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,is paper presents a novel method for three-dimensional microwave imaging based on sparse processing. To enforce the sparsity
of the unknown function, we take advantage of the fact that arbitrary three-dimensional electromagnetic fields can be decomposed
into two components with respect to the radial direction: one with transverse-magnetic polarization and the other with transverse-
electric polarization. Each component can be further expressed as a sum of spherical harmonics, which provide the dictionary
exploited by the sparse processing algorithm. Our measurement model relates the data and the parameters of the spherical
harmonics’ sources, which are uniformly distributed on a grid sampling the imaging domain. By relying on the theory of degrees
of freedom of electromagnetic fields, it can be shown that only a few harmonics are sufficient to accurately represent the measured
scattered field from objects whose diameter is of the order of the wavelength, thus allowing reducing the dimension of the adopted
dictionary. We analyze several imaging scenarios to assess the algorithm’s performance, including different object shapes, sensor
orientations, and signal-to-noise ratios. Moreover, we compare the obtained results with other state-of-the-art linear imaging
techniques. Notably, thanks to the adopted dictionary, the proposed algorithm can yield accurate images of both convex and
concave objects.

1. Introduction

Microwave imaging (MWI) has many practical applications,
such as ground-penetrating radar (GPR) [1, 2], through-the-
wall-imaging (TWI) [3, 4], medical diagnostics [5, 6], and
nondestructive evaluation (NDE) [7, 8]. Among many MWI
applications, microwavemedical imaging is one of the fastest
progressing areas since it takes advantage of nonionizing
radiation and affordable components. Examples are MWI
systems for brain stroke monitoring [9], breast-cancer de-
tection [10], and thermal ablation guidance [11]. Never-
theless, one of the drawbacks of MWI systems, which
restricts their widespread adoption, is the limited spatial
resolution [12] compared to other medical imaging
modalities.

Depending on the retrieved information, MWI tech-
niques fall into two categories. ,e goal of the first group of

algorithms, the so-called qualitative methods, is to find the
shape and position of the inspected object. Examples of
qualitative imaging methods are time reversal [13], MUSIC
[14], linear sampling method (LSM) [15, 16], level set [17],
truncated singular value decomposition (TSVD) [18, 19],
sparse processing [20, 21], and many others. If additional
information is needed, such as the permittivity and con-
ductivity of the target, quantitative MWI methods are
implemented [22, 23].

In general, solving MWI tasks is difficult due to the
inherent nonlinearity and ill-posedness. Different regulari-
zation techniques have been applied to tackle the ill-pos-
edness of MWI problems [12]. Incorporating prior
knowledge into the inverse scattering model, such as known
physical/electrical object features, reduces the ambiguity of
the reconstruction and moderates the occurrence of false
solutions. If the unknown object is electrically small, one of
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the most effective regularization tools is sparse processing or
compressive sensing (CS) [20, 21]. CS efficiently includes the
prior knowledge about the target through the sparsity
constraint or l1 regularization. ,e resulting images are
sharp, with limited artifacts, and robust against noise.
However, if the unknown object is electrically large, sig-
nificant portions of the target shape remain unrecovered.
,us, the obtained images often appear as collections of
disconnected points unless some additional knowledge
about targets is available [24].

,is paper introduces a novel qualitative MWI algo-
rithm, which achieves high spatial resolution by taking
advantage of sophisticated electromagnetic modeling and
the principles of sparse processing. We use the fact that with
respect to the radial direction, the scattered field can be
expressed as a superposition of a transverse-magnetic po-
larized wave (denoted as TMr) and a transverse-electric
polarized wave (denoted as TEr) [25]. Both TMr and TEr
fields are then written as a sum of spherical waves. Each
spherical wave is determined by a pair of indices (n, m),
related to radial and angular variation of the electromagnetic
field, respectively. ,e sources of these waves are collocated
in the target’s center.

However, we further show that the scattered field can be
represented as a sum of spherical waves of a single order (n,
m), if the wave sources are sufficiently separated in space.
,is theoretical result makes the foundation of the proposed
imaging algorithm. We compute different target images by
using wave sources of a single order distributed on a uniform
grid. Each order (harmonic) produces a unique image, and
we obtain the final target image by superimposing these
partial images.

A further contribution of this work is the recognition of
the so-called “dominant” harmonics, which have a major
role in target imaging. Namely, we show that in certain cases,
the dominant harmonics are sufficient for target recon-
struction, even in the case of complex-shaped targets. Using
the dominant harmonics remarkably simplifies the opti-
mization process and reduces the computational time at the
expenses of negligible loss in the reconstruction accuracy.
Nevertheless, we also show that in the cases of electrically
small targets, other harmonics have an indispensable role in
improving the spatial resolution of the imaging results.

Another novelty is the selection of leading orders, which
is a nontrivial question in 3D space. Starting from the results
of the theory of degrees of freedom [26, 27] and the con-
dition m≤ n, we determine the maximal order nmax, which
can be used for reconstruction. We also show that images
obtained with n> nmax produce pixels lying outside the
target’s convex envelope so that they can be safely removed
from the image.

,e present work completes and generalizes the previous
work done by the authors, in which we dealt with the 2D case
(i.e., targets infinitely extended along one direction) through
dictionaries made with cylindrical basis functions for both
TM [28] and TE [29] scenarios. Since cylindrical bases
functions are determined by a single index, n, determining
the relevant harmonics in the 2D space is a much simpler
task than in 3D. Preliminary work on 3D reconstruction was

presented in [30]. In that case, a simplified measurement
model was considered, which assumed only vertically po-
larized antennas and, consequently, only vertically oriented
low-order multipoles as the sources of the scattered field.
Here, instead, we assume arbitrarily polarized measurement
array and spherical harmonics of an arbitrary order as the
sources of the scattered field, thus achieving an utterly
general model.

Another outcome of this work is the normalization of the
system matrix, which allows for a straightforward selection
of the regularization coefficient. Typically, the regularization
coefficient is obtained by plotting the L-curve and selecting
the value associated with the knee of the curve [31].
However, this means solving the minimization function
several times, once for each value of the regularization
parameter, which can be numerically consuming. ,e
proposed normalization translates the regularization pa-
rameter in the range 0.1≤ c≤ 1, with the knee of the L-curve
roughly being close to 0.5.

Finally, it is worth noting that most CS/sparse micro-
wave imaging algorithms in the literature deal with 2D
problems. Examples of 2D algorithms that combine the first-
order Born approximation and CS are [32, 33]. In contrast,
we propose an algorithm that does not require Born ap-
proximation’s validity as it takes advantage of the linear
relationship holding between the scattered field and the
induced sources. Moreover, the algorithm is applicable for
3D imaging of arbitrary dielectric/metallic targets. In
[34, 35], the authors use the sparsity constraint to regularize
the distorted Born iterative method (DBIM). In [36], the
standard 3D CS-based algorithm was utilized for the breast-
cancer localization. However, the measurement model de-
scribed in [36] uses jointly all the measurements, which is
suitable only for small target imaging, such as early-stage
cancer. In contrast, we divide the measurements into groups
that we process separately and combine the obtained results
at the end. In this way, it is possible to reconstruct complex-
shaped targets and augment the reconstructed portion of the
target, which is critical in sparse-based algorithms. In [37],
the CS approach was applied to 2D extended targets with
simple and concave cross sections.

,e proposed approach was assessed on simulated data
involving various concave-shaped objects. Due to multiple
scattering, imaging of such objects is significantly more
challenging than that of simple, smooth objects. In most
cases, standard qualitative algorithms retrieve a convex
envelope, ignoring the concave parts of the target shape.
Distinguishing between convex and concave targets is vital
in many applications, such as distinguishing benign tumors
from malignant ones [5].

In addition, the performance of the proposed algorithm
was compared to that of the gold standard methods in
qualitative imaging, such as LSM and TSVD. We showed
that the proposed algorithm outperforms both LSM and
TSVD when electrically small targets are imaged. In addi-
tion, it requires fewer measurements and is less sensitive to
noise. However, if the number of sensors is large, LSM may
be the preferred choice due to short computational time and
ease of implementation. Finally, we compared the imaging
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results of the presented algorithm and those obtained by
another sparse processing algorithm [38]. Presented results
show that the proposed algorithm restores better electrically
small targets at the cost of more complex implementation.
Both algorithms can retrieve complex shapes, yet the re-
stored portions of the target were significantly larger when
the spherical harmonics were utilized as opposed to the case
when the standard sparse processing algorithm was applied.
Consequently, the point-like nature of the sparse microwave
images was considerably suppressed.

,e paper is organized as follows. ,e analytical back-
ground is given in Section 2. ,e numerical model is de-
scribed in Section 3. In Section 4, we describe the methods
used for comparison. ,e results obtained for various sce-
narios are reported in Section 5. In Section 6, we give

comparison of our method with other methods. Some final
remarks are given in the Conclusion section.

2. Analytical Considerations

2.1. Scattered Field Decomposition. We consider a 3D
scatterer, depicted, without loss of generality, as a yellow
sphere in Figure 1(a), located in a homogeneous nonmag-
netic medium of permittivity ε. ,e scatterer is surrounded
by an array of sensors, only two of which are shown in
Figure 1(a). ,e field scattered from the target is a super-
position of the transverse magnetic (TMr) and the transverse
electromagnetic components (TEr) [25]. As detailed in the
Appendix, we decompose both TMr and TEr components
using spherical harmonics. Below, we present only the final
expressions for the θ and ϕ components of the electric field:

E
TM
θ (r, θ, ϕ) � 

∞
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n

m�0
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H
(2)
n+1/2(βr).

(5)

Here r is the receiver’s position vector; (r, θ,φ) are the
spherical coordinates of r; Dn,m, En,m, Zn,m, and Yn,m are the
expansion coefficients; H(2)

n (βr) is the cylindrical Hankel
function of the second kind and order n; and Pm

n (cos θ) is the
associated Legendre function of the first kind, degree n, and
order m.

We assume that the antenna array is in the far field with
respect to the scatterer, and, thus, the radial component of
the electric field is negligible. Moreover, using the asymp-
totic expressions for the cylindrical Hankel functions, we
have

gn(r) ⟶
βr⟶∞

βj
n
e

− jβr

r
,

fn(r) ⟶
βr⟶∞

βj
n+1

e
− jβr

r
.

(6)

From the properties of the associated Legendre functions
[25], it follows that n≥ 1, 0≤m≤ n in (1) and (4) and n≥ 1,
1≤m≤ n in (2) and (3). ,e number of the relevant terms in
(1)–(4) is determined by the theory of degrees of freedom
(DoF) of EM fields [26, 27]. ,is theory states that the
scattered field of a bounded target, measured on a spherical
domain enclosing it, can be approximated by (βa)2 inde-
pendent pieces of information, where β � ω ��εμ√ is the phase
coefficient and a is the radius of the minimum sphere
enclosing the target. ,us, we can expect that the upper
bound for relevant terms per each polarization is approxi-
mately (βa)2/2. ,erefore, we can calculate the maximal
required order n from the condition



nmax

n�1


n

m�0
1 �

nmax nmax + 3( 

2
≤

(βa)
2

2
. (7)

In Figure 1(a), we visualize the sources of the spherical
waves (multipoles) as small spheres collocated in the
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scatterer’s center (origin), where each color refers to one
multipole order.

2.2. Alternative Scattered Field Decomposition. Let us con-
sider wave sources having the same polarization and order
(m, n), which are continuously distributed on a sphere of
radius a. Figure 1(b) shows an example of such a source
located at r′. ,e radial component of the potential gen-
erated by the source at the field point r is

Ar∝ H
(2)

n (βR)P
m
n (cos Θ)cos(mΦ)r0, R � r − r′, (8)

where (R,Θ,Φ) are the spherical coordinates ofR, (a, θ′,φ′)
are the spherical coordinates of r′, and r0 � R/R. In the far
field, we have

H
(2)

n (βr) ⟶
βr⟶∞

j
n+1

e
− jβr

,

(Θ,Φ) ≈ (θ, φ), R ≈ r − ir · ir′ , r0 ≈ ir,
(9)

where ir′ � r′/r′ and ir � r/r. ,us, the potential is ap-
proximated as

Ar∝ e
− jβr

e
+jβir ·i

r′P
m
n (cos θ)cos(mφ)ir, (10)

and the total potential is given by

Ar ≈ e
− jβr

P
m
n (cos θ)cos(mϕ) 

π

0

2π

0

· g θ′,ϕ′( exp +jβair · ir′( dθ′dϕ′,
(11)

where the function g(θ′,φ′) determines the source mag-
nitudes. Using the Taylor series, we obtain for the expo-
nential in (11)

exp +jβair · ir′(  � 1 + 
∞

k�1

jβair · ir′( 
k

k!
. (12)

For βa≪ 1, only the first term in the series is important
(i.e., exp(+jβair · ir′) ≈ 1). ,us, the resulting potential is

Ar ≈ Ae
− jβr

P
m
n (cos θ)cos(mϕ), (13)

where A is the coefficient, which depends on g(θ′, ϕ′). As
expected, the sources of the order (m, n), located on an
electrically small sphere, produce the electromagnetic wave
of the same order (m, n). When a increases, more terms in
(13) become significant. ,us, if we keep one more term, the
resulting potential becomes

Ar ≈ e
− jβr

P
m
n (cos θ)cos(mϕ) 

π

0

2π

0
g θ′, ϕ′  1 + jβair · ir′( dθ′dϕ′

� e
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π

0

2π

0
g θ′, ϕ′(  1 + jβa cos θ cos θ′ + sin θ sin θ′ cos φ − φ′( ( ( dθ′dϕ′.

(14)

After the integration and the application of recurrence
formulas for associated Legendre polynomials, we can
identify two groups of terms in the resulting potential. In the
first group, we have the following terms: e− jβrPm

n (cos θ)

cos(mϕ), e− jβrPm−1
n+1 (cos θ)cos((m − 1)φ), e− jβrPm−1

n+1 (cos θ)

sin((m − 1)φ), e− jβrPm+1
n+1 (cos θ)cos((m + 1)φ), and e− jβr

Pm−1
n+1 (cos θ)sin((m − 1)φ), which are the sources of the

waves of the orders (m − 1, n − 1) and (m + 1, n + 1). In the
second group, we have the following terms: e−jβrPm+1

n (cos θ)

cos(mφ), e−jβrPm−1
n (cos θ)cos(mφ), e−jβrPm−1

n+1 (cos θ)

cos((m +1)φ), and e−jβrPm+1
n+1 (cos θ)cos((m −1)φ), which do

not satisfy the Helmholtz equation (A.3). If we further
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Figure 1: (a) Multipoles of various orders, depicted as small spheres collocated in the scatterer’s center. (b) Computation of the radiation
pattern of a multipole of the order (m, n). (c) Spatial array of multipoles of the order (m, n).

4 International Journal of Antennas and Propagation



increase radius a, we have to keep additional terms in (16).
Consequently, by adjusting the value of a, we can generate the
spherical waves of arbitrary orders. ,us, we can model the
field scattered from the target by the spatial array of

multipoles of one order (e.g., (m, n)), as illustrated in
Figure 1(c). ,e approximate expressions for the electric field
in this case are

E
TM
θ (r, θ, ϕ) ≈ 

L

l�1
gn βRl( pn,m Θl(  an,m cos mΦl(  + bn,m sin mΦl(  , (15)

E
TM
ϕ (r, θ, ϕ) ≈ 

L

l�1
gn βRl( qn,m Θl(  an,m cos mΦl(  + bn,m sin mΦl(  , (16)

E
TE
θ (r, θ, ϕ) ≈ 

L

l�1
fn βRl( qn,m Θl(  cn,m cos mΦl(  + dn,m sin mΦl(  , (17)

E
TE
ϕ (r, θ, ϕ) ≈ 

L

l�1
fn βRl( pn,m Θl(  cn,m cos mΦl(  + dn,m sin mΦl(  , (18)

where an,m, bn,m, cn,m, and dn,m are the multipole coefficients.
Further, Rl � r − tl, where tl is the position vector of the lth
multipole, (Rl,Θl,Φl) are the spherical coordinates of Rl,
and L is the total number of the multipoles.

,e expansion coefficients must be selected in such a way
as to boost the components belonging to the spectrum of the
scattered field and to suppress the unwanted components. In
this case, the multipoles will be distributed in the target’s
interior. ,us, by reconstructing the locations of the mul-
tipoles, we can estimate the target’s shape. We note that the
multipoles with orders (m, n) close to border values produce
more unwanted components. Consequently, the sums
(15)–(18) may diverge, yielding erroneous reconstructions.
However, we will show later how to select optimal multipole
orders for imaging.

3. Measurement Models

3.1. Inverse Model. We assume a spherical array of half-
wavelength dipoles, whose positions are defined by the
vectors rk, k � 1, . . . , M, whereM is total number of dipoles.
,e array has two configurations: one with the dipoles
parallel to the unit vector iθ, and the other with the dipoles
parallel to the unit vector iϕ of the spherical coordinate
system.

Imaging is performed on uniform grids, as illustrated in
Figure 2. At each grid node, there is a multipole of the

selected order and polarization. ,e locations of the grid
nodes are defined by the position vectors, tl, l � 1, . . . , L,
where L is the overall number of the grid nodes. ,e
measurement model follows from (15)–(18) and it relates the
multipole coefficients and the measured scattered field.
When the ith antenna is transmitting, we have

e(i)
� Wn,mk

(i)
n,m. (19)

Here e(i) is the measurement vector, Wn,m is the system
matrix, and k(i)

n,m is the unknown vector whose elements are
the multipole coefficients. ,e system matrix consists of two
dictionaries related to the cosine and sine expansion terms:

Wn,m � Cn,m Sn,m . (20)

Similarly, vector k(i)
n,m consists of two parts:

k(i)
n,m �

c(i)
n,m

s(i)
n,m

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (21)

Here c(i)
n,m and s(i)

n,m are the unknown vectors corre-
sponding to the dictionaries Cn,m and Sn,m, respectively.
Depending on the array configuration and multipole po-
larization, Wn,m, k

(i)
n,m, and e(i) have different forms. Below,

we list the possible combinations.
Array with θ-oriented dipoles, TMr polarized multipoles:
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Cn,m �

gn βr11( pn,m θ11( cos mϕ11(  · · · gn βr1L( pn,m θ1L( cos mϕ1L( 

⋮ ⋱ ⋮
gn βrM1( pn,m θM1( cos mϕM1(  · · · gn βrML( pn,m θML( cos mϕML( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Sn,m �

gn βr11( pn,m θ11( sin mϕ11(  · · · gn βr1L( pn,m θ1L( sin mϕ1L( 

⋮ ⋱ ⋮
gn βrM1( pn,m θM1( sin mϕM1(  · · · gn βrML( pn,m θML( sin mϕML( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(22)

e(i)
�

Es,θ r1, ri( 

⋮
Es,θ rM, ri( 

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

c(i)
n,m �

a1
⋮
aL

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

s(i)
n,m �

b1
⋮
bL

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

(23)

Array with θ-oriented dipoles, TEr polarized multipoles:

Cn,m �

fn βr11( qn,m θ11( cos mϕ11(  · · · fn βr1L( qn,m θ1L( cos mϕ1L( 

⋮ ⋱ ⋮
fn βrM1( qn,m θM1( cos mϕM1(  · · · fn βrML( qn,m θML( cos mϕML( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
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fn βrM1( qn,m θM1( sin mϕM1(  · · · fn βrML( qn,m θML( sin mϕML( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(24)

e(i)
�

Es,θ r1, ri( 

⋮
Es,θ rM, ri( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
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Figure 2: Simplified illustration of the grid used for the sampling of the imaging domain.
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Array with φ-oriented dipoles, TMr polarized
multipoles:

Cn,m �

gn βr11( qn,m θ11( cos mϕ11(  · · · gn βr1L( qn,m θ1L( cos mϕ1L( 

⋮ ⋱ ⋮

gn βrM1( qn,m θM1( cos mϕM1(  · · · gn βrML( qn,m θML( cos mϕML( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Sn,m �

gn βr11( qn,m θ11( sin mϕ11(  · · · gn βr1L( qn,m θ1L( sin mϕ1L( 

⋮ ⋱ ⋮

gn βrM1( qn,m θM1( sin mϕM1(  · · · gn βrML( qn,m θML( sin mϕML( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(26)

e
(i)

�

Es,ϕ r1, ri( 

⋮
Es,ϕ rM, ri( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

c(i)
n,m �

a1

⋮
aL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

s(i)
n,m �

b1

⋮
bL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(27)

Array with φ-oriented dipoles, TEr polarized multipoles:

Cn,m �

fn βr11( pn,m θ11( cos mϕ11(  · · · fn βr1L( pn,m θ1L( cos mϕ1L( 

⋮ ⋱ ⋮

fn βrM1( pn,m θM1( cos mϕM1(  · · · fn βrML( pn,m θML( cos mϕML( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Sn,m �

fn βr11( pn,m θ11( sin mϕ11(  · · · fn βr1L( pn,m θ1L( sin mϕ1L( 

⋮ ⋱ ⋮

fn βrM1( pn,m θM1( sin mϕM1(  · · · fn βrML( pn,m θML( sin mϕML( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(28)

e
(i)

�

Es,ϕ r1, ri( 

⋮
Es,ϕ rM, ri( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, c(i)
n,m �

c1

⋮
cL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, s(i)

n,m �

d1

⋮
dL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (29)

In the above formulas, Rkl � rk − ti is the distance be-
tween the kth antenna and lth grid node; and (rkl, θkl, ϕkl)

are the spherical coordinates of the vector Rkl. For better
clarity, we omit the dependence of coefficients al, bl, cl, and
dl, l � 1, . . . , L, on the order of spherical harmonics (n,m) in
(23), (25), (27), and (24).

In the algorithm’s implementation, we compute the
measurement vector in all four cases as

e(i)
�

Δs1,i

Δs2,i

⋮

ΔsM,i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Δsj,i � sj,i − s
0
j,i, j � 1, . . . , M.

(30)
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Here sj,i and s0ji are the transmission coefficients between
the ith and jth antenna computed in the presence and the
absence of the target, respectively. In addition, we define a
vector whose elements are the square norms of the coeffi-
cients c(i)

n,m and s(i)
n,m at each grid node. For example, for the

coefficients defined in (23) and (27), we have

p(i)
n,m �

������

a2
1 + b21



. . .

������

a2
L + b2L


 

T

. (31)

In the same way, we can define p(i)
n,m for the coefficients

defined in (25) and (29).

3.2. Sparse Processing. ,e goal of the algorithm is to
minimize the number of the grid nodes with significant
coefficients, that is, to reduce the number of nonzero ele-
ments of (31). Hence, the minimization function is

k
(i)

n,m � min
k

(i)
n,m

e
(i)

− Wn,mk
(i)
n,m

�����

�����
2

2
+ c p(i)

n,m

�����

�����1
 , (32)

where c is the regularization parameter that balances be-
tween the data fidelity (represented by the l2 norm of the
error) and the solution sparsity (represented by the l1 norm
of the solution vector). For this purpose, we utilize the
convex programming package (CVX) [38].

Typically, the regularization coefficient c is obtained by
plotting the L-curve and selecting the value associated with
the knee of the curve [31]. ,at means solving (32) one time
per each value of the regularization parameter, which is
numerically consuming. However, we found that a simple
normalization of the system matrix can significantly shorten
the selection of the regularization coefficient. Namely, when
we divide each column of (20) by its square norm, the range
of useful values of the regularization coefficient falls in the
range of 0.1< c< 1. Moreover, the knee of the L-curve
corresponds approximately to c � 0.5.

To suppress the noise, we process together data obtained
from a few adjacent sensors in the array. ,e number of the
combined transmitting antennas is denoted with P. For
example, for P � 2, the minimization function reads

k
(i)

n,m � min
k

(i)
n,m,

e(i)

e(i+1)
⎡⎣ ⎤⎦ −

Wn,m

Wn,m

 k(i)
n,m

���������

���������

2

2

+ c p(i)
n,m

�����

�����1

⎧⎨

⎩

⎫⎬

⎭. (33)

,e choice of P is a trade-off between the image reso-
lution and robustness to noise. Namely, large values for P are
favorable in low SNR scenarios, but they produce smooth
reconstructions (i.e., cause loosing nonconvex features of
targets’ surfaces).

3.3. Image Construction. To obtain the complete image, we
superimpose the partial results obtained for groups of in-
cidences. In addition, we add results obtained for two po-
larizations. Hence, the image obtained using the multipoles
of the order (m, n) equals

Im,n(l) � 
i

p(i)
n,m(l)

√√√√√√√√
TMr

+ 
i

p(i)
n,m(l)

√√√√√√√√
TEr

,
(34)

where l is the pixel index and I(l) is the corresponding image
value. In the further analysis, we study images obtained
using multipoles of different orders. We show that only a few
orders are relevant, and that by summing the images pro-
duced by different orders the quality of the reconstruction is
improved.

3.4. Digital Filtering. Estimation with higher-order multi-
poles may produce artifacts. To obtain clear images, we use a
convex hull as a digital filter. To compute the convex hull, we
adopted the approach described in [28, 29] for the 3D
scenario. We first run the algorithm using the dominant
harmonic (which we describe in detail later). ,e regula-
rization parameter c needs to have a high value associated
with the vertical part of the L-curve. In our case, this is
equivalent to c> 1(the upper limit of c is insignificant.) ,e
convex hull gets its final form after applying the binarization
procedure in which all the pixels whose values are above a
threshold are set to one, and the pixels whose values are
below the threshold are set to zero.

3.5. Quality Measures. Typically, 3D reconstruction is per-
formed in several 2D cuts, which are either parallel or or-
thogonal planes. In this work, we computed targets’ images
in the two cuts coinciding with xOy and xOz planes of the
Cartesian coordinate system. To quantify the precision of the
method and its reconstruction abilities, we introduce two
metrics. First, we define η1 parameter as

η1 �
Nin

Ntot
, (35)

where Nin denotes the number of pixels obtained inside the
object’s contour and Ntot denotes the total number of the
obtained pixels. In other words, η1 parameter appraises the
method precision by measuring how many of the obtained
pixels “fall” inside the object contour. ,e second metric,
denoted by η2, assesses the ability of the method to re-
construct the object shape and is defined as

η2 �
Nin

Nobj
, (36)

where Nobj denotes the number of pixels inside the object’s
actual contour and is fixed for a chosen object shape. In the
calculations, we considered as relevant all pixels with the
intensity higher than 5% of the maximal value. Both metrics
are calculated for each cut separately. Ideally, they should be
close to unity.

4. Comparison Methods

,is section gives a brief description of the methods used to
compare the reconstruction results. Since the proposed
method is qualitative, we used LSM [15, 16] and TSVD
[18, 19], which are the golden standard inversion methods
adopted for qualitative real-time imaging. In addition, we
compared the images obtained by the proposed algorithm,
further denoted as SHSP (spherical harmonics sparse
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processing), and another sparse processing algorithm [39],
denoted as SSP (standard sparse processing).

4.1. Truncated Singular Value Decomposition (TSVD). ,e
TSVD measurement model follows from the linearized
scattering equation [12]. ,e target image is obtained from
the linear system of equations

e � Lf,

L �

Einc t1, r1(  · Einc t1, r1(  . . . Einc tL, r1(  · Einc tL, r1( 

Einc t1, r1(  · Einc t1, r2(  ⋮ Einc tL, r1(  · Einc tL, r2( 

⋮ ⋮ ⋮
Einc t1, rM(  · Einc t1, rM(  . . . Einc tL, rM(  · Einc tL, rM( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

e �

Δs1,1
Δs1,2
⋮
ΔsM,M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

f �

f1
f2
⋮
fL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(37)

Here L is the systemmatrix, e is the knownmeasurement
vector, and f is the unknown vector (target image). ,e
TSVD solution of the system is

f � 
P

i�1

1
σi

uH
i · e vi, (38)

where ui, vi are the singular vectors of matrix L, σi are the
corresponding singular values, and P is the truncation index,

obtained from the condition −20log10(σP) � TH, where TH
is the adopted threshold.

4.2. Linear Sampling Method (LSM). In this method, a
system of equations is solved for each search point and each
Cartesian component of the incident field:

Lfs � gs tl( ,

L �

Δs1,1 · · · Δs1,N

⋮ ⋱ ⋮

ΔsM,1 · · · ΔsM,M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

gs tl(  �

Einc,s tl, r1( 

⋮

Einc,s tl, rN( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

f s tl(  �

f1

f2

⋮

fL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(39)

Here L is the system matrix, gs is the known vector
whose elements are s ∈ x, y, z  components of the incident
electric field, produced by the antenna array at tl, and fs is
the unknown vector. ,e solution obtained by means of
Tikhonov regularization is

fs tl(  � 
M

i�1

σi

σ2i + α2
uH

i · g tl(  vi, (40)

where α is the regularization coefficient, typically selected as
α � 0.01σ1. ,e resulting image at tl is computed as
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I tl(  �
1

fx tl( 
����

����
2
2 + fy tl( 

�����

�����
2

2
+ fz tl( 

����
����
2
2

. (41)

4.3. Standard Sparse Processing (SSP). ,e selected sparse
microwave imaging algorithm is based on linearized

scattering equation, as TSVD and, implicitly, LSM. In
contrast to TSVD, partial systems of equations are formed
for each transmitter. When the ith antenna is transmitting,
the system of equations reads

e(i)
� L(i)f(i)

,

L(i)
�

Einc t1, r1(  · Einc t1, ri(  . . . Einc tL, r1(  · Einc tL, ri( 

Einc t1, r2(  · Einc t1, ri(  ⋮ Einc tL, r2(  · Einc tL, ri( 

⋮ ⋮ ⋮
Einc t1, rM(  · Einc t1, ri(  . . . Einc tL, rM(  · Einc tL, ri( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

e(i)
�

Δs1,i

Δs2,i

⋮
ΔsM,i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

f(i)
�

f
(i)
1

f
(i)
2

⋮
f

(i)
L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(42)

where L(i) is the partial system matrix, e(i) is the corre-
sponding measurement vector, and f(i) is the unknown
vector. Similar to (32), data obtained from P transmitting
antennas are processed together. For example, if P� 2, the
resulting system of equations becomes

e(i)

e(i+1)
⎡⎣ ⎤⎦

√√√√√√
e

≈
L(i)

L(i+1)
⎡⎣ ⎤⎦

√√√√√√
L

f(i)
.

(43)

,e minimization function is

f
(i)

� min
f(i)

e − Lf(i)
�����

�����
2

2
+ c f(i)

�����

�����1
. (44)

where c is the regularization coefficient. ,e final image is
obtained as the superposition of the partial results f

(i)
.

5. Numerical Results

,e antenna array consisted of 72 half-wavelength dipoles,
divided into six circles uniformly distributed along the
θ-direction and operating at 2GHz. We considered arrays
with φ- and θ-oriented dipoles, as illustrated in Figure 3.,e
array response was computed numerically using the 3D EM
solver WIPL-D Pro [40]. ,e data were corrupted by ad-
ditive white Gaussian noise (AWGN). ,e signal-to-noise
ratio (SNR) was determined as the ratio of the power of the
differential signals to that of noise. We computed the target
images in xOy and xOz planes of the Cartesian coordinate
system. In each plane, we used a 50 × 50 search grid.

5.1. Cross-Shaped PEC Target. As the first example, we
considered a cross-shaped PEC object depicted in Figure 4.
,e dimensions of the objects were chosen in such a way that
βa ≈ 4, where a is the radius of the minimal sphere
encompassing the target. According to (7), for adopted
target size, nmax � 3. ,e images were computed for each
harmonic in the range (m, n), n≤ nmax, m≤ n. We noted that
for φ-oriented dipoles, the TM11 harmonic was almost
sufficient for the target reconstruction, particularly in the
xOy plane (Figures 5(a) and 5(b)). For θ-oriented dipoles,
the major contribution came from the TM10 harmonic
(Figures 5(c)–5(d)). As we will show later, the same har-
monics appeared “dominant” in other examples that we
studied.

In Table 1, we show the contributions of all harmonics,
described by the reconstruction ability, η2 (the values in each
column do not sum up to 1, because inmany cases the results
obtained from different harmonics overlap). ,e contri-
butions of harmonics are unique, but some general con-
clusions can be drawn. For φ-oriented dipoles, the most
valuable information came from the harmonics with the
index m� 1 (i.e., harmonics: TM11, TE11, TM21, TE11, TE31,
and TM31). ,e harmonics with the indexm� 0 (TE10, TE20,
and TE30) can be excluded from the analysis with φ-oriented
dipoles.,ese harmonics neglect the φ-dependence, which is
critical for this array configuration. Harmonics with bor-
derline values of the indices, m � 2, 3, tend to produce many
artifacts; hence, they can be also eliminated. For θ-oriented
dipoles, similar conclusions hold, except that harmonics
with m � 0 can be used in the image reconstruction, due to
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predominantly vertical dipole orientation. To simplify the
image processing, in the further analysis, we used harmonics
shown in red in Table 1.

Figure 6 shows the complete target reconstructions,
obtained with both arrays. ,e target shape was accurately
estimated, regardless of the plane and dipole orientation.,e
parameters η1 and η2 were listed in Table 2. In particular, the

reconstruction ability (η2) was close to one, whereas the
precision (η1) was slightly lower, mainly due to the pixels
that encircle the target contour from the outside, which
actually make the target “thicker.” For the purpose of
comparison, we have also included the accuracy parameters
calculated for the noiseless case.

We note that the dominant harmonics have simple form:

x
y

z

(a) (b)

x y

z

Figure 3: Antenna array configurations. (a) φ-Oriented dipoles and (b) θ-oriented dipoles.

x y

z

Figure 4: 3D model of the cross-shaped target.
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Figure 5: Cross-shaped PEC target images obtained using dominant harmonics. (a) xOy plane and φ-oriented dipoles, (b) xOz plane and
φ-oriented dipoles, (c) xOy plane and θ-oriented dipoles, and (d) xOz plane and θ-oriented dipoles. ,e adopted signal-to-noise ratio was
SNR� 10 dB.

Table 1: Contributions of each harmonic for the cross-shaped PEC target.

φ-dipoles xOy plane<> φ-dipoles xOz plane<> θ-dipoles xOy plane<> θ-dipoles xOz plane<>
TE10 0 0.12 — —
TE11 0.31 0.13 0.25 0
TE20 0.13 0 — —
TE21 0.19 0.25 0.25 0.25
TE22 0 0 0.06 0.13
TE30 0.10 0 — —
TE31 0.21 0.03 0.25 0.06
TM10 — — 0.63 0.69
TM11 0.88 0.72 0.25 0.31
TM20 — — 0.06 0.31
TM21 0.19 0.16 0.13 0.06
TM22 0.05 0.15 0 0.06
TM30 — — 0.24 0.13
TM31 0.05 0.15 0.25 0
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Figure 6: Cross-shaped PEC target images obtained using multiple harmonics. (a) xOy plane and φ-oriented dipoles. (b) xOz plane and
φ-oriented dipoles. (c) xOy plane and θ-oriented dipoles. (d) xOz plane and θ-oriented dipoles. ,e adopted signal-to-noise ratio was
SNR� 10 dB.

Table 2: Parameters η1 and η2 calculated for the cross-shaped PEC target.

Plane Sensor orientation SNR η1 η2

xOy
φ ∞ 0.73 1.00

10 dB 0.73 1.00

θ ∞ 0.64 0.88
10 dB 0.60 0.88

xOz
φ ∞ 0.80 1.00

10 dB 0.61 1.00

θ ∞ 0.68 0.94
10 dB 0.62 0.88
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E
TM
ϕ (r, θ, ϕ) ≈ E

TM
ϕ,1,1(r, θ, ϕ) �

���

πβ
2r



βH
(2)
1/2(βr) −

1
r
H

(2)
3/2(βr) (Dcos ϕ + Esin ϕ), (45)

E
TM
θ (r, θ, ϕ) ≈ E

TM
θ,1,0(r, θ, ϕ) � Dcos θ

���

πβ
2r



βH
(2)
1/2(βr) −

1
r
H

(2)
3/2(βr) , (46)

thus allowing the significant simplification of the recon-
struction process at the cost of some accuracy loss. ,e
obtained formula (45) resembles 2D case. However, the
more search planes deviate from the xOy plane, the use of
higher-order spherical harmonics becomes more important,
and those harmonics do not have their counterpart in the 2D
case. In addition, higher-order harmonics have their role in
obtaining the fuller image (i.e., reducing point-like nature of
sparse images).

5.2. Cross-Shaped Dielectric Target. In our next example, we
investigated the algorithm’s ability to reconstruct the cross-
shaped object made of dielectric with the complex per-
mittivity εr � 10 − j1. Figure 7 shows the reconstruction
results obtained using the same harmonics as in previous
example, for SNR� 10 dB.,e shape of the target was clearly
visible in the xOz plane. In the xOy plane, the quality of the
reconstruction was somewhat lower. Table 3 displays the
values of η1 and η2 parameters, calculated for both noiseless
and noisy scenarios. ,e accuracy parameters were slightly
lower than those calculated for the cross-shaped PEC target.
Again, for φ-oriented dipoles, the dominant harmonic was
TM11. For θ-oriented dipoles, the major contribution came
from TM10 harmonic.

5.3. Two Targets. We studied the reconstruction of two
cross-shaped PEC objects, placed in the xOy plane. ,e
dimensions of each target were the same as in previous
examples. Due to the increased complexity of the overall
scenario, we used a denser antenna array, consisting of 104
dipoles. Figures 8(a) and 8(b) show the obtained results for
two target positions using only the dominant harmonic
(TM11). As can be observed, both objects were clearly dis-
tinguishable. In Figure 8(c), we show the reconstruction
results for the spheres, whose radii differ for 50%. Again, the
dominant harmonic was also TM11. Interestingly, in this
case, the higher-order harmonics detected only the larger
sphere.

5.4. Algorithm Summary. ,e performed extensive nu-
merical analysis allowed us to simplify the proposed algo-
rithm whose final implementation consists of the following
steps:

(i) Compute the target image using the dominant
harmonic TM11 for φ-oriented dipoles or TM10 for
θ-oriented dipoles. For the regularization, use c

slightly less than the value corresponding to the
knee of the L-curve (i.e., c � 0.4). Set the size of the
transmission array to P� 1 for larger arrays or P� 2

for smaller arrays (results are very similar, but
smaller P reduces the computational time).

(ii) Compute the target images using higher-order
harmonics (shown in red in Table 1). Use c slightly
higher than the value corresponding to the knee of
the L-curve (i.e., c � 0.6).

(iii) Superimpose the partial results.
(iv) Compute the convex hull using the dominant

harmonic and c � 2. Binarize the obtained image to
obtain a digital filter. ,e procedure for selecting
threshold was described in [28].

(v) Apply the binarized convex hull as a digital filter to
remove artifacts, if necessary.

,e rationale behind the described regularization pa-
rameter selection is the following: images obtained using the
dominant harmonic are stable in a wide range of c. Hence,
by selecting c that is slightly smaller than the knee-curve
value, we increase the portion of the target that is being
restored. On the other hand, when the suboptimal har-
monics are used, selecting a value of c slightly higher than
the knee-curve value allows suppressing the artifacts.

6. Comparison with Other Methods

When juxtaposing two methods, there are many critical
criteria to consider: reconstruction accuracy, resolution,
robustness against the noise, minimal array size, compu-
tational time, and ease of implementation. As a first crite-
rion, we studied the resolution of the proposed method
(SHSP), contrasted to those of TSVD, LSM, and SSP. We
utilized the cross-shaped object from Figure 3, whose di-
mensions were scaled so that the radius of the minimum
encompassing ball changed from a � 0.25λ to a � λ. ,e
images were computed using ϕ-oriented dipoles in the xOz
plane. Figure 9 shows the reconstruction results for a � 0.3λ
obtained by TSVD (TH� – 20 dB), LSM (α � 0.1 σ1), SSP
(c � 0.4), and SHSP with the settings described in Section
4.4. ,e SHSP was the only method to recover any parts of
the vertical arm (for better clarity, the SSP and SHSP results
were shown in logarithmic scale). Since nmax ≈ 1, the rele-
vant harmonics were TM11 and TE11. ,e harmonic TM11
yielded similar results as SSP. ,e harmonic TE11 was re-
sponsible for the pixels at the endpoints of the vertical arm.
No digital filtering was applied. ,e higher-order harmonics
produced images with pixels outside the object’s convex
envelope.

Figure 10 shows the reconstruction results for a � 0.46λ.
Again, the vertical part was still invisible for all other al-
gorithms apart from SHSP. Since nmax ≈ 2, utilized
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Figure 7: Cross-shaped dielectric target images obtained usingmultiple harmonics. (a) xOy plane and φ-oriented dipoles. (b) xOz plane and
φ-oriented dipoles. (c) xOy plane and θ-oriented dipoles. (d) xOz plane and θ-oriented dipoles. ,e adopted signal-to-noise ratio was
SNR� 10 dB.

Table 3: Parameters η1 and η2 calculated for the cross-shaped dielectric target.

Plane Sensor orientation SNR η1 η2

xOy
φ ∞ 0.65 0.63

10 dB 0.61 0.63

θ ∞ 0.67 0.75
10 dB 0.65 0.59

xOz
φ ∞ 0.74 0.88

10 dB 0.71 0.84

θ ∞ 0.75 0.81
10 dB 0.70 0.78
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Figure 8: Reconstruction of two objects in xOy plane and φ-oriented dipoles. ,e adopted signal-to-noise ratio was SNR� 10 dB.
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Figure 9: Reconstruction of the cross-shaped object a� 0.3λ in xOz plane and φ-oriented dipoles. (a) TSVD, (b) LSM, (c) SSP, and (d) SHSP.
SNR� 10 dB.
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harmonics were TM11, TM21, TE11, and TE21.,e harmonics
TM21 and TE11 helped in restoring the vertical arm. No
digital filtering was applied. Again, the higher-order har-
monics produced images with pixels outside the object’s
convex envelope.

Figure 11 shows the reconstruction results for a � 0.62λ
(nmax ≈ 3). ,e cross shape was invisible in the TSVD image
(Figure 11(a)); it starts to show in the LSM image
(Figure 11(b)), where it is evident in SSP and SHSP images
(Figures 11(c) and 11(d)). Using the rules adopted in Section
4.4, we used TM11, TM21, TE11, and TE21 harmonics.
However, only the dominant harmonic (TM11) was suffi-
cient. ,e higher-order harmonics, such as TE31 and TM31,
required digital filtering. However, they were not used since
they did not contain any new information.

Finally, Figure 12 shows the reconstruction results for
a � 0.77λ (nmax ≈ 4). Apart from TSVD, all algorithms
restored the target’s shape. In SHSP, we used the same
harmonics as in the previous case (TM11, TM21, TE11, and
TE21). ,e same conclusions hold as for a � 0.62λ
(nmax ≈ 3).

Further, we compared the influence of the array size and
SNR on the reconstruction accuracy. ,us, we decreased the
number of antennas to M� 32. Figures 13 and 14 show the
images obtained by LSM and SHSP, respectively, for
SNR� 10 dB and SNR� 5 dB.,e LSM results were severely
affected by noise. In contrast, when SHSP was used, the
shape of the cross was visible even for SNR� 5 dB.

Finally, we performed one more comparison of the two
sparse processing algorithms. We considered the star-

shaped object shown in Figure 15(a), illuminated by the
array of ϕ-oriented dipoles (M� 62). Figure 15(b) shows the
image obtained by SSP. For better clarity, the image was
binarized with a 5% threshold. Although the concave nature
of the target was visible, less than 30% of the target’s cross
section was identified. Generally, restoring only a portion of
the targets’ domain is a significant drawback of the sparsity-
based algorithms. In contrast, Figure 15(c) shows the image
obtained by SHSP, which restored about 60% of the target’s
cross section. ,e accuracy metrics for both methods were
given in Table 4. SHSP yielded better accuracy parameters
than SSP, even when only the dominant harmonic was used;
see Figure 15.

In general, SHSP yielded more accurate reconstructions
than LSM and TSVD when the target was electrically small
or when the amount of data was low. ,us, using SHSP
reduces the array size and measurement system complexity
without sacrificing the resolution. In addition, SHSP was
more robust against the noise than LSM and TSVD.
However, LSM and TSVD are computationally less ex-
pensive and straightforward to implement. Also, the com-
putational time of the sparse processing is longer than that of
LSM and TSVD. Obtaining the image with a dominant
harmonic for the array with 72 sensors and 2500 grid points
takes about 3min with the SHSP, less than 2min with TSVD,
and about 0.7min with LSM. When two sparse processing
algorithms are compared, the main advantage of the SHSP is
the higher resolution. In addition, the SHSP restores larger
portions of a target at the cost of more complex
implementation.
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Figure 10: Reconstruction of the cross-shaped object a� 0.46λ in xOy plane and φ-oriented dipoles. (a) TSVD, (b) LSM, (c) SSP, and (d)
SHSP. SNR� 10 dB.
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Figure 11: Reconstruction of the cross-shaped object a� 0.6λ in xOy plane and φ-oriented dipoles. (a) TSVD, (b) LSM, (c) SSP, and (d)
SHSP. SNR� 10 dB.
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Figure 12: Reconstruction of the cross-shaped object a� 0.75λ in xOy plane and φ-oriented dipoles. (a) TSVD, (b) LSM, (c) SSP, and (d)
SHSP. SNR� 10 dB.
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Figure 13: LSM images of the cross-shaped PEC target in xOy plane. (a) θ-Oriented dipoles, SNR� 10 dB; (b) θ-oriented dipoles,
SNR� 5 dB; (c) φ-oriented dipoles, SNR� 10 dB; and (d) φ-oriented dipoles, SNR� 5 dB.
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Figure 14: Sparse processing images (SHSP) of the cross-shaped PEC target in xOy plane. (a) θ-Oriented dipoles, SNR� 10 dB; (b)
θ-oriented dipoles, SNR� 5 dB; (c) φ-oriented dipoles, SNR� 10 dB; and (d) φ-oriented dipoles, SNR� 5 dB.

Table 4: Parameters η1 and η2 calculated for the star-shaped target from Figure 11(a).

Method η1 η2
SHSP (TM11) 0.92 0.42
SHSP (TM11 et al.) 0.91 0.57
SSP [23] 0.82 0.27
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Figure 15: (a) Star-shaped object. Reconstruction of the star-shaped object in xOy plane, obtained using f-oriented dipoles, SNR� 5 dB: (b)
SSP and (c) SHSP.
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7. Conclusions

,is paper describes a 3D MWI qualitative algorithm spe-
cifically designed to analyze complex-shaped objects. ,e
algorithm utilizes spherical wave functions to model the
scattered field and incorporate them into the sparse pro-
cessing framework.

,e algorithm was tested on a vast number of examples.
Due to the sophisticated electromagnetic modeling and the
utilization of the L1 regularization, the algorithm was able to
capture the abrupt changes in the target shape.

,e extensive study showed that the presented method is
suitable for imaging metallic/dielectric targets even in low
SNR scenarios. ,e performance of the algorithm was
compared to that of LSM and TSVD. ,e analysis showed
that the sparse processing outperforms the other two al-
gorithms in imaging electrically small targets or low SNR
scenarios with few measurements. However, the computa-
tional cost of the sparse processing was higher than that of
TSVD and LSM.

In addition, the performance of the developed algorithm
was compared to that of another sparse processing algo-
rithm, which uses the linearized scattering equation as the
kernel. ,e obtained results showed that the utilization of
the spherical harmonics significantly increased the

reconstructed portion of the target, which is one of the
critical points when the sparsity constraint is utilized.

,e conducted analysis has also shown the existence of
dominant harmonics, which have a major influence on the
target reconstruction. Hence, utilizing only the dominant
harmonics reduces the computational time with slight
performance loss [41–49].

Appendix

We can express the field scattered from the object as a
superposition of the transverse magnetic (TMr) and trans-
verse electric (TEr) field components [Harr]. TMr polarized
field is obtained by letting

A � Arir,

F � 0.
(A.1)

Similarly, TEr polarized field is obtained by letting

F � Frir,

A � 0.
(A.2)

As detailed in [Harr], both ψ � Ar/r and ψ � Fr/r satisfy
the Helmholtz equation. In spherical coordinates, the
Helmholtz equation is

1
r
2

z

zr
r
2zψ
zr

  +
1

r
2sin θ

z

zθ
sin θ

zψ
zθ

  +
1

r
2sin2 θ

z
2ψ

zϕ2 + β2ψ � 0, (A.3)

where β � ω ��εμ√ is the phase coefficient. ,e solution to the
Helmholtz equation is in the form of a product

ψn,m � h
(2)
n (βr)P

m
n (cos θ)

cos(mϕ)

sin(mϕ)
 , (A.4)

where h(2)
n (βr) is the spherical Hankel function of the second

kind and order n and Pm
n (cos θ) is the associated Legendre

function of the first kind, degree n, and order m. ,us, we
may write the potentials as

Ar(r, θ, ϕ) � 
n,m

Dn,m
H

(2)

n (βr)P
m
n (cos θ)cos(mϕ) + 

n,m

En,m
H

(2)

n (βr)P
m
n (cos θ)sin(mϕ), (A.5)

Fr(r, θ, ϕ) � 
n,m

Zn,m
H

(2)

n (βr)P
m
n (cos θ)cos(mϕ) + 

n,m

Yn,m
H

(2)

n (βr)P
m
n (cos θ)sin(mϕ), (A.6)

where Dn,m, En,m, Zn,m, and Yn,m are the expansion coeffi-
cients, and H

(2)

n (βr) is the Schelkunoff spherical Hankel
function of the second kind and order n, which is related to
the ordinary spherical Hankel function as

H
(2)

n (βr) � βrh
(2)
n (βr). (A.7)

In the far field, the relevant electric field components are
Eθ and Eφ, and they can be obtained from the potentials as

Eθ � −
1

r sin θ
zFr

zϕ
+

1
jωεr

z
2
Ar

zrzθ
, (A.8)

Eφ �
1
r

zFr

zθ
+

1
jωεrsinθ

z
2
Ar

zrzφ
. (A.9)

From (A.5), (A.6) and (A.8), (A.9), the electric field
components for each polarization are
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m
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Expressions (A.10)–(A.13) contain partial derivatives of
H

(2)

n (βr) with respect to r and partial derivatives of
Pm

n (cos θ) with respect to θ. Using identities from [25], we
obtain
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(A.14)

Here H(2)
n (βr) is the cylindrical Hankel function of the

second kind and order n. ,e derivative of the Legendre
function is given as
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(A.15)

After the substitution of (A.14)–(A.15) into
(A.10)–(A.13), we get the final expressions for the electric
field components
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(A.16)
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