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ABSTRACT: This article presents a new method for burned area mapping
using high-resolution satellite images in the Mediterranean ecosystem. In such
a complex environment, high-resolution satellite images represent an appro-
priate data source for identifying fire-affected areas, and single postfire data are
often the only available source of information. The method proposed here in-
tegrates several spectral indices into a fuzzy synthetic indicator of likelihood of
burn. The indices are interpreted through fuzzy membership functions that have
been derived with a partially data-driven approach exploiting training data and
expert knowledge. The final map of fire-affected areas is produced by applying
a region growing algorithm on the basis of seed pixels selected on a conser-
vative threshold of the synthetic fuzzy score. The algorithm has been developed
and tested on a set of Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) scenes acquired over Southern Italy. Validation showed
that the accuracy of the burned area maps is comparable or even better [overall
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accuracy (OA) . 90%, K . 0.76] than that obtained with approaches based on
single index thresholds adapted to each image. The method described here
provides an automatic approach for mapping fire-affected areas with very few
false alarms (low commission error), whereas omission errors are mainly re-
lated to undetected small burned areas and are located in heterogeneous sparse
vegetation cover.
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1. Introduction
Fire is a significant source of gas and aerosols worldwide (French et al. 2003)

and an important disturbance factor for the ecosystems that induces land-cover
modification and change (Thonicke et al. 2001). Since the late 1990s, Earth ob-
servation (EO) data have been extensively used for active fire mapping (i.e.,
presence of the flaming front or ‘‘hot spot’’; Dwyer et al. 1998; Arino and Rosaz
1999; Giglio et al. 2003) and for delimiting burned area perimeters (Barbosa et al.
1998; Simon et al. 2004; Tansey et al. 2004; Roy et al. 2005). More recently,
satellite data have been used to characterize fire events through the retrieval of the
power released by fire [i.e., fire radiative power (FRP); Wooster et al. 2003].

Medium-/coarse-resolution (MR; 500–1000 m) satellite data, such as the Terra/
Aqua Moderate Resolution Imaging Spectrometer (MODIS), National Oceanic and
Atmospheric Administration (NOAA)/Advanced Very High Resolution Radiometer
(AVHRR), and Satellite Pour l’Observation de la Terre (SPOT) VEGETATION
(VGT), have been exploited to build a long time series of fire-related information
over large areas, on both continental and global scales (Pu et al. 2007; Stroppiana
et al. 2003), and are generally used for atmosphere studies such as those related to the
carbon cycle and climate change (Van der Werf et al. 2006).

High-resolution (HR; 15–30 m) images, such as those provided by the Landsat
Thematic Mapper (TM), SPOT High Resolution Geometric (HRG) instrument, or
Indian Remote Sensing (IRS) satellite Linear Imaging Self Scanning Sensor (LISS-
3), are generally used for building reference datasets for accuracy assessment of the
medium/coarse burned area maps (Silva et al. 2005) and for providing fire pe-
rimeters on a regional/local scale (Kontoes et al. 2009).

Very high-resolution (VHR; 1–5 m) images, such as IKONOS or QuickBird,
have been successfully used with object-oriented techniques to detect burned areas
and fire typology (Mitri and Gitas 2006). These data provide very detailed thematic
products and are very helpful for studying a single or a few fire events. However,
because of the small dimension of the satellite swath (about 10 km) and the ac-
quisition policies, which do not guarantee systematic acquisitions, VHR data are
not suitable for regional monitoring.

In the Mediterranean environment, which is characterized by a complex and
fragmented structure of the landscape and the heterogeneity of the land cover,
burned areas are generally small. Analysis of the official reports [European Forest
Fire Information System (EFFIS)] compiled for five Mediterranean countries
(Portugal, Spain, France, Italy, and Greece) during a 30-yr period indicates an
average fire size of 10 ha with a minimum of 6 ha for Portugal and France, a
maximum of 30 ha for Greece, and a value of 11 ha for Spain and Italy (Camia
et al. 2009). In Italy, fires get particularly intense in the southern regions of the

Earth Interactions d Volume 14 (2010) d Paper No. 17 d Page 2



country. In the last decade, the worst year was 2007, when the vegetated surface hit
by fires amounted to 227.729 ha, even larger than Greece (225.734 ha), although
fires caused less human causalities. Examination of the EFFIS database highlighted
also that fire in Europe is mainly a human-induced phenomenon: up to 95% of fires
are directly (51% intentionally) or indirectly (44% accident/negligence) caused by
human behavior and activities (Catry et al. 2010).

Most of the Mediterranean countries, which are affected by forest fires, do not
have proper data on fire incidence (Paganini et al. 2003). Also in Italy, consistent
historical archives on burned area perimeters are not available, because fire mon-
itoring has been traditionally carried out on the basis of qualitative field ob-
servations conducted by forest guards and fire brigades. The analysis of satellite
images is the only method to fill the gaps of historical datasets, which rely only on
field observations. Some initiatives have been carried out on a national scale for
exploiting satellite data for burned area mapping. The Regional Burned Forest
Mapping in Italy (ITALSCAR) project (Paganini et al. 2003), for example, pro-
duced burn scar maps for the period 1997–2000 using Landsat TM data. The Italian
Ministry of the Environment used National Aeronautics and Space Administration
(NASA) Terra Advanced Spaceborne Thermal Emission and Reflection Radiom-
eter (ASTER) data and SPOT 4–5 High-Resolution Visible Infrared (HRVIR) images
to provide detailed information on burned area perimeters in the Italian national
parks for the period 2001–05 (Brivio et al. 2009; Petrucci et al. 2010).

In Mediterranean environments such as those described above, regional fire
monitoring can rely only on HR images (Koutsias et al. 1999). Global Monitoring
for Environment and Security (GMES; available online at http://www.gmes.info)
operational services, devoted to postfire estimates of damage and loss of natural
resources, are specifically based on HR data (available online at http://www.riskeos.
com).

Several methods have been developed for mapping fire-affected areas from
multitemporal or single postfire satellite images: supervised classifications (i.e.,
maximum likelihood, decision tree, and neural network; Silva et al. 2005; Kontoes
et al. 2009; Brivio et al. 2003), linear transformations (i.e., tasselled cap and prin-
cipal component analysis; Patterson and Yool 1998; Hudak and Brockett 2004),
spectral unmixing techniques (Román-Cuesta et al. 2005; Smith et al. 2007), and
logistic regression models (Koutsias and Karteris 2000). Techniques based on
thresholding the spectral indices (SIs) are widely applied, because they are com-
putationally fast and efficient to detect fire-affected areas with both MR and HR data
(Chongo et al. 2007; Smith et al. 2007). However, no agreement exists on which
index performs best and in which conditions it has to be preferred (Lasaponara
2006). Moreover, threshold values are not constant and sometimes require to be
tuned for the different environments or even adapted to local conditions or from
scene to scene (Barbosa et al. 1999; Smith et al. 2007).

The objective of our research was to develop a new algorithm for mapping fire-
affected areas in a Mediterranean environment from postfire HR satellite images.
The algorithm integrates multiple SIs to exploit the complementary and/or the
redundant information brought by each of them and to avoid the a priori selection
of the most suitable one. Moreover, to overcome the need of tuning crisp thresholds
locally or from scene to scene, each index is mapped into degrees of membership of
burning by exploiting fuzzy sets theory (Zadeh 1965). The proposed algorithm has
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been calibrated with training data extracted from a set of ASTER images and
automatically applied to other images of Southern Italy to assess its performance.

2. Study area and imagery dataset
The study area (Figure 1) covers Southern Italy, where the greatest damage caused

by fires to natural ecosystems is within protected areas (Ministero dell’Ambiente
2008). For calibration and validation, ASTER images (AST07 product) were se-
lected over the Italian national parks most affected by fire (Figure 1) to cover dif-
ferent Mediterranean natural environments (Brivio et al. 2009). One scene, selected
over the Gallura (GAL) region (Sardinia), was added to assess the performance of
the methodology in a different location dominated by the typical ‘‘macchia Medi-
tarranea.’’ All images were selected in late summer (July–September) to maximize
the number of observed burned areas and to cover the entire fire season of different
years. The choice of multiple scenes acquired over different sites and in different
years makes both training the algorithm and validation of its performance robust
with respect to application to other sites and/or periods. Table 1 gives the dominant
land-cover classes where fires occurred for each site as derived from the Corine land-
cover (CLC) map (available online at http://www.eea.europa.eu/publications/COR0-
landcover).

Figure 1. (a) Study area, Southern Italy and Sardinia in the Mediterranean basin, and
(b) spatial distribution of ASTER images used as training and test dataset.
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The AST07 product is composed of surface reflectance in the visible (VIS;
green, band 1: 0.52–0.60 mm; red, band 2: 0.63–0.69 mm) and near-infrared
(NIR) wavelengths (band 3: 0.78–0.86 mm) with a resolution of 15 m, and
shortwave IR (SWIR) wavelengths (band 4: 1.6–1.7 mm; band 5: 2.14–2.18 mm;
band 6: 2.18–2.22 mm; band 7: 2.23–2.28 mm; band 8: 2.29–2.36 mm; band 9:
2.36–2.43 mm) with a spatial resolution of 30 m. Each scene is 60 km wide across
track. The ASTER instrument is on board the NASA Terra spacecraft (repeat cycle
16 days), and data acquisition is based upon requests (on demand). This is the
major drawback of the instrument for operational applications (Yamaguchi et al.
2001).

Availability of red, NIR, and several SWIR bands allows us to calculate SI usually
adopted for burned area mapping. The spatial resolutions of 15 m (VIS-NIR) and
30 m (SWIR) are suitable to detect burns of about few hectares typical of the
Mediterranean regions (Kontoes et al. 2009).

ASTER data were preprocessed to register and resample SWIR bands to the
higher spatial resolution of the VIS-NIR bands. Four images were used for training,
and the remaining three were used to test the performance [Aspromonte (ASP)
test area] and the generalizing capacity (Gallura test area) of the algorithm. The
Aspromonte test dataset is constituted by two ASTER images acquired over the
same area with a 16-day interval that allows the identification of fires occurred
between the two acquisition dates. In this way, it was possible to test the method
performance on recent (less than 30 days) fire-affected areas and to compare it to
segmentation based on the SIs performed by tuning locally each index thresholds.
For the Gallura image, field ancillary fire information (coordinates, date of fire

Table 1. ASTER images used for training (15 874 pixels) and validation (120 950
pixels) and the dominant CLC classes where fires occurred. The classes of land
cover for agriculture are arable land (CLC 2.1), permanent crops (olive trees; CLC
2.2), and heterogeneous agricultural areas (CLC 2.4). The classes of land cover for
forest/other wooded are forest (CLC 3.1) and scrub and/or herbaceous vegetation
associations (CLC 3.2).

Image date
No. of

polygons
No. of
pixels

Avg
area (ha)

Std
dev (ha)

Min
(ha)

Max
(ha)

Land
cover (%)

Training areas
Aspromonte 8 Sep 2001 20 5408 13.4 21.0 1.3 96.5 Agriculture (72)
Gargano 20 Jul 2001 14 2333 10.0 20.2 1.4 79.0 Agriculture (81)
Pollino 14 Sep 2004 9 5987 7.1 4.5 1.8 14.8 Forest/other

wooded (83)
Cilento 5 Sep 2003 14 2146 6.0 3.5 1.4 12.5 Forest/other

wooded (44)
Agriculture (32)

Test areas
Aspromonte (ASP1) 12 Jul 2003 — — — — — — —
Aspromonte (ASP2) 28 Jul 2003 143 93870 14.7 48.0 1.0 547.2 Agriculture (51)

Forest/other
wooded (29)

Gallura 27 Jul 2005 31 25827 23.2 44.02 1.1 207.1 Forest/other
wooded (47)

Agriculture (46)
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events, and an approximate estimate of the burned area) were made available by the
Corpo Forestale dello Stato (CFS).

3. Methods

3.1. Concept of the approach

The methodology proposed in this paper is based on a multicriteria approach able
to integrate into a synthetic score the results obtained with several spectral indices.
The basic and simple idea is the reinforcement of evidence: the more signs of burn
(provided by the indices and interpreted with fuzzy membership functions) that are
seen in the observed data, the higher the synthetic score of the burn class. The
theoretical framework is fully described by Carrara et al. (Carrara et al. 2008) and
Stroppiana et al. (Stroppiana et al. 2009a). The advantage offered by fuzzy sets is to
convert spectral indices into a common domain [0, 1] through fuzzy membership
function and to use soft rather than crisp constraints for the indices. The method-
ology proposed in this paper relies on previous experiments done on the same study
area with ASTER data that showed the complementarities of different SI, and it
constitutes a methodological development of these experiences (Zaffaroni et al.
2007; Brivio et al. 2009; Stroppiana et al. 2009b). We computed from the ASTER
bands indices commonly used for burned area mapping in the Mediterranean envi-
ronment and specifically tested for Southern Italy (Lasaponara 2006; Table 2).

In particular, Stroppiana et al. (Stroppiana et al. 2009b) showed that none of
these indices [normalized burn ratio (NBR), burn area index (BAI), NIR, char soil
index (CSI), soil-adjusted vegetation index (SAVI), and mid-infrared burn index
(MIRBI)] can be considered the best choice for identifying burned surfaces without
misclassification with other targets as shown by the results of a separability
analysis for different SIs as reported in Stroppiana et al. (Stroppiana et al. 2009b;
Table 3). A similar ranking of the indices derived from SPOT-VGT data was
reported by Lasaponara (Lasaponara 2006).

Each index performs well in separating burns from one or at maximum two
classes of unburned surfaces but at the same time leads to confusion with the
others. This remark strengthens the idea of a multicriteria approach able to inte-
grate the different and complementary information brought by the indices.

Figure 2 shows the flowchart of the methodology. Step 1 consists in the calculation
of the SIs from the multispectral data. SIs are then converted into membership
degrees (step 2) using fuzzy membership functions f, which are parameterized from
the analysis of the training data with a partially data-driven approach (Robinson

Table 2. Spectral indices adopted and references to recent applications for burned
area mapping: a 5 0.1, b 5 0.6, and L 5 0.5.

Spectral index Equation Reference

NIR Near-infrared rNIR Pereira 1999
CSI Char soil index rNIR/rSWIR8 Smith et al. 2005
NBR Normalized burn ratio (rNIR 2 rSWIR8)/(rNIR 1 rSWIR8) Key and Benson 1999
BAI Burn area index [(a 2 rRED)2 1 (b 2 rNIR)2]21 Chuvieco et al. 2002
SAVI Soil-adjusted vegetation index (rNIR 2 rRED)(1 1 L)/(rNIR 1 rRED 1 L) Chuvieco et al. 2002
MIRBI Mid-infrared burn index 10 3 rSWIR5 2 9.5 3 rSWIR4 1 2 Trigg and Flasse 2001
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2003). Once the SIs are reduced to a common domain [0, 1], the membership degrees
are combined into a synthetic score (step 3) by applying a weighted average (WA)
operator. The WA map represents a synthetic continuous degree of likelihood of
burn which is used to identify the clusters of core pixels (seeds) considered highly
probable to be burned (WA score . 0.7; step 4). The final map, WA region growing
(WA_RG; step 5), is obtained by applying a region-growing algorithm (IDL, ITT
Visual Information Solutions) that identifies all pixels that are connected neighbors
to the seed pixels and fall within a range of 3 times the standard deviation (63s) of
the seeds score values. A postclassification clumping filter, 3 3 3 pixels, has been
applied to the classification map and results converted to vector format; finally, small
area polygons (size , 1 ha) have been eliminated. In this flowchart, the membership
functions f, defined from the training burned pixels, are assumed to be fixed, and all
steps of the methodology can be automatically implemented to classify ASTER
images with no further intervention or supervision.

The next subsections describe in detail the data handling conducted on the dif-
ferent stages of the methodology and for the validation exercise.

3.2. Fuzzy membership functions definition

The construction of the fuzzy membership functions of each index is based on
a partially data-driven approach that uses statistical analysis of the training data and
expert knowledge. Frequency distribution of each SI values of the training perimeters
selected by photo interpretation (more than 15 000 pixels) were interpolated with a

Table 3. Measure of separability (S) between burned areas and the other surfaces
for the different spectral indices. The numbers set in boldface refer to the highest
separability for each surface.

NBR BAI NIR CSI SAVI MIRBI

Vegetation 1.99 1.63 1.55 1.74 1.87 1.38
Shadow 1.74 0.53 0.42 1.67 1.19 0.20
Soil 1.10 1.42 1.50 1.01 0.92 1.54
Unburned (average) 1.61 1.20 1.16 1.47 1.33 1.04
Unburned (Lasaponara 2006) 1.34 1.12 1.02 — 1.28 —

Figure 2. Steps of the proposed mapping procedure.
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sigmoid curve, and least squares fitting provided the parameters m and s of the
membership functions. Likelihood of burn is described by a decreasing curve for
NBR, NIR, CSI, and SAVI [Equation (1a)] and by an increasing one for BAI and
MIRBI [Equation (1b)]:

f 511 exp
SI� m

s

� �� ��1

and (1a)

f 511 exp � SI� m

s

� �� ��1

. (1b)

The functions map SI values into the [0, 1] range where the higher the likelihood
of burn, the closer the score is to 1. The SI values belonging to the smoothed tails
of the function cover the area where the commission errors are likely to occur
(confusion with other surface targets). Expert knowledge has been used to set
thresholds to the membership functions for SI values where burned area theoret-
ically should tend and/or should not exist in the spectral domain. The threshold
values for the different functions have been derived by Stroppiana et al. (Stroppiana
et al. 2009b).

3.3. Fuzzy degree aggregation

The synthetic indicator is created by aggregation of the SI fuzzy membership
degrees which, in this case, is done with a WA operator. Weights (relative im-
portance of each index) have been set based on the average separability measures
of Table 3. This study has improved the approach proposed by Stroppiana et al.
(Stroppiana et al. 2009b); the SI burned membership functions have been derived
by a partially data-driven approach thanks to the analysis of a more consistent
training of spectral response of burn areas. Moreover, the mapping method here
described adopts an automatic WA_RG procedure that starts from seed pixels
selected on the base of the synthetic fuzzy indicator final score.

3.4. Validation

For validation we used an independent set of ASTER images (Aspromonte in
2003; Gallura in 2005). For the Aspromonte test area, the maps produced for the
first (12 July 2003) and second (28 July 2003) date were subtracted to obtain
the fire events that occurred only in the period between the two acquisitions. All the
classification maps were compared with the polygons identified by photo interpre-
tation to derive the error matrix and the accuracy measurements including overall
accuracy (OA), kappa (K) statistics, and omission/commission errors (Congalton
1991).

The final maps were also compared to classifications obtained from single index
thresholding with values adapted for each scene. Among the various techniques
presented in the literature, we used a common approach based on thresholds of SI

Earth Interactions d Volume 14 (2010) d Paper No. 17 d Page 8



values. Several authors (Smith et al. 2007; Barbosa et al. 1999) propose to define SI
threshold values calculating mean m and standard deviation s of the index values
from training data and to classify as burned each pixel of the image that falls in the
range m 6 2s. In our case, statistics were extracted from a subsample of about 400
pixels, belonging to different photo-interpreted polygons of the Aspromonte 2003
and Gallura 2005 test images. BAI and MIRBI, following Smith et al. (Smith et al.
2007), used the thresholds previously derived by Stroppiana et al. (Stroppiana et al.
2009b) for ASTER adapting the values proposed by Chuvieco et al. (Chuvieco
et al. 2002) and Trigg and Flasse (Trigg and Flasse 2001). All the maps were
filtered with a 3 3 3 median filter, and only polygons greater than 1 ha were
considered as fire-affected areas; finally, the Corine land-cover map was also used
for masking out artificial surfaces (CLC 1), bare rocks (CLC 3.3.2), and coastal
wetlands (CLC 4.2).

4. Results and discussion

4.1. Fuzzy functions

Figure 3 shows the normalized frequency histograms for each SI as extracted
from the training dataset. The bottom row of the figure shows the histograms of all
data pulled together and the sigmoid derived by interpolation that will define the
index membership function. Values of the spectral indices covering different
domains (x axis) are all mapped in the range [0, 1] on the y axis. Variability of
vegetation characteristics, intensity and duration of the fires and the regrowth
processes, which occur between the fire event and satellite acquisition, lead to
different postfire spectral responses over the sites which are highlighted by the
variability of the histograms.

Table 4 shows the parameters of the membership functions for each index. The
fuzzy functions describe the degree of likelihood of burn by taking into account
uncertainty with a smoothed curve in correspondence of the less frequent values
where confusion with other surfaces is likely to occur. The functions have been
constrained to f 5 0 for SI values above or below the pixels that are not considered
burned.

The contribution of each SI to the final score, quantified as the weight of the
index in the computation of the synthetic indicator, was derived from their ability
in separating burned areas from other surfaces (see Table 3). NBR is the most
important index and contributes 21% of the final score, followed by CSI (19%) and
SAVI (17%). The lowest weight was assigned to MIRBI (13%), and BAI and NIR
complete the vector with an importance of about 15% each.

4.2. Maps of membership degrees and their integration

Figure 4 presents two examples of the fuzzy membership degree map for each
index compared to the WA and WA_RG aggregated maps over the Aspromonte
national park. The examples were chosen over areas where cloud shadows (Figure
4a) and bare soil (Figure 4b) might cause misclassification errors. In the figure,
burned areas (white polygons in the RGB color composite) are identified by the
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highest membership degrees of all the indices (yellow to red colors) as a conse-
quence of the definition of the fuzzy functions (see Figure 3); if a burned area has a
consistently high degree for all indices, it will be assigned a high synthetic final
score (convergence) and therefore it will be mapped as probably burned in the WA
map. On the contrary, surfaces with high scores for only some of the indices, which
is the case of unburned surfaces that are spectrally confused with burns, will have
lower final scores and, for the compensation effect, will be likely classified as
unburned in the final map. An example is given by the membership degree maps for
the SAVI and MIRBI indices of Figure 4a: besides burned areas, high degrees are
assigned also to clouds in the SAVI map and unburned vegetation and cloud

Figure 3. Frequency histograms of spectral indices values derived from the four
training areas, Aspromonte (ASP), Cilento (CIL), Gargano (GAR), and
Pollino (POL), and fuzzy memberships (continuous line) produced by in-
terpolation of global histograms. The y axis shows normalized frequency
distribution values (0–1), and the x axis illustrates the domain of the SIs
considered.

Table 4. Parameters of the fuzzy membership functions.

NBRa BAIb NIRa CSIa SAVIa MIRBIb

m 0.20 63.90 0.20 1.34 0.17 1.49
s 0.05 7.62 0.00 0.13 0.01 0.05
tc �20.3 — �0.1 �0.55 �0.05 �2.0

a Decreasing sigmoid function.
b Increasing sigmoid function.
c Threshold values (Stroppiana et al. 2009b) where function returns to zero score.
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Figure 4. Example of SI membership degrees for two problematic areas, (a) cloudy
and (b) sparsely vegetated, and burned area maps obtained by WA and
WA_RG approaches. ASTER RGB: 832, where B8 5 2.336 mm, B3 5 0.8070 mm,
and B2 5 0.6610 mm. Burn areas are marked by white polygons.
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shadows in the MIRBI map. Because the same targets have low degrees in the other
indices, the final aggregated map (WA) is free of these misclassification errors.

Similarly, NBR can discriminate cloud shadows from burns but produces errors
over bare soil surfaces (membership degree . 0.7), as seen in Figure 4b. BAI
behaves the opposite way by producing greater errors for cloud shadows (degree .
0.9) as seen in the top example area. CSI performs better in conditions of bare soil,
where its degree is lower than NBR’s. NIR produces intermediate results with some
confusion with clouds (Figure 4a) and topographic shadows (Figure 4b). MIRBI
and SAVI have also major problems for bare soil and water. In the synthetic
indicator (WA), the higher scores (.0.7) are in correspondence of the photo-
interpreted burned perimeters (red boundaries). In this way, the complementary
behavior of the indices, such as in the case of NBR and BAI with respect to cloud
shadows, allows the compensation of misclassification and the reduction of the
global commission error. Finally, the region-growing algorithm (WA_RG) im-
proves the results by exploiting local automatically adapted thresholds derived
from burn seeds statistics. Although WA_RG can produce some artifacts, the main
effect is to enhance areas in the image that are related to burned areas (Figure 4b).

4.3. Burned area maps and validation

Figure 5 shows the distribution of burned areas derived by photo interpretation
(Figure 5a) and the results of the WA_RG classification (Figure 5b) for the test
images of Aspromonte (top) and Gallura (bottom). In both cases, fire-affected areas
(FAA) are mainly located near the coast, where human-induced fire risk is higher
because of higher population density and easy accessibility.

No systematic error patterns are evident in the classification (i.e., fires are de-
tected over the entire territory and across all land covers that are subject to burn-
ing), confirming that the method is robust; however, some underestimation is
observed in the classified maps. The WA_RG method was able to identify, partially
or totally, the majority of photo-interpreted polygons in both the test sites. In the
Aspromonte image, 84 polygons out of the 143 events were identified: these poly-
gons cover about 92% of the total area burned (2098 ha). The undetected polygons
are characterized by an average size of 2.7 ha (median 2.0 ha), which is smaller
compared to the detected ones (average 23.1 ha, median 7.74 ha). The size of
the burned areas is one of the factors that can influence the underestimation error
(i.e., omission); among all, the geometric characteristics of the satellite sensor (i.e.,
spatial resolution) limit the minimum size of fire events that can be detected and
therefore the rate of omission errors. Similarly, in the Gallura test image, the
algorithm was able to detect 26 polygons (average 22.0 ha, median 4.66 ha),
corresponding to 96% of the total area burned. Also in this case, the undetected fire
events are small (average 4.0 ha, median 2.86 ha) compared to the image spatial
resolution.

The results of the validation of the WA_RG maps are summarized in Table 5,
where the performance of the automated algorithm is also compared to classifi-
cations obtained by thresholding the SIs; almost all of the classifications have an
OA . 99% (data not shown). Results are ranked based on the K statistic of the
confusion matrix. The WA_RG classifications for both validation sites performs
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well with K . 75% and as high as 87% in the case of the Gallura validation site.
The method shows to be conservative (i.e., low rate of false alarms) with com-
mission errors of 3.56% and 9.36%, respectively, for Aspromonte and Gallura.
Omission errors (37.29% in Aspromonte and 16.57% in Gallura) are comparable or

Figure 5. Reference map from (left) photo-interpretation and (right) classification
results for the two test images: (top) ASP and (bottom) GAL. Burn polygons
are superimposed to the CLC classes grouped in broad categories: AGR,
forest and natural area (F&NA), fire affected area (FAA), and urban and
not vegetated (URB&NV).
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even lower than values obtained from the classification derived by image thresh-
olding of the SIs with scene-adapted thresholds.

The rate of omission over the Aspromonte site is higher but comparable to
omissions of the NBR, NIR, and CSI indices, thus suggesting that spectral sepa-
rability of the image targets is intrinsically difficult to be achieved. In fact, the
numerous burned polygons (143) extracted from the photo interpretation cover a
wide range of spectral characteristics, and the indices perform in a very different
way with lower accuracy. However, the aggregation of the single index member-
ship degrees coupled with a region-growing algorithm (WA_RG) does improve the
classifications obtained by thresholding the single SI images especially if we keep
in mind that WA_RG has been applied automatically to the validation images, and
it did not require the time-consuming effort of tuning thresholds scene by scene. In
the Gallura site, the WA_RG is better than any other classification.

The order with which the classifications appear in Table 5 confirms that the
performance of the SIs strongly depend on the scene characteristics. As previously
discussed, the Gallura image is characterized by a high spectral separability between
burned and unburned surfaces, and therefore classification accuracy is higher (NBR:
OA . 99%, K 5 0.84), with an almost negligible commission error (about 1%). The
minimum commission error in the Aspromonte site is obtained by the WA_RG
algorithm followed by the CSI index. Among the indices, NBR and CSI provide
good and consistent results in the two test sites (OA . 99%; K . 0.74) being at
the top of the ranking list. On the contrary, NIR is one of the best choices for
Aspromonte (OA . 99%, K 5 0.71) but performs badly over Gallura (OA 5
68.72%, K 5 0.02). BAI and MIRBI show inconsistent performance: BAI presents
the worst accuracy measures for Aspromonte and MIRBI presents one of the worst
for Gallura. Note that, for BAI and MIRBI, we have used fixed thresholds, avail-
able in literature, whereas the maps produced from the other indices were derived
by tuning the threshold on 400 pixels extracted from each test image.

Table 6 shows SI statistics computed over the burned sampled pixels and
the thresholds used for classification of each test image. The greatest variability of
the SI values is observed from one site to another but also from scene to scene over

Table 5. Accuracy measures derived from the error matrix for the two test images for
the different methods. The asterisk refers to the use of fixed thresholds.

Location Method K Commission (%) Omission (%)

Aspromonte WA_RG 0.76 3.56 37.29
NBR 0.75 10.81 35.39
CSI 0.74 8.49 36.86
NIR 0.71 18.88 36.84
MIRBI* 0.59 32.80 45.07
SAVI 0.28 79.02 51.72
BAI* 0.08 65.14 95.43

Gallura WA_RG 0.87 9.36 16.57
NBR 0.84 1.15 27.13
CSI 0.83 0.87 27.99
BAI* 0.52 22.91 60.06
MIRBI* 0.2 87.67 26.61
SAVI 0.07 95.59 29.52
NIR 0.02 97.91 20.87

Earth Interactions d Volume 14 (2010) d Paper No. 17 d Page 14



the same site; SI values change because they are observed on different dates such as
in the case of Aspromonte. Because in this last case the geographical context
involved is the same, the difference observed, for example, in the NBR values is
mainly a consequence of the change in time of the postfire spectral signal; in fact,
the second image is acquired 16 days after the first one. The high variability of the
burned signal reduces the exportability of crisp thresholds for an automated ap-
plication to different images (i.e., thresholds need always some adjustment that in
the algorithm proposed here is performed by the use of fuzzy membership). In
particular, the SI statistics suggest that the fixed literature values proposed for BAI
(.150) and MIRBI (.1.5) may be not suitable for mapping burns in our geo-
graphical area. These figures confirm the site variability that clearly appears from
the histograms of Figure 3.

Figure 6 shows the scatterplots of the classified WA_RG and reference photo-
interpreted polygons for Aspromonte (left) and Gallura (right). The WA_RG al-
gorithm is able to accurately identify fire polygons (r2 . 0.98) in both test images,
although some underestimation occurs (regression line slope , 1). Because corre-
lation between estimated and reference fire areas can be influenced by few large fires,
we focused on burns with an area smaller than 50 ha (scatters on the inside box).
Also, in this case, the comparison provides very good results and the regressions still
have a high coefficient of determination (r2 5 0.8); the Aspromonte case study
shows an underestimation higher (n 5 84, slope 5 0.60) compared to Gallura (n 5
25, slope 5 0.7), where points are better aligned along the 1:1 line.

In this environment, larger burned areas are generally due to more intense fire
events and are characterized by a more persistent spectral signal. Spectral sepa-
rability of the burned areas is influenced by surface conditions, which are the result
of the complex interactions between fire dynamics, prefire vegetation character-
istics and conditions, vegetation regrowth after the fire, and the time between fire
and image acquisition. Field information available for Gallura showed that a
greater underestimation occurs for events further in time from image acquisition,
although no statistically significant correlation resulted between the omission error
and the time lag between fire and acquisition date (data not shown).

An example is given in Figure 7 that shows the classification of two largest
(.100 ha) burned areas visible in the Gallura image. The more recent event

Table 6. Statistics extracted for each index from the test images: ASP1 (12 Jul 2003),
ASP2 (28 Jul 2003), and GAL (27 Jul 2005). Values of thresholds (Tmin and Tmax) used
for mapping burned areas with the single index approach.

NBR BAI* NIR CSI SAVI MIRBI**

Statistics Min/max ASP1 20.18/0.31 27.57/240.38 0.12/0.24 0.70/1.90 0.10/0.24 1.49/1.99
ASP2 20.16/0.17 38.38/234.03 0.12/0.22 0.72/1.41 0.09/0.20 1.50/1.95
GAL 20.21/0.08 20.76/240.56 0.12/0.27 0.66/1.17 0.10/0.23 1.38/1.89

Mean/std
dev

ASP1 0.05/0.06 111.28/39.45 0.16/0.02 1.11/0.13 0.13/0.02 1.79/0.09
ASP2 20.01/0.06 107.09/39.86 0.16/0.02 0.98/0.12 0.12 /0.01 1.77/0.10
GAL 20.09/0.05 90.32/52.68 0.17/0.03 0.84/0.08 0.14/0.02 1.60/0.11

Thresholds Tmin/Tmax ASP1 20.07/0.17 32.38/190.17 0.12/0.20 0.85/1.38 0.10/0.16 1.62/1.97
ASP2 20.13/0.11 27.37/186.80 0.12/0.20 0.75/1.22 0.09/0.14 1.57/1.97
GAL 20.18/0.01 215.03/195.67 0.12/0.23 0.68/1.00 0.10/0.19 1.38/1.82

* Fixed value is 150.
** Fixed value is 1.5.
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(Figure 7a), which occurred 4 days before image acquisition, shows a clear burned
spectral signal in dense natural vegetation (CLC 3.2.3: sclerophyllous vegetation)
where the fuzzy algorithm identified well unburned patches inside the burned
perimeter. The second event (Figure 7b) is only partially detected, probably be-
cause after 20 days the burned signal is confused with the signal from sparse
vegetation and bare soils [CLC 2.4.3: land principally occupied by agriculture
(AGR) with significant areas of natural vegetation].

The analysis of the distribution of the fire events across the CLC classes high-
lighted that, in both regions, fires affected agricultural (51% Aspromonte and 46%
Gallura) and forested/natural areas (46.2% Aspromonte and 52.5% Gallura) in
similar proportions. In particular, the classes most affected by fires are heterogeneous
agricultural areas (CLC 2.4; 28.2% Aspromonte and 26.7% Gallura) and scrub and/
or herbaceous vegetation (CLC 3.2; 34.5% Aspromonte and 50.9% Gallura). This
regime is challenging for burned area mapping because of the characteristics of these
two classes, which typically have low canopy coverage, where the burned signature
is not persistent in time.

5. Conclusions
This work presents a novel approach for mapping burned areas with HR data in a

Mediterranean environment of Southern Italy. The novelty is the integration into a
synthetic indicator of spectral indices, which are converted to a common domain
[0, 1] through fuzzy membership function. The indicator provides soft information
on the likelihood of burn, where high scores are retrieved in condition of SIs
convergence (reinforcement of evidence) and fuzzy degrees are used in combi-
nation with a region-growing algorithm (WA_RG). The advantages of integrating
fuzzy degrees are (i) to reduce the effort involved in adapting thresholds from scene
to scene, (ii) to exploit the complementary information brought by each index over

Figure 6. Reference burn polygons from the photo-interpretation and estimated
burn area for the (a) ASP and (b) GAL test images. Shown for (a),(b) are 1)
the entire dataset and 2) a zoom on smaller burned surfaces (<50 ha).
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targets of likely spectral confusion, and (iii) to improve reliability when applied to
different geographical areas. The burned area maps obtained with the WA_RG
algorithm over test sites are very accurate (K 5 0.75 and K 5 0.87), with a very low
rate of false alarms (commission errors ,10%). Omission errors are mainly due to
undetected small areas; patches smaller than 3 ha are often missed, although these
events account for a small proportion of the total burned area and do not influence
the global accuracy. Even when tested in heterogeneous landscapes, where the
pixel burned signal is contaminated by unburned vegetation and becomes weaker
with time since fire, performance is as accurate as locally adapted SI threshold-
based techniques. Compared to these techniques, the method is much faster, be-
cause it does not require tuning of the thresholds to the characteristics of the
satellite scene and can be a candidate approach to the operational update of the
geodatabase of fire-affected areas. However, the proposed approach to some extent
depends on the parameterization of the fuzzy membership functions, which in this
case is done with a partially data-driven approach to cover the wide range of
spectral properties of burned areas in the Mediterranean environment of Southern
Italy. Clearly, it can be applied automatically where these conditions are met, and
further tests should be carried out if the algorithm has to be applied to different
biomes. Indeed, this will be topic for future research as well as testing the per-
formance with different high-resolution optical sensors (e.g., TM, SPOT) and on
evaluating the exportability to the sensor of the new European Space Agency
(ESA) Sentinel 2 mission, which is also devoted in the future for burned area
mapping operational application (Drusch et al. 2010).
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area assessment using multitemporal low resolution satellite data. Remote Sens. Environ., 65,
38–49.

——, J. M. Grégoire, and J. M. C. Pereira, 1999: An algorithm for extracting burned areas from
time series of AVHRR GAC data applied at a continental scale. Remote Sens. Environ., 69,
253–263.

Brivio, P. A., M. Maggi, E. Binaghi, and I. Gallo, 2003: Mapping burned surfaces in Sub-Saharan
Africa based on multi-temporal neural classification. Int. J. Remote Sens., 24, 4003–4018.

——, B. Petrucci, M. Boschetti, P. Carrara, M. Pepe, A. Rampini, D. Stroppiana, and P. Zaffaroni,
2009: A multi-year geographic database of fire affected areas derived from satellite images
in the national parks of Italy. Ital. J. Remote Sens., 41, 65–78.

Camia, A., and Coauthors, 2009: Forest fires in Europe 2008. Joint Research Centre Scientific and
Research Rep. 9, 88 pp.

Carrara, P., G. Bordogna, M. Boschetti, P. A. Brivio, A. Nelson, and D. Stroppiana, 2008: A flexible
multi-source spatial-data fusion system for environmental status assessment at continental
scale. Int. J. Geogr. Inf. Sci., 22, 781–799.

Catry, F. X., F. C. Rego, J. S. Silva, F. Moreira, A. Camia, C. Ricotta, and M. Conedera, 2010: Fire
starts and human activities. Towards integrated fire management—Outcomes of the European
project Fire Paradox, J. S. Silva et al. Eds., European Forest Institute Research Rep. 23, 9–21.

Chongo, D., R. Nagasawa, A. O. C. Ahmed, and F. Perveen, 2007: Fire monitoring in savanna
ecosystems using MODIS data: A case study of Kruger National Park, South Africa. Landscape
Ecol. Eng., 3, 79–88.

Chuvieco, E., M. P. Martı̀n, and A. Palacios, 2002: Assessment of different spectral indices in the
red–near-infrared spectral domain for burned land discrimination. Int. J. Remote Sens., 23,
5103–5110.

Congalton, R. G., 1991: A review of assessing the accuracy of classifications of remotely sensed
data. Remote Sens. Environ., 37, 35–46.

Drusch, M., F. Gascon, and M. Berger, 2010: GMES Sentinel 2 mission requirements document.
European Space Agency Document, 42 pp. [Available online at http://esamultimedia.esa.int/
docs/GMES/Sentinel-2_MRD.pdf.]

Dwyer, D., J. M. Gregorire, and J. P. Malingreau, 1998: A global analysis of vegetation fires using
satellite images: Spatial and temporal dynamics. Ambio, 27, 175–181.

French, N. H. F., E. S. Kasischke, and D. G. Williams, 2003: Variability in the emissions of carbon-
based trace gases from wildfire in the Alaskan boreal forest. J. Geophys. Res., 107, 8151,
doi:10.1029/2001JD000480.

Giglio, L., J. Descloitres, C. O. Justice, and Y. Kaufman, 2003: An enhanced contextual fire
detection algorithm for MODIS. Remote Sens. Environ., 87, 273–282.

Hudak, A. T., and B. H. Brockett, 2004: Mapping fire scars in a southern African savannah using
Landsat imagery. Int. J. Remote Sens., 25, 3231–3243.

Key, C. H., and N. C. Benson, 1999: Measuring and remote sensing of burn severity. Proc. Joint
Fire Science Conf. and Workshop, Boise, Idaho, University of Idaho and International As-
sociation of Wildland Fire, Vol. 2, 284.

Earth Interactions d Volume 14 (2010) d Paper No. 17 d Page 18
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