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Abstract
Dendritic spines are discrete membrane protrusions
from dendritic shafts where the large majority of excita-
tory synapses are located. Their highly heterogeneous
morphology is thought to be the morphological basis for
synaptic plasticity. Electron microscopy and time-lapse
imaging studies have suggested that the shape and
number of spines can change after long-term potentia-
tion (LTP), although there is no evidence that morpho-
logical changes are necessary for LTP induction and
maintenance. An increasing number of proteins have
been found to be morphogens for dendritic spines and
provide new insights into the molecular mechanisms
regulating spine formation and morphology.

Copyright © 2002 S. Karger AG, Basel

Introduction

Dendritic spines are morphological specializations of
neuronal synapses. They are formed by small protruding
pieces of membrane with a total volume ranging from less
than 0.01 to 0.8 Ìm3 [1, 2] and contain 90% of the excita-
tory synapses in mature brain. Spines were first observed
by the Spanish neuroscientist Ramon y Cajal [3] using the
Camillo Golgi ‘reazione nera’ protocol and, since then,
many scientists and neuroscientists have tried to under-
stand their cerebral function. Most of the principal gluta-
mate- or GABA-releasing neurons (such as the pyramidal
and Purkinje neurons), but not many other neuron classes
(such as GABA-releasing interneurons), have synapses on
dendritic spines. Dendritic spines are present at the squid
giant synapses [4] but are rarely found in other lower
organisms (such as Drosophila melanogaster or Caenor-
habditis elegans), suggesting that they may have devel-
oped early in evolution in order to implement more com-
plex nervous system functions. This review focuses on the
cellular and molecular mechanisms that regulate spine
shape and function. Recent knowledge on molecules that
regulate spine morphology is also improving our under-
standing of their roles in brain plasticity and function.
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Fig. 1. Dendritic spine morphology can be observed in a hippocam-
pal neuron transfected with GFP. A Low magnification of a GFP-
transfected hippocampal neuron in culture. B–E Examples of differ-
ent dendritic spine shapes viewed at high magnification: filopodium
(B); stubby spine (C); thin spine (D), and mushroom-shaped spine
(E).

Structure and Development of Dendritic Spines

Although spines may have different shapes, they are
essentially formed by a neck and head attached to the den-
dritic membrane. Extensive electron microscopy studies
of brain tissue have shown that they may be thin, stubby,
mushroom-shaped or cup-shaped (fig. 1) [1, 5–8] and that
these different shapes can be found at the same time with
the same dendrites [2, 9]. This crude classification under-
lines the multiple forms and dimensions of the spinal
head and neck: the classic mushroom-shaped spines have
a large head and narrow neck, whereas thin spines have a
smaller head and narrow neck and stubby spines show no
obvious constriction between the head and its attachment
to the dentritic shaft. However, this static view does not
reflect the real in vivo situation because at least in devel-

oping neurons, about 50% of the spines change their
shape over periods of minutes or hours and the other 50%
retain their morphological classifications [10]. Spine mo-
tility is developmentally regulated and, in mature neu-
rons, there are fewer transitions between categories [10,
11]. The fixed structures observed through an electron
microscope are therefore probably a representative pic-
ture of spines at that particular moment during a possible
morphological transition. In the brain, spines and presyn-
aptic boutons are surrounded by glial cells in such a way
as to form an intercommunicating tripartite complex and
at least half of the circumference of about 57% of the syn-
apses is covered by astrocyte processes [12]. Typical ma-
ture spines have a single excitatory synapse located at the
head, but the same spines can also have an inhibitory
input [13, 14]. However, spines essentially represent the
main unitary postsynaptic compartment for excitatory
input.

Remarkable differences can also be seen in the intra-
cellular composition of each spine which consists of the
postsynaptic density (PSD) facing the presynaptic button
and a cytoskeletal structure mainly formed by F-actin.
About 50% of the spines on hippocampal CA1 cells and
virtually all Purkinje cell spines also have a smooth endo-
plasmic reticulum (SER) [15], some pyramidal cell spines
contain the spine apparatus, an organelle formed by two
or more disks of SER separated by electron-dense materi-
al [16]. Large spines usually have a proportionally large
synapse and contain different organelles. Both the SER
and spine apparatus are usually associated with larger
spines and are formally absent in small spines [15]. As
SER is known to play a role in Ca2+ handling [17, 18] dif-
ferently sized spines may have different ways of control-
ling calcium homeostasis (see below). The final compo-
nents are ribosomes in which proteins can be specifically
synthesized in close relationship with each spine. Polyri-
bosomes are frequently found in the spines of different
neuron subtypes [19, 20].

PSD is an electron-dense thickening of the membrane
usually found at the head of the spine, where the synaptic
junction is located. It usually occupies about 10% of the
surface area exactly opposite the presynaptic active zone,
and is the site for the ·-amino-3-hydroxy-5-methyl-4-
isoxazole propionic acid (AMPA) and N-methyl-D-aspar-
tate (NMDA) glutamate receptors. The PSD is probably
the most complex spine organelle in which hundreds
of components (including receptors, cytoskeletal and
adapter proteins, and associated signaling molecules) are
involved in a number of signaling pathways controlling
synaptic plasticity [21, 22]. Proteins are associated with
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each other in a complex based on a series of protein–pro-
tein interaction domains of which the PDZ domain is one
of the most important [23].

Three immunogold-labeling studies of the hippocam-
pus [24–26] have shown that the number of AMPA and
NMDA receptors is proportional to the PSD area and
spine volume because their density is constant within the
PSD. The PSD and spine volume are also proportional to
the area of the active zone, which is itself proportional to
the number of docked vesicles [27], which in turn corre-
lates with the amount of neurotransmitter release per
action potential [28]. All of these data suggest that large
spines represent stronger synapses for both presynaptic
and postsynaptic properties, and that the growth of the
spine head during development probably correlates with a
strengthening of synaptic transmission.

Three-dimensional reconstructions of the PSD show
that it may have a number of shapes: as macular (i.e.,
plaque-like and uninterrupted) or perforated (i.e., fenes-
trated appearance), horseshoe-shaped or segmented. In-
terestingly, perforated PSDs have been consistently found
to be associated with more AMPA receptor immunoreac-
tivity than non-perforated PSDs [24]. The mushroom-
shaped and largest spines are more likely to contain perfo-
rated PSDs [29], whereas virtually all thin spines have
macular PSDs [8]. The shape of the PSD is not fixed and
may change with modifications in the strength of synaptic
activity, such as during long-term potentiation (LTP) [30–
32]. Perforated PSDs may reflect enhanced AMPA recep-
tor insertion into the postsynaptic membrane (which
occurs during synaptic potentiation or growth) as an early
phase of synapse duplication and spine division, or may
be the morphological correlate of the enhanced receptor
turnover at the PSD that might occur during LTP [33–
39].

In adult hippocampal CA1 pyramidal and granule
cells, dendritic spine density ranges from two to four
spines per micrometer of dendrite [8, 29, 40, 41], whereas
it is more than ten spines per micrometer in Purkinje cells
[42, 43]. The density is lower in dissociated cultures of
hippocampal neurons usually being 3–4 spines for each
10 Ìm of dendrites [44] (fig. 1A). The two-dimensional
nature of cultured neurons provides a viable and conve-
nient means of studying the factors regulating the devel-
opment and functions of dendritic spines. In the brain,
the density of spines is not homogeneous throughout the
dendritic tree but increases at each layer, thus suggesting
that the afferent system independently regulates different
parts of the dendritic tree [45, 46]. Spine density also var-
ies across cortical areas. Apparently, in macaque monkeys

and humans the density on basal dendrites in the cortical
areas of the frontal pole and orbitofrontal cortex is gener-
ally higher than in neurons of the primary visual and
somatosensory cortices [47, 48], and it has been hypothe-
sized that there may be a link between spine density and
overall number and level of cortical processing in these
regions. Although not totally proved, it is believed that
these ‘higher’ order areas are involved in a greater degree
of convergent processing, which may create a need for
more synapses and therefore more spines.

How are mature spines formed? Early spines are often
very long and have frequent filopodia-like shape (fig. 1B)
but, later during development, their mean length de-
creases and the number of filopodia is greatly reduced.
Three major changes can be observed during the matura-
tion process: an increase in spine density; a decrease in
overall length, and a decrease in the number of dendritic
filopodia with a simultaneous decrease in spine motility
[11, 49]. Recent studies have shown that filopodia rapidly
protrude and retract from dendrites, especially during the
early stages of synaptogenesis [50–52], and it is widely
believed that dendritic filopodia are the precursors of
dendritic spines, various hypotheses as to how the transi-
tion from filopodia to spines takes place have been put
forward.

In the first proposed model, filopodia actively seek out
synaptic partners in the developing neuropil and when a
filopodium makes contact with an axon, it becomes short-
er and draws the axonal terminal closer to the dendrite
shaft. Subsequently, a fully mature synapse is formed on
the spine head, spine motility gradually decreases and the
structure is stabilized [50–52]. However this model does
not explain why the density of asymmetric synapses is
much higher on dendritic shafts than on filopodia during
early development [50, 53]. Another model has proposed
that, after their contacts with axons, the filopodia retract
completely, thus leading to the formation of an asymmet-
ric shaft synapse from which a spine emerges with a
mature synapse at its head [2, 50]. In a recent study using
two-photon time-lapse microscopy, Parnass et al. [10]
demonstrated that stubby and other types of spines can
originate from filopodia in developing hippocampal neu-
rons and, depending on the state of the afferent input,
spines turning into filopodia were also observed. In this
model a filopodium is like a spine in a state of morpholog-
ical instability and is not a necessary intermediate for
spine formation. In other words, the transition from filo-
podia to spines is less likely to be predestined than a
reversible process regulated by local factors, such as syn-
aptic activity.
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In two recent time-lapse studies spine morphogenesis
and PSD-95 fused to green fluorescent protein (GFP), a
PSD marker, were simultaneously imaged. In both cases
the authors suggested that synapses initially form on
dynamic filopodia-like spines that soon convert directly
into stable spines at the same time as the formation of
postsynaptic specialization [54, 55]. However, only Marrs
et al. [54] showed the emergence of stable spines from
shaft synapses.

Overall, these data suggest that it is probably still incor-
rect to assume that all spines go through the same stages
(beginning as filopodia, proceeding to thin or stubby
spines, and ending as mushroom spines), and that spine
maturity does not necessarily correlate with spine mor-
phology.

Spine Function and Morphogenic Spine
Molecules

What is the function of dendritic spines in synaptic
transmission? The currently prevailing opinion is that the
spine may function as a microcompartment for segregat-
ing postsynaptic chemical responses [56, 57]. There is no
clear evidence that spines work as electrical compart-
ments [57], at least in the case of CA1 synapses [58]. Inter-
estingly, the shape of the spine neck might control post-
synaptic calcium responses: in spines with long necks
[Ca2+] rises faster and decays slower than in those with
short necks [59, 60], and spine motility induces modifica-
tions in neck length that correlate with altered calcium
kinetics within the spine [61, 62, but see also 63].

In two papers [63, 64] it has recently been proposed
that [Ca2+] in spines may regulate the activation of LTP or
LTD induced by NMDA receptor stimulation. The differ-
ent kinetics of spine calcium concentration obtained us-
ing different stimulation protocols might activate CAM-
KII and LTP or calcineurin and LTD [63]. Differences in
[Ca2+] kinetics and synaptic plasticity also depend on the
location of the spines along the dendritic tree [64], [Ca2+]
decay is faster on distal spines whose synapses are less sus-
ceptible to depression. Under physiological conditions,
the spine neck acts as a barrier to diffusion and its head is
isolated from the dendrite during an action potential.
Spines can act as semi-autonomous chemical compart-
ments separated from the dendritic shaft by a thin neck of
up to a few micrometers in length. In brief, they can com-
partmentalize calcium and other second messengers (such
as IP3, cAMP and cGMP), and this function is regulated
by their morphology. However, their physiological signifi-

cance for brain function will probably remain a major
unresolved question until all of the molecular mecha-
nisms regulating spine formation and morphology have
been clarified.

Considerable efforts have recently been made to char-
acterize the molecular mechanisms controlling spine mor-
phology, formation and plasticity (fig. 2). Most of these
studies were carried out using cultured neurons in which
putative molecules were overexpressed and the modifica-
tions in spine morphology were observed using GFP over-
expressed protein. Few molecules have been analyzed in
genetic experiments. One of these, the fragile X mental
retardation protein (FMRP) has a direct connection with
a human pathology, in which its deletion is responsible for
severe mental retardation. An abnormal density of den-
dritic spines has been observed in human patients af-
fected by the fragile X syndrome [65, 66]. In KO mice
with the Fmr1 gene, the number and length of dendritic
spines are greater than in normal animals [67], especially
during the first 2 weeks after birth when the spines devel-
op [49]. FMRP is an mRNA-binding protein that may
regulate the synthesis of the molecules involved in the
developmental stabilization, elimination or pruning of
dendritic spines or synapses.

Defects in spine morphology during the development
process have been observed in two other KO animals, one
for the NR3A and the other for spinophilin. The NR3A
KO mice show enhanced NMDA responses associated
with increased spine density during early postnatal devel-
opment [68]. Similarly, a marked increase in spine densi-
ty during development in vivo and altered filopodial for-
mation in cultured neurons have been observed in spino-
philin KO mice [69].

As filamentous actin (F-actin) is the main constituent
of the cytoskeleton of dendritic spines, actin-binding pro-
teins are likely to be involved in spine formation and
shape [70]. A number of actin-binding proteins are highly
localized to spines: ·-actinin [71], drebrin [72], spinophil-
in/neurabin II [73], SPAR [74], adducin [75], synapto-
podin [76] and cortactin [77]. There is evidence that some
of them are involved in regulating spine morphology. We
have already mentioned spinophilin KO mice [69]. Haya-
shi and Shirao [72] have shown that the overexpression of
drebrin in cultured cortical neurons (whose localization to
spine depends on the actin-binding domain) induces a sta-
tistically significant elongation of dendritic spines. How-
ever, how drebrin or spinophilin regulates actin dynamics
is still not totally clear.

Small GTPases of the RHO/RAC/CDC42 family are
regulators of the actin cytoskeleton in many cell types.
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Fig. 2. Schematic representation of a mush-
room-shaped spine and some of the proteins
within the PSD and postsynaptic membrane
that regulate spine morphology. NMDAR =
N-Methyl-D-asparate receptor; AMPAR =
AMPA receptor; F-actin = filamentous actin;
GKAP = guanylate-kinase-associated pro-
tein; Kali-7 = Kalirin-7; mGluR = metabo-
tropic glutamate receptor; SPAR = spine-
associated RapGAP; IP3R = IP3 receptor;
Cort = Cortactin; Synd2 = Syndecan-2.

Transgenic mice overexpressing active Rac1 have an
increased number of smaller dendritic spines in develop-
ing and mature cerebellar Purkinje cells, which form
supernumerary synapses without modifying the dendritic
trees [78]. A similar effect has been observed in pyramidal
neurons transfected with constitutively active Rac1,
which showed an increase in the number of filopodia-like
processes and lamellipodia-like ruffles [79], whereas
transfection with dominant-negative Rac1 reduced the
number [80]. The involvement of Rac1 in spine forma-
tion has been further supported by Penzes et al. [81] who
overexpressed Kalirin-7 (a guanine nucleotide exchange
factor (GEF) for Rac1) in cultured cortical neurons and
found that Kalirin-7 increased the number and size of
spine-like protrusions. This effect is dependent on GEF
activity because the overexpression of a Kalirin-7 mutant
lacking GEF activity reduced the number of spines [81].
Interestingly, by binding to PSD-95 (and other PDZ
domain-containing proteins) Kalirin-7 remains concen-

trated to the postsynapse compartment where its activity
is required, whereas a mutant that is unable to interact
with PDZ proteins remains in the cell soma and induces
the local formation of aberrant filopodial neuritis [81].
The effect of RhoA on dendrite spines is less clear. Tashi-
ro et al. [80] showed that the overexpression of constitu-
tively active RhoA can reduce the number of spines only
in a subset of neurons whereas the inhibition of Rho activ-
ity may lead to the formation of supernumerary spines or
the elongation of spine necks. It has been proposed that
Rac and Rho signaling might antagonize the molecular
mechanisms regulating spine formation and/or growth
[80].

Another PSD-95 and actin-binding protein, SPAR, has
been found to be involved in regulating spine shape [74].
SPAR is a GTPase-activating protein (GAP) for Rap,
binds to the GK domain of PSD-95 and is enriched in
spines. In COS-7 cells SPAR dramatically reorganizes F-
actin into large aggregates, dispersed clusters or smaller
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well-defined star-like clusters. PSD-95, which binds to
SPAR with the GK domain, is recruited to these clusters.
SPAR seems to bind directly to actin through two distinct
actin-interacting domains (Act1 and Act2), which are sep-
arated by the GAP domain. The overexpression of SPAR
in neurons causes the enlargement and elaboration of
spine heads, thus making the spines more irregular, thor-
ny and multilobed. SPAR-enlarged spines are also fre-
quently associated with multiple synaptic contacts and, as
many of them appear to be branched, they might be divid-
ing. Three SPAR domains are required to induce an
increase in the size of spine heads: the GAP domain, the
second actin-binding domain (Act2), and the domain that
binds to PSD-95 (GK-binding domain). The overexpres-
sion of a dominant-negative SPAR mutant lacking Rap-
GAP activity causes an elongation and thinning of spines,
some of which resemble filopodial-like structures [74].
These results indicate that the SPAR modulation of Rap
GTPases plays a regulatory role on the actin cytoskeleton
and changes spine shape.

Not only Rap2 but also Ras is a component of the post-
synaptic NMDA receptor complex. Indeed filopodia can
be induced in cultured neurons by means of multiple
depolarizing stimuli and this effect depends on activation
of the Ras/MAPK pathway [82]. In conclusion Rac1,
Rap2 and Ras together with their regulatory enzymes, are
components of the postsynaptic NMDA receptor complex
[83] linking receptor-mediated signals to actin dynamics.
What could still remain to be discovered are the possible
specific effectors of spine actin.

It is known that some of the receptors and scaffold pro-
teins localized to dendritic spines are involved in spine
morphogenesis. One of these is a cell-surface heparin-sul-
fate proteoglycan, called syndecan-2. The overexpression
of syndecan-2 in hippocampal neurons accelerates the
maturation of dendritic spines [84]. Interestingly, EphB2
(Eph family receptor) phosphorylates syndecan-2 on two
cytoplasmic tyrosines, and this phosphorylation is re-
quired for the localization of the two proteins to develop-
ing spines and their maturation [85]. The idea is that
EphB2, activated by ephrinB binding, phosphorylates the
cytoplasmic tail of syndecan-2 and, in the process, the two
proteins physically associate in clusters that lead to spine
formation [85].

Among the PSD proteins, PDZ domain-containing
scaffold proteins are believed to represent a molecular
interface between glutamate receptors in synaptic mem-
brane and spine cytoskeleton [21, 23]. It is consequently
logical to think that some of these proteins may also link
glutamate receptor activation to spine actin dynamics.

The overexpression of PSD95, which binds directly to the
NR2 subunits of the NMDA receptors, increases the
number and size of spines in hippocampal cultured neu-
rons [86]. The overexpression of Shank, which links the
NMDA receptor and the metabotropic glutamate recep-
tor (mGluR) complexes through multiple protein interac-
tions [77, 87], promotes the maturation of mushroom-
shaped spines in developing hippocampal neurons, and
increases the size of spine heads in mature neurons with-
out affecting spine number [87]. The enlargement of
spines by Shank depends on and cooperates with Homer,
a protein that also binds to mGluRs and inositol-1,4,5-
trisphosphate receptors (InsP3R). Indeed, Shank and
Homer seem to mediate the recruitment of InsP3R (and
presumably SER) to dendritic spines. Dominant-negative
Shank mutants reduce spine density, possibly by decreas-
ing the stability of affected spines or by inhibiting spine
formation. Interestingly, postsynaptic overexpression of
PSD-95 or Shank/Homer significantly enhances presyn-
aptic function in addition to spine enlargement [86, 87],
this emphasizes the close functional relationship between
the two sides of the synapse.

Dendritic Spine Motility and Morphological
Modification

Spine motility was originally proposed by Blomberg et
al. [88] and Crick [89] but was first demonstrated by
Fischer et al. [90]. Using time-lapse imaging and fluores-
cent proteins, considerable spine motility over a time
scale of seconds to minutes has been documented in disso-
ciated cultures [90–92], brain slices [11] and in vivo [93].
Motility is developmentally regulated, and is more pro-
nounced during the critical period [11, 93–95]. Spine
motility is actin-dependent, involves the remodelling of
the actin cytoskeleton in the spine [11, 90], and is inhibit-
ed by volatile anesthetics [96]. At least in cultured neu-
rons, the activity-dependent suppression of spine move-
ment, has been found to inversely correlate with develop-
mental age and contact with active presynaptic terminals,
and is stimulated by inhibiting the basal activity with
tetrodotoxin [95]. In brain slices, others have failed to
detect any change in spine motility after the blockade or
stimulation of neuronal activity, or in correlation with
presynaptic contact [11, 97]. This difference can be ex-
plained by the different experimental preparations: dis-
persed hippocampal cultures [90, 95, 96] versus hippo-
campal slices [11, 51, 97]. Interestingly, a recent study
using GFP-transfected pyramidal neurons in the somato-
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sensory cortex found that spine motility is sensitive to
input deprivation, but only during the period of peak neo-
cortical synaptogenesis, thus suggesting the presence of a
link between experience-driven synaptogenesis and spine
motility [93].

There is evidence that actin-based motility is con-
trolled by synaptic activity [91, 92]. The activation of
either AMPA or NMDA receptors greatly inhibits spine
actin dynamics and actin-based protrusive activity from
the spine head, and the spine becomes more rounded and
regular [91]. In this case, the inhibition of spine motility
by AMPA receptors was dependent on postsynaptic mem-
brane depolarization and calcium influx through voltage-
activated channels [91]. Using a clever and technically
advanced system to stimulate individual neurons, Colicos
et al. [92] were able to show coordinated presynaptic and
postsynaptic actin motility after tetanus stimulation. On
the postsynaptic side, actin expands laterally outward
from the central core, and new filopodia-like protrusions
emerge that are eventually contacted by new presynaptic
puncta of actin that become functional in a period of
hours [92]. These morphological modifications are remin-
iscent of what can be observed during developmental
synaptogenesis [50]. Finally, another fast and rapid move-
ment of spines has been described by Korkotian and Segal
[98], who found that they produce a tiny and rapid
‘twitch’ under back-propagating action potential and
coincide with a transient increase in the intraspine cal-
cium concentration. This fast movement is apparently
independent on the age of the neurons and is present on
spines contacted by an active presynaptic terminal [98].

However, although all of these findings indicate that
spines are constantly moving and change morphology
under physiological conditions, the functional signifi-
cance of spine motility occurring over seconds or minutes
is still completely obscure.

As mentioned above glutamate receptor stimulation
plays a role in controlling spine motility but also regulates
spine numbers. NMDA application to hippocampal cul-
tures causes an almost complete collapse of dendritic
spines and removes actin from the spine head [99]. Cal-
cium and calcineurin seem to be involved in regulating
spine stability: the NMDA-induced loss of spine actin and
spine collapse is reduced in the presence of calcineurin, a
calcium/calmodulin-dependent phosphatase [99]. On the
contrary a low level of AMPA receptor activation with an
intensity similar to that of spontaneous neurotransmitter
release is required to maintain spine numbers in hippo-
campus organotypic cultures [100]. As described above
AMPA receptor stimulation can also stop rapid spine

movements by stimulating calcium influx [91], but it has
also been reported that the release of intracellular calcium
by caffeine stimulates spine elongation [101]. In order to
reconcile these data, we can image a bimodal relationship
between calcium concentration and spine growth that is
similar to what has been invoked to explain the different
calcium requirements of LTD and LTP. A moderate tran-
sient increase in spine calcium provided by SER release,
or through voltage-gated calcium channels mediated by
AMPA receptor stimulation is necessary to promote spine
stability and growth, whereas the higher concentrations of
spine calcium induced by a prolonged activation of
NMDA receptors induce spine shrinkage or collapse
[102–104].

But the main question concerning spine plasticity is
whether LTP or LTD is the expression of morphological
modification in spine structure [105] and a number of
electron microscopy studies have been carried out to test
this hypothesis. The first report on the effect of LTP on
spine morphology was published in1975 by Fifkova and
Van Harrefeld [106] who used a similar experimental pro-
tocol to that used a few years before by Bliss and Lømo
[107] when they discovered LTP in the dentate gyrus. In
this and a subsequent study [106], the authors describe a
significant increase in spine area and volume from 2 min
to 23 h after LTP induction with a peak at 10–60 min.
Together with the observation that the spine neck be-
comes wider and shorter, these data suggest that tetaniza-
tion is able to increase synapse size by increasing spine
volume and recruiting an actin cytoskeleton, and that
these changes last for hours [108, 109]. In a controlled
series of more electrophysiological studies, Desmond and
Levy [110] showed that LTP increases the density of large
spines that have spinules or U-shaped profiles, and de-
creases the number of simple and ellipsoid spine profiles.
The PSD area was also modified, with the total PSD sur-
face area per unit volume of concave spines increasing sig-
nificantly, whereas that of the non-concave spines de-
creased and an increase in the mean PSD length was
observed for at least 60 min [30, 31, 110, 111]. Together,
the studies of Fifkova et al. [106, 108, 109] and Desmond
and Levy [110, 111] suggest that LTP induces the mor-
phological modification of existing spines and synapses
without the formation of new entities.

Conflicting results can be found in the literature con-
cerning changes in spine number after LTP or exposure in
an enriched or altered sensory environment. Trommald et
al. [112] Andersen et al. [113] used three-dimensional
reconstructions of serial EM micrographs, and observed
an up to 50% increase in spine numbers, as well as
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changes in the diameter of the spine neck and an increase
in the so-called bifurcated spines, after inducing LTP in
the dentate gyrus. They also found a small but significant
increase in spine density in the CA1 region of the hippo-
campus of rats exposed to an enhanced sensory environ-
ment [114, 115], but others [6, 40, 116] found no changes
in absolute spine number. However, some of these studies
used the CA1 region instead of the dentate gyrus, or stim-
ulated brain slices instead of in vivo stimulation. All of
these studies were also based on statistical comparisons of
two samples, whereas a better way would be to observe
single spine in living tissue and show morphological
changes in real time. Three seminal studies in this direc-
tion were published in 1999. Two of these used two-pho-
ton microscopy and brain slices. Maletic-Savatic et al.
[117] visualized individual neurons infected by sindbis-
virus-eGFP constructs, and found the outgrowth of den-
dritic protrusions similar to filopodia (often more than
4 Ìm longer) after a strong tetanus-inducing LTP. The
formation of these new protrusions that may turn into
spine-like structures could be blocked by APV, the
NMDA and LTP blocker [117]. In a more sophisticated
way, in an attempt to localize where the potential mor-
phological changes may occur, Engert and Bonhoeffer
[118] showed a close correlation between successful func-
tional synaptic enhancement and the generation of new
spines.

Using another elegant approach, the same question
was addressed by means of an EM analysis of spines from
neurons in which an LTP had been previously induced
[38]. This technique was able to select where morphologi-
cal changes can be expected to occur in stimulated synap-
ses by accumulating an EM-visible calcium precipitate in
a postsynaptic spine that had just been subjected to a
strong stimulus. Scrutinizing these spines for morphologi-
cal changes, the authors found that, in many cases, there
were pairs or triplets of labelled spines making contact
with the same presynaptic terminal, or what were called
‘same-dendrite, multiple synapse boutons’ (sdMSBs).
Similar ultrastructure modifications were observed by the
same authors after short anoxic-hypoglycemic episodes
and NMDA receptor activation in brain slices [119]. This
may be the result of a rapid morphogenetic sequence of
events after LTP-inducing stimulation that leads to PSD
segmentation and spine splitting [37, 38]. However, using
classical EM reconstruction, Fiala et al. [120] have more
recently suggested that the sdMSBs formed after LTP are
not due to spine splitting but probably the growth of new
spines or the maturation of filopodia-like structures.

In conclusion although there seems to be a correlation
between LTP and spine morphological modifications,
there is no direct proof that these morphological changes
contribute to synaptic strength as well as to the generation
of potential new contact sites.

Conclusions and Open Questions

The molecular exploration of spines is just at its begin-
ning, but it is not surprising that a number of structural
proteins and signaling pathways are involved. Spine struc-
ture is complex and dynamically regulated by different
factors over short and long time scales. Many fundamen-
tal issues must still be addressed in order to understand
spine function in brain physiology: for instance, although
several actin-binding proteins are known to be involved
in spine actin dynamics, none of them seems to be dedi-
cated to dendritic spine regulation. The identification of
specific actin modulators localized to spines might in-
crease the possibility of analyzing spine function by mean
of a genetic approach. Alternatively it will be important to
identify intracellular or extracellular factors that deter-
mine spine formation or absence in various neuron types.
Another important question is to determine the relation-
ship between spine shape and function in detail, as this
will perhaps allow us to adjust spine morphology in order
to make a neuron work or survive better. A number of
cognitive disorders are associated with subtle spine mal-
formations, such as changes in spine length, distribution,
number or morphology, but still a detailed morphological,
physiological and biochemical analysis has to be made in
order to correlate clinical phenotypes and spine abnor-
malities. All of these key questions and others will be
addressed in the near future using new and advanced
technologies, this making an exciting and rapidly develop-
ing field.
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