precipitation amount forecasted in a time window of

3 h and on areas of about 102 km2 (named Pf3). This

number gives an idea of the local intensity of the

forecasted event; high values means possible critical

situations for basins with areas in the range 101–102 km2.

It indicates how much the precipitation volume, defined

by Pf12, tends to be concentrated in localized areas. A

single Pf3 is given for all the regional territory.

As can be seen, the subjective forecast, albeit repre-

sented by only a few numbers, has a large information

content for various reasons: 1) it is derived from different

meteorological models, 2) it is influenced by the experi-

ence of forecasters and by their knowledge of climatology

and territory characteristics, and 3) it is tailored to the

type of precipitation event and its interactions with the

involved catchments.

b. Downscaling methodology: RainFARM

The downscaling procedure is crucial for generating an

ensemble of precipitation fields that are consistent with

large-scale predictions issued by meteorological mod-

els and/or by expert forecasters; it can reproduce the

small-scale variability of precipitation needed to correctly

force the rainfall–runoff model. The stochastic down-

scaling model accounts for the spatiotemporal vari-

ability of precipitation fields at scales smaller than those

at which reliable quantitative precipitation forecasts are

available.

In this part of the operational chain, Rainfall Filtered

Autoregressive Model (RainFARM; Rebora et al. 2006a,b)

has been used. This model is able to stochastically gen-

erate an ensemble of high-resolution precipitation fields

by preserving the information at large scales derived from

a quantitative precipitation prediction, and it is able to

generate small-scale structures of precipitation that are

consistent with radar observations of midlatitude pre-

cipitation events.

The basic idea is that the spatiotemporal Fourier

spectrum of the precipitation field, estimated at large

scale from a meteorological model prediction, follows

the functional form

jĝ(kx, ky, v)j2 } (k2
x 1 k2

y)2a/2
v2b. (1)

Here, a and b represent two parameters of the model

that are estimated from the power spectrum of pre-

cipitation predicted by a meteorological model on the

wavenumbers–frequencies that correspond to the spa-

tiotemporal scales at which the meteorological model

prediction is considered reliable.

The spectrum defined by (1) can be easily extended

over larger wavenumbers–frequencies, thus allowing for

the generation of a spatiotemporal field at a higher

resolution (Rebora et al. 2006a,b). The choice of random

Fourier phases associated with the power spectrum (1)

and the backward transformation in real space allows for

generating a stochastic ensemble of high-resolution fields

that are consistent at large scale with the QPF issued by

numerical models.

RainFARM has been conceived for stochastically

downscaling predictions issued by a meteorological model

on a regular grid. However, in the operational framework

presented here, we need to apply it to a precipitation

TABLE 1. Example of a subjective forecast for the five alert subregions in Liguria, which are named A, B, C, D, and E. Here, Pf12, the

maximum rainfall cumulated in 12 h on the alert subregion, is furnished together with the time the 12-h time window began, with respect to

the reference instant of forecast (usually at 0000 LT of the day of forecast); Pa is the rainfall forecasted between the reference instant of

forecast and the beginning of the time window of Pf12 (12 h per subregion); and Pf3 (3 h per 100 km2) is the maximum rainfall accumulated

over 3 h on areas on the order of 102 km2.

Forecast

Subregion A Subregion B Subregion C Subregion D Subregion E

(mm) (mm) (mm) (mm) (mm)

Pf12 (12 h per subregion) 100 50 20 70 30

Pa 35 30 25 10 5

Pf3 (3 h per 100 km2) 60 60 60 60 60
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forecast issued as described in section 4a. To achieve

this goal, we modify the original algorithm to allow for

estimating the model parameters directly from the sub-

jective forecast. In the next section, we explain how we

adapted the original model in order to make it compliant

with this new type of forecast output.

APPLICATION TO SUBJECTIVE FORECAST

When dealing with the downscaling of the subjective

forecast previously described, the estimation of spectral

parameters is not as straightforward as when a meteoro-

logical model output is used. As in Rebora et al. (2006b),

we assume a power-law shape for the power spectrum;

however, instead of estimating the slopes from the analysis

of the power spectrum of numerical model precipitation

prediction, we derive the two values of the slopes of spatial

and temporal spectra (a and b) by comparing, for each

alert subregion, the average precipitation Pf12 and the

maximum Pf3 as issued in the subjective forecast. The

values of a and b observed for midlatitude precipitation

events can range between 21.70 and 23.50 (i.e., between

20.70 and 22.50 if monodimensional average spatial

spectra are considered).

We define a lookup table as one that, for each couple of

possible values of Pf12 and Pf3 given by subjective fore-

cast, returns a couple of spectral slopes that allow for

generating an ensemble of high-resolution precipitation

fields. These fields have an average value over the alert

subregion equal to Pf12 and maxima over 3 h and 100 km2

that are, on average, equal to Pf3.

To define the lookup table, we use a brute-force ap-

proach by generating N 5 10 000 downscaled fields for

each value of Pf12 in a range between 5 mm (12 h)21 and

150 mm (12 h)21 and for each couple of spectral slopes

(a and b) in the monodimensional range between 20.7

and 22.50. For each field generated with the set of three

parameters a, b, and Pf12, the maximum value over 3 h

and 100 km2 (Pf3i, i 5 1, . . . , N) has been calculated. The

fourth parameter needed for operational downscaling,

Pf3, has been estimated as the mean of Pf3i.

At this point, we have defined a correspondence be-

tween Pf12 and Pf3, issued by the forecasters, and the two

spectral slopes. Given the two values of the prediction, we

can derive the two optimal spectral slopes that guarantee

the generation of an ensemble of high-resolution pre-

cipitation fields that are consistent with the forecaster’s

prediction both in terms of Pf12 and in terms of Pf3.

Each final discharge scenario is composed of two parts.

The first one has a constant intensity given by Pb/tb

(tb defined as in section 4a) and is common to all the

scenarios, whereas the second is one of the downscaled

precipitation scenarios generated starting from Pf12

and Pf3.

c. Hydrological model: DRiFt

The hydrological model used in the system is a semi-

distributed (Giannoni et al. 2003) Discharge River Fore-

cast (DRiFt) model (Giannoni et al. 2000, 2005). It has

been designed for event-scale simulations and is based on

a geomorphologic approach. It needs, as fundamental

starting data, a digital elevation model by which the

drainage network is individuated and every cell is clas-

sified as a channel or hill slope based on a filter that

depends on drainage area and mean slope. Two differ-

ent flow velocities are associated with channel cells and

hill slope cells; as a consequence, the concentration time

is defined for each point of the basin. The implemented

infiltration scheme (Gabellani et al. 2008) allows the

modeling of ‘‘multipeak’’ events making it possible to

simulate quite long periods (5–8 days) during which

different events can occur.

The runoff volume is routed to the outlet with a time

variant T-hour Unit Hydrograph (TUH) technique,

which, although representing the basin as a linear system,

takes into account the spatial and temporal variability of

the runoff production. Each cell that contributes to gen-

erate the basin response is considered separately from the

others.

The discharge at any location along the drainage net-

work is represented by the expression

Q(t) 5

ð
B

M

�
t 2

d0(x)

y0

2
d1(x)

y1

, x

�
dx, (2)

where B is the drainage basin above the specified loca-

tion, M(t, x) is the runoff rate at time t and location x;

d0(x) denotes the distances from x to the closest stream

channel, d1(x) denotes the distance from the stream

channel closest to x and the outlet, and y0 and y1 are the

hill slope and channel velocities.

The hydrological model has been calibrated on the

outlet sections where a hydrometric level gauge and

reliable rating curve are available. The parameters on

the other sections have been chosen on the basis of the

calibration results and on both the authors’ and CMIRL

personnel’s experiences (some examples in Gabellani

et al. 2008; Giannoni et al. 2000, 2005). In Fig. 3 we re-

port, by way of example, the simulation of the event

occurred on 23 December 2009 in the calibrated outlet

section Nasceto of Vara basin (202 km2).

d. Forecast chain output: Single-site and
multicatchment approach

The basins in Liguria have drainage areas that vary

between 10 and 103 km2. The applicable configurations

of a probabilistic hydrological forecasting chain should
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be either the single-site approach with stochastic down-

scaling or the multicatchment approach with stochastic

downscaling.

The civil protection rules define three different alert

levels that depend on the criticality related to the fore-

casted event, level 0 (no alert), level 1, and level 2. From

the point of view of the forecast system, the reference is to

the return period of the peak flow. Two different return

periods are related to the two alert levels, T 5 2.9 yr

(which is associated to the flood index) for alert level 1

and T 5 10 yr for alert level 2. Otherwise, using detailed

local knowledge, thresholds that are specific for certain

outlet sections can be defined in order to have a forecast

system that is not related to the return period but is based

on the specific vulnerabilities of the catchment.

The statistical approach based on return period is

useful because it permits the use of a homogenous sys-

tem based on parameters that, when a frequency anal-

ysis of peak discharges is available, can be determined in

all the basins of the region. In the case of Liguria, this

analysis has been carried out by Boni (2000).

1) SINGLE SITE

The single-site approach is applied to catchments with

a drainage area greater than 200 km2 (with lhydro $

15 km). Considering that the order of magnitude of

homogeneous subregions areas is 103 km2, lmet is about

30–40 km and the ratio lmet/lhydro is about 2. According

to what is presented in Siccardi et al. (2005), the 200 km2

area can thus be considered as the lowest dimension for

which the single-site approach is valid.

The results of the single-site approach are shown in

plots like Fig. 4. Time is shown on the x axis, whereas the

y axis reports the discharge. This plot shows the peak flows

related to the rainfall scenarios as dots, whereas the 80%

confidence intervals, estimated at each time step, are re-

ported as gray-shaded areas (Ramos et al. 2010). On the

same graph, the threshold corresponding to alert level 1

(discharge with T 5 2.9 yr) and alert level 2 (discharge

with T 5 10 yr) are reported.

The peak flow for each discharge scenario represents

crucial information for decision makers, in particular

when they are dealing with small- and medium-sized

basins where the peaks distribution can be positioned

far from confidence intervals in Q-time domain. The

two forecast products, confidence intervals and peak

flows, furnish different kinds of information and in such

a way they are complementary; by showing both of

them, it provides all the information needed about the

forecast.

2) MULTICATCHMENT

The multicatchment approach is applied to basins with

a drainage area smaller than 200 km2 grouped in the five

subregions as indicated in section 3.

The forecast is carried out for each subregion following

these steps:

1) Rainfall scenarios are fed into the rainfall–runoff

model and Nr discharge scenarios are generated for

each of the Nb catchments within the subregion.

2) For each catchment, the peak flows of the discharge

scenarios are extracted and divided by the catchment

flood index (Qindex) derived from Boni (2000). As

a result, Nb 3 Nr forecasted dimensionless growth

factors kT are obtained.

FIG. 3. Example of performance of hydrological model DRiFt.

The simulated and observed discharge are reported for the outlet

section Nasceto on Vara basin (202 km2), together with cumulated

rainfall along the period of simulation.

FIG. 4. Example of the single-site approach result: outlet section

Nasceto on Vara basin (202 km2). Forecast date is 22 Dec 2009.

The points represent the peak flows of the forecasted scenarios

derived by an ensemble forecasting, the gray area is delimited by

80% confidence intervals. The upper bound is 90th percentile, and

the lower bound is 10th percentile. Values of Q with return periods

of 2.9 (flood index) and 10 yr are reported.
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3) A value of return period T can be associated to each

value of kT. An Nb 3 Nr matrix of return times T is

available.

4) A return period T* is fixed, and the rainfall scenarios

for which in at least one catchment an event with T .

T* is expected are counted up. This number is indi-

cated as N(T . T*).

5) The probability P(T*) that, in at least one catchment,

an event with T . T* is expected is defined as P(T*) 5

N(T . T*)/(Nr 1 1). Note that, according to this

procedure, it does not matter if a rainfall scenario

generates one or more exceedances of T*.

6) The steps 3–5 are repeated for different values of T*.

The graphs in Fig. 5 show some examples of possible

results of the multicatchment approach for a subregion;

the x axis reports the return period T on a log scale,

whereas the y axis indicates the probability P(T). If the

probability associated to a certain return period T 5 T1

is P 5 P1, it means that there is a probability P1 that at

least in one of the basins within the considered sub-

region the peak flow will exceed the flow with return

period T1 and a probability 1 2 P1 that the peak flow will

be lower than or equal to the flow with return period T1.

The shape of this curve can give some information on

the level of uncertainty associated with the forecast.

When the curve has low slopes with a large range of T

that correspond to nonnegligible probabilities, the un-

certainty is high (dotted line in Fig. 5); if it tends to be

step shaped, with a marked decrease after certain return

periods, the forecast can be considered to be less un-

certain (continuous line in Fig. 5).

e. An index to evaluate the multicatchment forecast
uncertainty

A problem that can come up when the result of the

multicatchment approach is available is the evaluation

of the degree of uncertainty associated with the forecast.

The result of the forecast is a curve that is not exactly

a probability of exceedance because it measures the

probability that, in ‘‘at least one’’ basin, the flow with

a certain T is exceeded. The curve can have more than

one T with P(T) ; 1: for example, we can have P(T 5

2.9) ; 1, P(T 5 5) ; 1, and P(T 5 10) ; 0.5 (see the

black continuous line in Fig. 5).

The operational application of the multicatchment

approach is quite new, and decision makers may need

a synthetic measurement of the uncertainty associated

with this probabilistic prediction. The shape of this curve

may help to estimate the level of uncertainty of the

forecast, and the goal is to try to formalize it while

considering the practical difficulties related to the curve

interpretation.

We therefore defined a synthetic index that accounts

for the uncertainty related to the multicatchment pre-

diction, and we explain it by referring to Fig. 6. In this

case, we use a linear scale for x axis to understand it

better. We plot an example of forecast results, (i) a curve

with probability P(T) ; 1 from T 5 0 yr to T 5 2.9 yr

that drops to 0 for T 5 50 yr and (ii) an ideal perfect

reference forecast represented by a step-shaped curve

because it has substantially no uncertainty: the proba-

bility is P(T) ; 1 when T , Ts and then drops to 0. Here,

Ts is defined as the return period for which P(Ts) 5 0.5

on the real forecast curve. Referring to Fig. 6, we state

that the dashed area is a measure of how much the real

forecast differs from a perfect forecast. If we divide this

quantity for the area under the real forecast, we obtain

a variable that we call Ui and it varies from 0 (perfect

and real forecasts coincide) to 1 (uncertainty tend to

infinity). The discontinuity is positioned at Ts, chosen as

T for which P(T) 5 0.5, in order to minimize the dashed

area for a given forecast. The choice of another P(Ts) as

reference can be made without changing the index

meaning.

By indicating with PR(T) the function of a real fore-

cast and with PP(T) the perfect forecast, it is possible to

mathematically formalize the index as follows:

FIG. 5. Example of possible results deriving by multicatchment

approach. Each line represents an example of a possible curve. In y

axis the probability that at least one basin belonging to the alert

subregion exceeds the flow with a certain return period T is re-

ported. In x axis the return period is reported. The curve can have

different shapes depending on the event type and the level of un-

certainty of the forecast. When the curve has low slopes with a large

range of T that correspond to nonnegligible probabilities, the un-

certainty is high (dotted line); if it tends to be step shaped with

a marked decreasing after certain return periods the forecast can be

considered as less uncertain (continuous line).
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Ui 5

ðT
S

0
[PP(T) 2 PR(T)] dT 1

ð‘

T
S

PR(T) dT

ð‘

0
PR(T) dT

. (3)

We had to use foresight because of the presence of events

with very low severity: when as a result of the forecast

P(T 5 2 yr) # 0.5 we set Ts 5 T(P 5 0.25), whereas, when

P(T 5 2 yr) , 0.25, Ui is not calculated.

5. Case study

The hydrometeorological forecast chain presented in

the previous sections has been running operationally at

CMIRL since December 2008. Here it has been tested

on a series of severe events that occurred between

December 2008 and December 2009. The events for

which both the maximum forecasted and observed ac-

cumulated rainfall in 12 h for all the alert subregions were

less than 10 mm are not considered. A new statistical

analysis should be performed once a larger number of

events is available. Here, we consider eight severe events

whose characteristics are reported in Table 2.

For each event Nr rainfall downscaled scenarios have

been generated by using RainFARM. We chose Nr 5 50

as a tradeoff between the computational performance of

the system and the proper representativeness of the un-

certainty due to the small-scale structure of the precipi-

tation field. The discharge scenarios have been generated

by feeding the RainFARM scenarios into the hydrological

model DRiFt. There are Nb 5 83 modeled outlet sections

homogeneously distributed on the five alert subregions.

For each event, the forecast system produces Nb 3 Nr

discharge scenarios throughout the Liguria territory.

The single-site–multicatchment approaches are applied

depending on the drainage area and on the response time

associated to the considered outlet section. We selected

the outlet sections with drainage areas of more than

200 km2 and reliable discharge observations. For these

pilot sites, the single-site approach has been tested. In

addition, a comparison between observed and simu-

lated discharge using precipitation observations has

been made.

We then investigated the performances of a multi-

catchment approach. The forecast is made by building

an exceeding probability curve for every event and for

every alert subregion. To carry out the verification, we

refer to the discharge simulations made with the hy-

drological model that uses observed rainfall as input;

we consider them to be the ‘‘truth,’’ because discharge

observations are available for only a few sections.

The scatterplot (Fig. 7) between observed (Po12) and

forecasted (Pf12) precipitation amounts shows good

performances of expert forecast. Although this is only

one of the three ingredients in the meteorological sub-

jective forecast, it is the most important because it de-

fines the total volume of precipitation that is downscaled

for obtaining the rainfall scenarios.

a. Single site

As stated in the previous sections, we apply the single-

site methodology to catchments with areas larger than

200 km2. In the Liguria region system, there are only

four outlet sections with drainage areas between 200 and

1600 km2 and with reliable and available observed dis-

charge data. These sections are reported in Table 3 with

their main characteristics and the section code that should

be used as reference for the following figures.

Table 4 shows the results of the single site approach.

The observed peak flows and the simulated peak flows

obtained forcing the model with observed rainfall (Qpobs

and Qpsim) are reported, allowing for the evaluation of

FIG. 6. Figure used for explaining the adopted uncertainty index

Ui. The gray dotted area is the area bounded by the forecasted

curve; the dashed area is the difference between the reference

perfect forecast with no uncertainty and the forecasted curve, it is

a measure of how much the forecast obtained by multicatchment

approach differs from the reference forecast with no uncertainty.

TABLE 2. List of considered events with the main characteristics

in terms of Po12, the maximum observed cumulated rainfall over

12 h on an alert subregion, and of Po1, the maximum observed

hourly intensity.

Event No. Reference date

Max Po12

(mm)

Max Po1

(mm h21)

1 5 Dec 2008 56 18

2 20 Jan 2009 92 22

3 27 Apr 2009 66 24

4 9 Oct 2009 32 76

5 21 Oct 2009 102 60

6 28 Nov 2009 91 42

7 23 Dec 2009 78 52

8 25 Dec 2009 98 27
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the hydrological model performances. As a term of com-

parison, we reported the maximum and minimum peak

flows of forecast scenarios (QpfMax and QpfMin) and the

mean of the corresponding peak flows distribution

(QpfMean). The relative error of the forecasted 12-h

maximum rainfall (Pf12) on the subregion with respect to

the observation is also shown (rainfall percentage error).

As can be noted, Qpsim and Qpobs are often very similar

with percentage errors in most of the cases in a range

between 2% and 20%. This is quite a good result con-

sidering that the used rating curves have an associated

error of about 15%. In the case of Magra–Ponte della

Colombiera outlet section, events with observed discharges

smaller than 300 m3 s21 are very unreliable because the

sea has far too much influence on the stream level and

the corresponding observed flows are not realistic.

Looking at the forecast performance, it can be noted

that frequently both Qpsim and Qpobs have values between

QpfMax and QpfMin, and often they are quite close to

QpfMean. There are only a few cases where the simulations

and observations are different to the expected values

derived from the forecast chain. Most of these cases

depend on the large differences between observed and

forecasted rainfall input.

To show the results at a glance, Fig. 8 reports the box

plot for each basin and for each event. The four plots

report the event number on the x axis (see Table 2) and

the discharge peaks on the y axis. The box plot whiskers

indicate the maximum and minimum peak flows, the

horizontal line in the box indicates the mean value and

the box indicates the 25% and 75% quantiles. The black

dot represents the maximum observed peak flow, and

the diamond represents the flow obtained by feeding the

rainfall–runoff model with the observed precipitation.

The sketched and dotted lines represent Q(T 5 2.9 yr)

and Q(T 5 10 yr). The general good performance is also

shown by this representation, the observed peak flows

are often between the 25% and 75% quantiles and

they are out of the range individuated by maximum

and minimum peak flows in only a few cases.

A particular case is the event number 4 (9 October

2009); it was a very localized event that caused relevant

ground effects on only two adjacent small basins with

areas of 22 and 30 km2, respectively. In this case, the

observed and simulated peaks were almost 0 for all of the

four sections, and for this reason we did not report the

results in Table 4. The results of the multicatchment ap-

proach show that this was a very uncertain event (Fig. 10).

It is evident, when looking at box plots in Fig. 8, that there

was a great variance with peak flows in a range from

0 to relevant values. This is because Pf_3 was very high

in respect to Pf_12 and, as a consequence, RainFARM

concentrated the volume on very small areas (less than

1 km2), causing high hourly intensities that generate

high and very localized runoff amounts. This reflects

what really happened during the event. It is nevertheless

evident that both the 25% and 75% quantiles correspond

to low flow values.

A further test has been carried out to verify if the

observed peaks have the same distribution as the fore-

casted ones. We considered the observed and forecasted

peaks for all of the events and for all of the outlet sec-

tions and we normalized them with the flood index

(Qindex) of the corresponding outlet section. We thus

obtain a series of growth factors kT 5 Q(T)/Qindex. The

probability of exceedance curve has been built using the

plotting position,

P(kT . kT
*) 5 1 2

ik
T

n 1 1
, (4)

FIG. 7. Comparison between observed and forecasted rainfall for

the eight events used as test cases. The variable is the maximum

cumulated over 12 h averaged at a subregion scale. On x axis the

observations (Po12) are reported while on y axis the forecasts (Pf12)

are reported. The meteorologists furnish good forecasts, in general,

but in some cases the difference between observation and forecast

is not negligible and can reflect on the final quality of the forecast

independently of the good intrinsic functioning of the hydrological

forecast chain.

TABLE 3. Basins to which the single-site approach has been ap-

plied with the main characteristics and the corresponding codes

have been used in the figures.

Basin Outlet section CODE Area (km2) Subregion

Arroscia Pogli PORTOV 201 A

Entella Panesi PANESI 364 C

Magra Ponte Colombiera PCOLOM 1650 C

Vara Nasceto NASCET 202 C
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where n is the dimension of the sample. Equation (4)

represents the probability that the growth factor kT is

greater than k
T
*.

The observed and forecasted series are reported in

Fig. 9 along with the Kolmogorov–Smirnov 95% confi-

dence interval. The forecast sample size is higher than

the observed one because for each section there are Nr 3

Ne samples, where Ne is the number of events. Figure 9

also shows that the observations belong to the population

of forecasted peak flows. The observations always lay

between the Kolmogorov–Smirnov confidence interval

and, for kT . 0.7 (i.e., T . 2 yr), they are fitted very well

by simulated peaks. This means that the forecast dis-

charge scenarios describe the observations well, partic-

ularly when we refer to the peak flows.

b. Multicatchment

The multicatchment approach is used for making

streamflow predictions on catchments with areas smaller

than 200 km2. In the following we present the results for

the eight severe events that were predicted and observed

in Liguria during the considered period. The probability

curves, similarly to those reported in Figs. 5 and 6, are

represented, for one of the five subregions, in Fig. 10

(top) in a synthetic way. This gives the reader a prompt

comparison between the predictive performances in dif-

ferent events. The x axis reports the reference number of

the event, whereas the y axis reports the return period. A

marker of a different shape for each probability level is

set to the corresponding return period.

In the middle panel, a measure of prediction uncertainty

is reported, which is called the uncertainty index Ui. As

depicted in Fig. 6 and defined by (3), the larger the dashed

area, the larger the uncertainty of the prediction com-

pared to a ‘‘perfect’’ one (dashed line). According to (3),

a value of Ui 5 1 means complete uncertainty, whereas

Ui 5 0 means no uncertainty.

The operational use of this index is valuable because it

gives a measure of the uncertainty associated with the lack

of knowledge of the small-scale structure of precipitation

as derived by a subjective forecast. The bottom panel

shows the 12-h accumulated rainfall predicted over the

area by the expert forecaster (Pf12) compared to the 12-h

rainfall observations for the event (Po12).

TABLE 4. Single site forecasts and observations. The area is expressed in units of km2 and discharge is expressed in m3 s21. Only the

basins hit by each event are considered. The terms QpfMax, QpfMin, and QpfMean are the maximum, minimum, and mean peak flows of the

forecast discharge scenarios; Qpobs and Qpsim are the observed and simulated peak flows; and the rainfall percentage error column is the

percentage error of the forecasted maximum rainfall over 12 h on the subregion with respect to the observation.

Date Section code Rainfall percentage error (%) QpfMax QpfMin QpfMean Qpobs Qpsim

5 Dec 2008 PORTOV 300 65 25 37 20 10

PANESI 211 1000 130 450 113 143

PCOLOM 211 1700 710 1130 1100 1200

NASCET 211 450 70 200 265 230

20 Jan 2009 PORTOV 219 430 67 140 95 110

PANESI 27 1510 270 660 640 630

PCOLOM 27 3670 1500 2300 2750 2780

NASCET 27 670 105 340 400 430

27 Apr 2009 PORTOV 227 491 110 190 315 310

PANESI 160 370 40 110 65 120

PCOLOM 160 380 120 250 360 100

NASCET 160 134 5 44 50 82

21 Oct 2009 PORTOV 28 290 3 70 8 10

PANESI 2 530 15 120 195 190

PCOLOM 2 580 120 315 430 300

NASCET 2 186 6 60 25 1

28 Nov 2009 PORTOV 237 260 3 65 100 129

PANESI 27 990 140 410 393 472

PCOLOM 27 1400 550 870 830 870

NASCET 27 385 47 167 163 135

23 Dec 2009 PORTOV 216 400 40 100 200 160

PANESI 22 1200 310 630 450 600

PCOLOM 22 2800 1200 1800 2400 2500

NASCET 22 640 130 320 365 330

25 Dec 2009 PORTOV 237 560 120 112 254 304

PANESI 27 2200 560 1050 860 830

PCOLOM 27 5700 2600 3700 3100 3400

NASCET 27 1100 260 600 400 350
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In Fig. 10, we notice a good overall performance of the

system. All the observed events fall inside the prediction

interval (0.95 , Prob , 0.05), and there are no missed

warnings. The exceeding probability curve in some cases

is not very valuable because most of the observed events

lay closer to a smaller return period than expected

looking at intervals in the top panel. This is mainly due

to the uncertainty in the prediction process. Consider, as

an example, the prediction for event 4 (Fig. 10). The

system predicts an event in this area that is potentially

hazardous. In this case, Ui ; 1 accounts for the low level

of predictability of the event. It has to be noticed that,

even for intense and well-predicted events, the values of

U are not lower than 0.4–0.6. This is due to the residual

uncertainty and accounts for the effect associated to the

impossibility of knowing the exact structure of the pre-

cipitation field at small scales (1 km–10 min).

6. Discussion and conclusions

In this work, a hydrometeorological probabilistic fore-

casting chain has been designed and implemented. It is

composed of 1) an expert forecaster’s precipitation pre-

diction as input, 2) a rainfall downscaling module (Rain-

FARM), 3) a semidistributed hydrological model (DRiFt)

and 4) a single-site–multicatchment postprocessing mod-

ule. The forecast chain has been applied in the operational

framework of the Liguria region civil protection system,

using eight events as test cases. The characteristics of the

territory and the dimension of the monitored basins does

not allow for issuing discharge forecasts by using direct

rainfall observations as input to an hydrological–hydraulic

model for flow propagation nor does it allow for direct

FIG. 8. Results of the single-site approach. The box plot for the 4 considered outlet sections

are reported. The dots are the observed peak flows, the sketched and dotted lines are the flow

with return periods 2.9 (flood index) and 10 yr.

FIG. 9. Probability distribution of nondimensional observed and

forecasted peak flows. The data from the four outlet sections used

for single-site analysis are plotted. The black dots are observed

flows, gray dots are forecasted flows, and sketched lines are the

Kolmogorov 95% confidence intervals.

DECEMBER 2011 S I L V E S T R O E T A L . 1443



coupling of meteorological predictions (used instead of

rainfall observations) and hydrological models. For

these reasons, it is obligatory to use rainfall downscaling

procedures.

We focused the analysis on the use of a subjective

forecast, which is a QPF given by a meteorologist who

uses different meteorological tools together with his

personal experience contextualized in a well-defined

territory. The good performance of the methodology

depends on the reliability of each single component: the

subjective forecast quality, the downscaling methodology,

and the hydrological model.

Rabuffetti et al. (2008) evaluated how uncertainty on

QPF affects the reliability of a hydrometeorological alert

system. If the rainfall input is dramatically different from

the real occurrence, the performance of the chain will be

of low quality. The subjective forecast in particular is

given as a deterministic meteorological forecast, which

summarizes all the analysis carried out by the forecaster.

A possible improvement in the forecasting procedure

could be the introduction of a methodology that accounts

for the residual external uncertainty by giving a sub-

jective forecast ensemble prediction or by associating a

percentage error to the forecasted quantities.

The chain has been implemented following the single-

site and multicatchment approaches described in Siccardi

et al. (2005), and in both cases the results have a proba-

bilistic nature. If discharge thresholds based on the specific

condition of a basin are available, they can be introduced

as a term of comparison in a single site analysis in order to

evaluate the real effects of the predicted rainfall event.

Investigating the operational application of a multi-

catchment approach and the quantitative use of expert

forecasts are the two main novel ideas in this work. For

the estimation of a forecast degree of uncertainty, a new

uncertainty index Ui has been introduced. Although the

multicatchment approach gives a probability of occur-

rence for any return period T, the uncertainty index gives

a measure of forecast uncertainty on a scale between

0 (certainty) and 1 (infinity uncertainty). For the analyzed

events, Ui values 0.4–0.6 are associated to the less un-

certain forecasts, but further analysis needs to be carried

out. The analysis of the curve and of the uncertainty index

can help the decision maker in the interpretation of the

forecast.

The multicatchment approach appears to be a useful

way of dealing with flood forecasting in regions with very

small basins. Moreover, it seems to be a suitable tool to

satisfy the civil protection when they need to issue a

warning on a regional scale rather than on single basins.

The presented system can be adapted to different con-

texts when a forecast chain on small- and medium-sized

FIG. 10. Results of the multicatchment approach for the subregion A. On the x axis, there is

the event number for all the subplots. (top) The return period on the y axis, where the different

markers represent the various frequencies of exceeding and the circle is the maximum return

period (in terms of peak flow) that occurred during the event. (middle) The uncertainty index

on the y axis; it ranges between 0 and 1. (bottom) The maximum accumulated rainfall in 12 h

over the subregion, where the white bars are the forecasts and the black bars are the obser-

vations.
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basins is needed. This specific chain uses DRiFt as the

rainfall–runoff model, and it is suitable for orographically

complex basins (see, e.g., Giannoni et al. 2000, 2005). The

downscaling procedure also needs calibration based on the

precipitation features in the given area.

The issue about the interpretation of the probabilistic

chain results and the link with the final decision remains

a matter for discussion. There is always a subjectivity fac-

tor that depends on the sensibility and experience of the

hydrologist or the decision maker.

The probabilistic forecast gives, by definition, a num-

ber of possible scenarios and a probability that an event

of a certain entity is likely to occur. Deciding whether to

issue an alert depends on how much risk the decision

maker is willing to take, and this in turn depends on the

entity of damage and the danger to human lives.

The proposed approach allows the use of predictions

issued by expert forecasters for an upcoming event and

at the same time takes into account the uncertainties in

ground effects due to small-scale spatiotemporal vari-

ability in the precipitation field. Many works have been

devoted to the probabilistic approach in large-sized ba-

sins (e.g., Cloke and Pappenberger 2009, and references

therein), whereas operational applications for small-sized

basins are still not so common. As clearly demonstrated

by Ramos et al. (2010), the probabilistic approach, albeit

more powerful for characterizing the uncertainties in the

prediction chain, is still not easily managed by an oper-

ational hydrological forecaster. Similar problems can be

experienced when dealing with predictions on very small

catchments.
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